
Distributed leader-followers constrained platooning control of linear
homogeneous vehicles

Ramzi Gaagai, Mattia Giaccagli and Joachim Horn

Abstract— This paper presents a feedback-distributed con-
troller that guarantees exponential synchronization of a vehicle
platoon described by linear dynamics. To achieve desired inter-
vehicle spacing between two vehicles and to improve pla-
toon cohesiveness, a leader-based bidirectional communication
scheme is employed. To take into account the constraints
of the system and to avoid collision between vehicles, safety
features are implemented using control barrier functions via
linear quadratic programming. String stability properties of
the platoon are analyzed, where we show via simulations that
the proposed design allows considering a gap-spacing policy
for inter-vehicle distance with zero headway. To conclude,
the effectiveness of the proposed controller is verified in a
simulation study.

I. INTRODUCTION

Highway capacity limits traffic systems, resulting in traffic
jams. Cooperative Adaptive Cruise Control (CACC) known
as platooning is deemed a promising solution to improve
traffic safety, reduce fuel consumption and vehicles emission
due to reduced air resistance, as well as increase traffic
throughput and road capacity [11], [20]. A platoon is a group
of closely spaced vehicles that drive safely and automatically
by regulating the inter-vehicle distance to a desired value and
employing wireless communication in addition to onboard
sensors [13]. Vehicle platoons have been an area of focus
for researchers and industry for decades [19], [13]. While
field experiments and real-world implementations of the
technology are still rare, research becomes more refined.

Due to the distributed nature of the problem, the majority
of existing solutions make use of multi-agent synchronization
tools, with a focus on string stability. Existing controllers
usually rely on inter-vehicle distance error feedback de-
signs. In [13], a controller for homogeneous platoons that
guarantees string stability was derived using Predecessor-
Following (PF) topology. The controller was tested and
evaluated on a platoon of passenger cars. Leveraging the
controller presented in [13], the authors of [25] presented
a bidirectional distributed consensus controller for homo-
geneous platoons, showing that bidirectional interaction can
potentially improve platoon cohesiveness. The approach was
further extended in [26] to consider velocity constraints. If
the former works mainly focused on vehicles described by
linear dynamical models, string stability of nonlinear systems
has been studied more recently for instance in [12] with L∞
tools for heterogeneous platoons, or in [17] with integral
control. At the same time, recent works started to consider
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more real-life oriented scenarios, by taking into consideration
in the control design the presence of disturbances [12], [21],
or delays in the communication lines, see e.g. [3].

In this work, we consider a linear platoon of homogeneous
vehicles and we present a distributed-feedback control law
for CACC. In particular, we consider a leader-connected
network, where all the vehicles’ communication links are
bidirectional, with an exception for the first “virtual” leading
vehicle. We first propose a full-state feedback distributed
control law coupling the vehicles. In order to take into
account input and state constraints while assuring safety
requirements, we rely on the notion of Control Barrier Func-
tions (CBFs), see e.g. [1], [14], [7], implemented by means of
an online optimization problem via Linear Quadratic (LQ)
programming. To the authors’ knowledge, such a tool has
been employed in platooning for example in [15] with a PD
controller and recently in [8] with a two-layer controller.
Differently for the former designs, however, we rely on
a full state-feedback design rather than an error-feedback
one. We show via simulations, that such a difference allows
achieving string stability of the platoon while considering a
gap-spacing policy for inter-vehicle distance with (possibly)
a zero headway, contrarily from many literature results where
a minimum strictly positive bound is required.

The paper is structured as follows: In section II the platoon
model is presented and the challenges tackled in this paper
are laid out. Section III contains some preliminaries on the
main tools used. Section IV describes the proposed control
design. In Section V, some simulations to illustrate the per-
formance of the proposed approach are shown. Conclusions
can be found in Section VI.

Notation: N is the set of (non-negative) natural num-
bers. R = (−∞,+∞), R>0 = (0,+∞) and R≥0 :=
[0,+∞). We write A = [aik] to indicate that A is a matrix
where aik is the element in row i and column k. For bi ∈ R
with i = {1, . . . , n}, diag{bi} is a n×n diagonal matrix with
bi on the main diagonal and zeros elsewhere. ||x||2 is the
Euclidean norm of x ∈ Rn. For f : Rn 7→ Rn, g : Rn 7→ Rn

and h : Rn 7→ R sufficiently smooth, we let Lfh(x) =
∂h
∂x (x)f(x) and LgLfh(x) =

∂(Lfh)
∂x (x)g(x). Given r ∈ N,

we let Lr
fh(x) =

∂(Lr−1
f h)

∂x (x)f(x) with L0
fh(x) = h(x).

II. PROBLEM SETTING AND PRELIMINARIES

A. Single vehicle model

In this work, we consider an homogeneous platoon of
M vehicles as shown in Fig. 1. We indicate with vi the
velocity and with pi the position of vehicle Vi, where
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i = {1, . . . ,M}. Let ai be the acceleration of vehicle Vi.
Following [18], [16], each vehicle is modeled as a linear
system of the form

ẋi = Axi +Bui , (1)

where xi =
(
pi vi ai

)⊤ ∈ R3 is the state of vehicle Vi,
ui ∈ R is its input and where

A :=

0 1 0
0 0 1
0 0 − 1

τ

 , B :=

0
0
1
τ

 (2)

with τ < 1 being the time constant of the engine. We take the
initial conditions of the system such that pi(0) > pi+1(0).

B. Platoon interconnection

Interconnection between vehicles is modeled using graph
theory. In a general framework, the information exchange
between vehicles in the platoon is represented by a directed
graph (digraph) G(V, E), where V = {V0, V1, V2, ...., VM} is
a set of nodes (vehicles) and E ⊆ V × V is a set of edges
representing the information exchange between vehicles. The
edge set E can be described by an adjacency matrix Ā =
[āik], with weights āik = 1 if (Vk, Vi) ∈ E and āik = 0
otherwise. Define the weighted in-degree of vehicle Vi as the
i-th row sum of Ā, that is, di =

∑M+1
k=1 āik The diagonal in-

degree matrix is defined as D = diag {di}. The Laplacian
matrix is defined as the difference between the in-degree
matrix D and the adjacency matrix Ā, i.e. L = D−Ā = [ℓik].
In particular, in this work, we consider a leader-followers
communication topology with bidirectional links. Vehicle Vi

is allowed to collect and share information with both its
preceding vehicle Vi−1 and the following one Vi+1, as shown
in Fig. 1. The only exception is V0, which is a “virtual”
vehicle (i.e. it is not a real vehicle but part of the algorithm)
that shares the same dynamical model of Vi but does not
receives any information from V1, i.e. it acts as a leader of
the network. Thus, the Laplacian L ∈ R(M+1)×(M+1) is

L :=

(
0 0

L21 L22

)
=



0 0 0 · · · 0

−1 2 −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 2 −1

0 . . . 0 −1 1


(3)

with L22 ∈ RM×M and L21 ∈ RM . Such an interconnection
topology is summarized in the following.

Assumption 1. The graph G = {V, E} is leader connected
with V0 being the leader, i.e. it contains a spanning three
with V0 as the root. Moreover, the Laplacian L is defined as
in (3).

The choice of the communication graph has two main rea-
sons. On one hand, bidirectional links have been considered
to provide additional safety and avoid collisions [25]. On
the other hand, a leader-connected topology is considered
in order to improve performances. The role of the virtual

leading vehicle is only to follow the desired reference profile,
“imposing” the steady-state behavior of the platoon, while all
the rest of the vehicles have to follow it. By considering such
a single-leader network, the heading vehicle is not affected
by the rest of the platoon, but rather it acts as an autonomous
system.

Fig. 1. CACC-equipped homogeneous platoon of vehicles with bidirec-
tional communication (edited from [24]).

C. The control problem
In this work, we aim to solve a reference tracking

platooning control, namely, the state of each of the ve-
hicles has to follow a desired reference profile r⋆(t) =(
p⋆(t) v⋆(t) a⋆(t)

)⊤
, while maintaining a spacing dis-

tance in between neighbor vehicles. We consider a gap
spacing policy for the desired inter-vehicle distance defined
as

d⋆i (vi(t)) = r + hvi(t) , (4)

where r is the constant distance at standstill, and h is the
constant headway. Therefore, the inter-vehicle spacing error
ei is defined as:

ei = (pi−1 − pi − L)− (r + hvi) (5)

with L being the length of each vehicle.
To make the problem more challenging, we consider a

scenario in which constraints in the vehicle actuators and in
its state are taken into account. In other words, we assume
that, for all i, there exist ui, ui, ai, ai, vi, vi ∈ R such that,
for all i and for all t, the control problem has to be solved,
while satisfying

ui ≤ ui(t) ≤ ui , ai ≤ ai(t) ≤ ai , vi ≤ vi(t) ≤ vi . (6)

In order to assure the feasibility of the problem, we take a
reference profile that satisfies the bounds (6) and the desired
spacing distance with respect to the system’s dynamics.
The problem is to ensure that, for any constant cruise
speed, the inter-vehicle distance errors asymptotically tend to
zero, while satisfying the constraints and avoiding collision
between vehicles.

III. PRELIMINARIES

A. Synchronization of linear leader-connected networks
In this section we briefly recall the main tools that

will be used in the following. In particular, how to de-
sign a state-feedback distributed controller achieving leader-
synchronization for a network of linear systems is a well-
known result. A general overlook of the problem and of the
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tools can be found for instance in [10, Section V]. A standard
assumption for networks of linear systems is the graph to be
connected in the sense of [10, Definition 5.1] (some authors
also call this “weak connectivity”), namely the fact that there
exists one node V ⋆ in the network such that there exists a
path from V ⋆ to any other node or that, equivalently, the
Laplacian matrix has all the non-zero eigenvalue with strictly
positive real part. In our leader-followers framework, such a
condition holds through the leader-connectivity Assumption
1 where V ⋆ = V0. From [10], [5], the following holds.

Proposition 1. Consider a homogeneous network whose
agents’ dynamics is defined by (1) and let Assumption 1 hold.
If there exists a symmetric positive matrix P = P⊤ > 0 and
ρ, λ ∈ R>0 such that

PA+A⊤P − ρPBB⊤P ≤ −2λP , (7)

then there exists κ⋆ ∈ R>0 such that, for any κ ≥ κ⋆,
there exists k ∈ R>0 such that the network in closed loop
with ui = −κ

∑M+1
j=1 ℓ(i+1)jB

⊤Pxj−1 satisfies |xi(t) −
xj(t)| ≤ k|xi(0)−xj(0)| exp(−λt) for all initial conditions
xi(0), xj(0) ∈ Rn, for all t ≥ 0, and all i, j ∈ {1, . . . ,M}.

Remark 1. We recall that for the Riccati inequality (7) to
be solvable is equivalent to ask for the pair (A,B) to be
stabilizable. The resulting distributed control law is of infinite
gain margin [6], where the value of κ⋆ depends on the
constant ρ in (7) and on the smallest nonzero eigenvalue of
the Laplacian matrix L, while the overshoot gain k depends
on the ratio between the biggest and smallest eigenvalues of
the matrix P .

B. Control barrier functions

In many applications, to have the state of the system and
the control input to be confined within pre-defined bounds,
is usually a necessary requirement. This is asked in order to
keep into account the physical limitations of actuators and
of the system’s properties. In this context, Control Barrier
Functions (CBFs) (see for instance [1], [14], [7], [23], [22]
and references therein) have been found to be an efficient
tool. We recall in this section their main properties. Consider
a system of the form

ẋ = f(x) + g(x)u (8)

with x ∈ Rnx , u ∈ R and f, g to be sufficiently smooth of
suitable dimension. Let q : Rnx 7→ R be a C1 function and
let r ∈ N. We say that the function y = q(x) has a relative
degree1 r with respect to system (8) and input u in the sense
of [9, Section 4] if i) LgL

k
fq(x) = 0 for all k < r − 1 and

ii) LgL
r−1
f q(x) ̸= 0 for all x ∈ Rnx . Consider now the set

C := {x ∈ Rnx : q(x) ≥ 0} . (9)

In the following, we assume C to be non-empty and with no
isolated points (i.e. C coincides with its interior). We have
the following definition.

1For the sake of simplicity, in the following we will always assume the
relative degree to be globally defined.

Definition 1. Consider the system (8) and consider a func-
tion q : Rnx 7→ R with relative degree r. We say that q is
a Control Barrier Function (CBF) if there exists a column
vector b =

(
b1 . . . br

)⊤ ∈ Rr such that

sup
u∈R

[
LgL

r−1
f q(x)u+ Lr

fq(x) + b⊤ω(x)
]
≥ 0 ∀ x ∈ Rnx ,

(10)
where ω(x) :=

(
q(x) Lfq(x) . . . Lr−1

f q(x)
)⊤ ∈ Rr,

and the roots of the polynomial P(ϵ) = ϵr + brϵ
r−1 + · · ·+

b2ϵ+ b1 are all negative.

In such a framework, q represents a function describing
the constraints to be satisfied while C in (9) is the set of x
satisfying such constraints. Suppose that the aim is to design
a control law u = uC := α(x) that solves a certain control
task while, at the same time, is such that if x(0) ∈ C, then
x(t) ∈ C for all t ≥ 0. Define K as the set of Lipschitz
continuous functions α : Rnx 7→ R such that

K :=
{
α | LgL

r−1
f q(x)α(x) + Lr

fq(x) + b⊤ω(x) ≥ 0
}

.

(11)
The following result holds (see [22, Theorem 1]).

Proposition 2. Consider system (8) and let q : Rnx 7→ R
be a CBF of relative degree r ∈ N. Then for any u = α(x)
with α ∈ K, there exists a subset C ⊆ C such that C is
asymptotically stable for the closed-loop system.

Similarly to [1], [14], the implementation of CBFs can
be performed through Linear Quadratic (LQ) programming
by means of an optimization problem. Indeed, for a known
control action uD = ᾱ(x) solving a certain control task,
system (8) can be fed with the control u = uC where

uC := argminũ

∥∥ũ− uD
∥∥
2

(12a)

s.t. σ(x)ũ ≤ β(x) (12b)

where σ(x) = −LgL
r−1
f q(x) and β(x) = Lr

fq(x)+b⊤ω(x).
In such a way, the control input that is fed to the system is
u = uC = uD = ᾱ(x) whenever ᾱ ∈ K while, in case
ᾱ ̸∈ K, then u = uC is the control action that minimizes the
Euclidean norm (12a) while satisfying (12b), that is, while
making the set C asymptotically stable for the closed-loop.
Remark 2. The optimization problem (12) takes into account
a single constraint since the function q in (9) maps in R.
In case m > 1 constraints have to be taken into account,
the problem can be formulated following similar lines, by
treating each constraint individually. In such a case, σ, β
become mapping in Rm.

IV. PROPOSED CONTROL DESIGN

In this section, we show the proposed control design. We
first split the analysis into the leader control action (whose
role is to follow the desired reference profile) and the follow-
ers one (whose role is to synchronize to the leader). In short,
each vehicle control law (besides the leading vehicle) is
composed of two main blocks. The first block is a distributed
control law that follows the design proposed in Section III-
A. Vehicle Vi embeds in its control action the knowledge of
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the preceding and of the following vehicle state. The role of
this block is to synchronize the state of all the vehicles. The
resulting control uD

i enters the second main block, which
corresponds to an online optimization algorithm. The role
of this second block is to guarantee the feasibility of the
constraints while assuring safety requirements. This is done
by relying on CBFs as in Subsection III-B, implemented
via LQ programming. An overview of the resulting control
action can be found in Fig. 2, where ∆pi and ∆vi are
the inter-vehicle distance and the relative velocity between
vehicle Vi and vehicle Vi−1 and where ∆pi+1 and ∆vi+1 are
the inter-vehicle distance and the relative velocity between
vehicle Vi+1 and vehicle Vi defined as(

∆pi
∆vi

)
:=

(
pi−1 − pi − L
vi−1 − vi

)
,(

∆pi+1

∆vi+1

)
:=

(
pi − pi+1 − L
vi − vi+1

)
.

(13)

A. The leader (nominal) control action

Consider the virtual leading vehicle V0 with state x0. The
virtual leader shares the same linear dynamics of the vehicles
of the platoon and receives an exogenous input to track a
reference profile r⋆(t). The chosen control law for the leader
is a proportional controller of the form

u0 = K̄⊤ (r⋆(t)− x0) (14)

with K̄ being a matrix such that A − BK̄⊤ is stable. Note
indeed that the pair (A,B) is controllable.

B. The followers (nominal) control action

The control law for the vehicles Vi with i = 1, . . . ,M is
done following Proposition 1. Inequality (7) can be solved
with computational tools such as Linear Matrix Inequalities
by noticing that the pair (A,B) is controllable and therefore
stabilizable. Nonetheless, in the following we provide an
analytical solution that is dependent only on the constant
τ . While such a choice may seem too conservative in some
sense, it allows us to pursue a more detailed string stability
analysis as shown in the following section. In particular,
we select P, ρ, λ solving (7) as ρ = 1, λ = 1

2 and matrix
P = P⊤ > 0 given by

P =

P11 P12 P13

P12 P22 P23

P13 P23 P33


where in particular, we selected

P11 = − (3τ3 − 13τ2 + 18τ − 8)2

τ3(5τ − 6)
,

P12 =
(τ − 2)2(6τ3 − 23τ2 + 29τ − 12)

τ2(5τ − 6)
,

P13 = − (τ − 2)2(3τ2 − 7τ + 4)

τ(5τ − 6)
,

P22 = − (τ − 2)2(7τ2 − 20τ + 14)

τ(5τ − 6)
,

P23 = (τ − 2)2, P33 = −τ2 + 2τ .

where the positivity of P can be verified recalling that
τ < 1. Therefore, following Proposition 1, the distributed
synchronization-based control law is given by :

uD
i = −κ

M+1∑
j=1

ℓ(i+1)jKxj−1 (15)

with

K =
(
− (τ−2)2(3τ2−7τ+4)

τ2(5τ−6)
(τ−2)2

τ (2− τ)
)
.

C. Implementation of CBFs

In the CBFs’ implementation, we keep in consideration the
constraints (6) related to input ui, acceleration ai, velocity vi,
and position pi. Since the vehicle platoon is homogeneous,
we have that both the upper and lower bounds in (6) for
all the state and input variables do not depend on the index
i, i.e. each vehicle has to satisfy the same constraints. For
this reason, in the following, we drop the i-subscript when
referring to the constants in (6). Each vehicle implements an
online optimization problem of the form (12) as described in
Section III-B, where the vector fields f, g in (8) are defined
as f(xi) = Axi, g(xi) = B with A,B given in (2). We
define ei = (pi−1 − pi − L)−(r + hvi) as the distance error
between vehicle Vi and its predecessor Vi−1. Moreover, the
x-variable in (12) will be referred as x = (xi−1, xi) since the
constraints of each vehicle are related to its own input, accel-
eration, velocity, and position error with respect to the pre-
ceding vehicle. We treat each constraint individually (see Re-
mark 2). Thus we split β(x) in (12) as β(x) = β(xi−1, xi) =(
(βu(x)⊤ (βa(x))⊤ (βv(x))⊤ (βd(x))⊤

)⊤
, to indicate

that βu is related to the constraints on the input, βa

on the acceleration, βv on the velocity and βd on the
distance between consecutive vehicles. Similarly, we split
σ as σ(x) =

(
(σu)⊤ (σa)⊤ (σv)⊤ (σd)⊤

)⊤
. The

constraints will be represented by the function q(x) :=(
qu q

u
qa q

a
qv q

v
qp
)⊤

.
Actuator constraints – The nominal controller ui of the ith-
vehicle Vi must not exceed the feasible range (6). Therefore,
we have that σu =

(
1 1

)⊤
and βu =

(
u u

)⊤
Acceleration constraints – We define qa(xi) := a − ai.
Since Lgqa(xi) ̸= 0, it implies that acceleration constraints
have unitary relative degree. Thus, inequality (10) for the
(maximum) acceleration constraint with q = qa translates as

1

τ
ũi ≤

1

τ
ai + bā1qa(xi) (16)

where bā1 ∈ R>0. Similarly, about the minimum acceleration
constraint, we can define q

a
(xi) = ai−a and follow similar

steps to get βa(x) =
(
1
τ ai + bā1qa(xi) − 1

τ ai + b
a
1qa(xi)

)⊤
and σa =

(
1
τ − 1

τ

)⊤
, where b

a
1 ∈ R>0.

Velocity Constraints – Define qv(xi) = v−vi. The velocity
constraints have relative degree of two since Lgqv(xi) =
0 but LgLfqv = − 1

τ . Therefore, the maximum velocity
constraint in (10) is given by:

1

τ
ũi ≤

1

τ
ai + (Bv̄)⊤

(
v − vi
−ai

)
(17)
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Fig. 2. Resulting control block-scheme

where Bv̄ =
(
bv̄1 bv̄2

)⊤ ∈ R2 is chosen such that the
roots of ϵ2 + bv̄2ϵ + bv̄1 are negative definite. Similarly, the
minimum velocity constraint is given by q

v
(xi) = vi − v.

Therefore, following similar steps, we define βv(xi) =(
1
τ ai + (Bv̄)⊤

(
v − vi
−ai

)
− 1

τ ai + (Bv)⊤
(
vi − v
ai

))⊤

and σv =
(
1
τ − 1

τ

)⊤
. Where Bv =

(
b
v
1 b

v
2

)⊤ ∈ R2

satisfies similar properties as its maximum velocity
counterpart.
Spacing Constraints – We define the spacing constraint in
terms of the error (5) as:

qp(xi−1, xi) = ei = pi−1 − pi − L− r − hvi (18)

The spacing constraints have relative degree of two since
Lgqp(xi) = 0 but LgLfqp(xi) = −h

τ . Therefore, the spacing
constraint in (10) is given by:

h

τ
ũi ≤ ai−1−

(
h

τ
+ 1

)
ai+(Bp)⊤

(
pi−1 − pi − L− r − hvi

vi−1 − vi − hai

)
(19)

where Bp =
(
bp1 bp2

)⊤ ∈ R2 is such that the
polynomial ϵ2 + bp2ϵ + bp1 has negative roots. There-
fore, we define βd(xi−1, xi) = ai−1 − (hτ + 1)ai +

(Bp)⊤
(
pi−1 − pi − L− r − hvi

vi−1 − vi − hai

)
and σd = h

τ . Note that

we only have one spacing constraint i.e. each vehicle tries
not to collide with its predecessor.

D. String stability notion

String stability refers to the attenuation of oscillations in
upstream direction [4]. If the platoon is string unstable, any
disturbance from the leader is amplified along the string of
vehicles. For platoons with bidirectional communication, a
notion of string stability is proposed in [2].

In order to analyze string stability of the homogeneous
platoon, the closed-loop platoon dynamics are derived. To
simplify the analysis, we consider the reference signal
to impose only a desired acceleration profile r⋆(t) =(
p⋆(t) v⋆(t) a⋆(t)

)
, with leader control law (14) having

gain matrix partitioned as K̄ =
(
0 0 K̄3

)
. For 1 ≤ i <

M , that is, all vehicles in the platoon excluding the virtual
leader and the last vehicle, the closed-loop dynamics (without

the optimization algorithm) can be described by: ṗi
v̇i
ȧi

 =

 0 1 0
0 0 1

2ϕ(τ, κ) −2κ(τ−2)2

τ2

−1−2κ(2−τ)
τ


︸ ︷︷ ︸

F0

 pi
vi
ai



+

 0 0 0
0 0 0

−ϕ(τ, κ) κ(τ−2)2

τ2

κ(2−τ)
τ


︸ ︷︷ ︸

F1

 pi−1

vi−1

ai−1



+

 0 0 0
0 0 0

−ϕ(τ, κ) κ(τ−2)2

τ2

κ(2−τ)
τ

 pi+1

vi+1

ai+1


(20)

with

ϕ(τ, κ) =
κ(τ − 2)(3τ2 − 7τ + 4)

τ3(5τ − 6)
. (21)

The dynamics of the last vehicle (i = M ) are described
by: ṗM

v̇M
ȧM

 =

 0 1 0
0 0 1

ϕ(τ, κ) −κ(τ−2)2

τ2

−1−κ(2−τ)
τ


︸ ︷︷ ︸

E0

 pM
vM
aM



+

 0 0 0
0 0 0

−ϕ(τ) κ(τ−2)2

τ2

κ(2−τ)
τ

 pM−1

vM−1

aM−1


(22)

Finally, the dynamics of the virtual leading vehicle are
written as: ṗ0

v̇0
ȧ0

 =

 0 1 0
0 0 1

0 0 −1−K̄3

τ


︸ ︷︷ ︸

W0

 p0
v0
a0

+

 0
0
K̄3

τ


︸ ︷︷ ︸

Br

a⋆(t).

(23)
Define the platoon state Xpl = [x⊤

0 x⊤
1 ... x⊤

M ]⊤ and the
platoon output Ypl = [a0 a1 ... aM ]⊤, then write (23), (20)
and (22) in the following form:

Ẋpl = AplXpl +Bpla
⋆(t) (24)
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with matrices:

Apl =


W0 0 0 . . . 0 0
F1 F0 F1 . . . 0 0
0 F1 F0 . . . 0 0
...

...
...

. . .
...

0 0 0 . . . F1 E0

 , Bpl =


Br

0
...
0

 .

(25)
Finally, the output is given by:

Ypl = CplXpl (26)

with the matrix

Cpl =


C 0 . . . 0
0 C . . . 0
...

...
. . .

...
0 0 . . . C

 (27)

with C = [0 0 1]. Denote the elements
of

(
H0,r(s) H1,r(s) ... HM,r(s)

)⊤
= Cpl(sI −

Apl)
−1Bpl, as the transfer functions from a⋆ to ai, 0 ≤

i ≤ M . The authors of [2] proposed the following definition
of string stability for platoons with bidirectional communi-
cation, which will be used in the following.

Definition 2. The platoon described by the system (24) is
string stable if Hi,r(s) is stable and

|Hi+1,r(jω)| ≤ |Hi,r(jω)| , ∀ω, 1 ≤ i < M (28)

with | · | indicating the magnitude of the transfer function.

Remark 3. It should be pointed out that the common def-
inition of string stability [13], that is the transfer function
from Vi−1 to Vi is not applicable, since the response of each
vehicle depends on the response of both the preceding and
the following vehicle.

V. SIMULATIONS

In this section, the control approach is demonstrated on a
homogeneous platoon of M = 3 vehicles2 with parameters3:
τ = 0.25 [s], h = 0.3 [s], r = 3 [m], and L = 5 [m]. The
maximum acceleration is selected as ā = 2 [m/s2], while
the maximum deceleration is a = −6 [m/s2]. The maximum
control input is selected as ū = 2 [m/s2], while the minimum
control input is u = −6 [m/s2]. The maximum velocity is
v̄ = 40 [m/s] and the minimum velocity v = 0 [m/s]. The
controller gains are chosen as K̄ = 102 ×

(
1 2 1

)
and

κ = 15. The parameters of the CBFs are taken as bā1 = 5,
b
a
1 = 15, (Bv̄)⊤ = (Bv)⊤ =

(
1 2

)
(roots at ϵ = −1), and

(Bp)⊤ =
(
0.36 1.2

)
(roots at ϵ = − 3

5 ).
The comparison between the synchronization-based (nom-

inal) controller (with no CBFs) and the constrained controller
(with CBFs) will be done using three scenarios of collision
avoidance, emergency braking, and platoon forming.

2The choice of the value of M has been done as a good trade-off between
a sufficiently large value to show the effectiveness of the control law and a
sufficiently low value for clarity of the plots.

3In the following, the brackets [·] are used to indicate measurement units.

TABLE I
INITIAL CONDITIONS FOR COLLISION AVOIDANCE SCENARIO

Initial Condition Value Unit
p0(t0) 81.66 [m]
p1(t0) 54.44 [m]
p2(t0) 27.22 [m]
p3(t0) 0 [m]
v0(t0) 80/3.6 [m/s]
v1(t0) 100/3.6 [m/s]
v2(t0) 120/3.6 [m/s]
v3(t0) 140/3.6 [m/s]

A. Collision Avoidance

The collision avoidance feature is illustrated by the follow-
ing scenario: The virtual leader is keeping a constant speed,
while the following vehicles approach the leading vehicle
with high speeds. Table I lists the initial conditions for this
scenario. Fig. 3 shows that the proposed controller keeps

Fig. 3. Collision Avoidance Scenario

safe distances to the preceding vehicles. It is observed that
the velocity of every vehicle follows the changes of that of its
preceding vehicle and the velocities converge exponentially
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to the desired reference velocity of v0 = 80/3.6 [m/s].
It shows string stable behavior and the constraints are not
violated. The errors are regulated exponentially fast to zero
while keeping a velocity-dependent inter-vehicle distance.
Notice that the states under the synchronization-based con-
troller converge faster. However, the constraints are violated.

B. Emergency Braking

The emergency braking feature is illustrated by the follow-
ing scenario: After initial transients, the platoon is traveling
at a constant speed of v0 = 80/3.6 [m/s], when at t = 40
[s], the virtual leader performs an emergency braking, at its
maximum deceleration, until a full stop. Fig. 4 illustrates a

Fig. 4. Emergency Braking Scenario

good response of the vehicles to the emergency situation.
The proposed controller guarantees that each vehicle within
the platoon safely brakes from v0 = 80/3.6 [m/s] to a full
stop while avoiding collision with the preceding vehicle and
satisfying the constraints.

TABLE II
INITIAL CONDITIONS FOR PLATOON FORMING SCENARIO

Initial Condition Value Unit
p1(t0) 150 [m]
p1(t0) 100 [m]
p2(t0) 70 [m]
p3(t0) 20 [m]
v0(t0) 15 [m/s]
v1(t0) 20 [m/s]
v2(t0) 25 [m/s]
v3(t0) 30 [m/s]
a0(t0) 1 [m/s2]
a1(t0) −6 [m/s2]
a2(t0) 2 [m/s2]
a3(t0) −3 [m/s2]

C. Platoon Forming

Finally, the platoon forming feature is illustrated by the
following scenario: The vehicles are traveling at different
speeds and different accelerations, when at t = 0 [s], the
platoon is formed and the virtual leader receives a constant
velocity reference profile of v0 = 30 [m/s] . Table II lists
the initial conditions for this scenario. Fig. 5 shows that
the proposed controller ensures the forming of the platoon
from rather challenging initial conditions and the vehicles
reach the common reference velocity of v0 = 30 [m/s],
while satisfying the constraints. The errors are regulated
exponentially fast to zero.

Fig. 6 demonstrates that for the set of parameters: κ = 15,
K̄3 = 100, and τ = 0.25 [s] , the effect of the exogenous
input a⋆(t) is attenuated over the homogeneous platoon (i. e.
|Hi+1,r(jω)| ≤ |Hi,r(jω)| ∀ω, 1 ≤ i < M). Notice that the
transfer functions do not depend on the headway h (i. e. the
platoon is string stable for any headway h ≥ 0) .

VI. CONCLUSION

In this work, a controller for CACC of linear homogeneous
vehicle platoons with bidirectional communication involving
the presence of a leader is presented. The controller is based
on two terms. First, a distributed control law is implemented.
The resulting control action is fed to an online optimization
problem derived from control barrier functions in order
to satisfy the constraints of the system. The effectiveness
of the control law is tested in various simulations where
in particular, it was shown that string stable behavior can
be achieved for any nonnegative headway. Future works
will focus on using similar tools for platoons described by
nonlinear dynamics, analyzing the robustness of the proposed
control scheme, and deriving formal proof of stability.
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