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Neural Exponential Stabilization of Control-affine Nonlinear Systems
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Abstract— This paper proposes a novel learning-based ap-
proach for achieving exponential stabilization of nonlinear
control-affine systems. We leverage the Control Contraction
Metrics (CCMs) framework to co-synthesize Neural Contrac-
tion Metrics (NCMs) and Neural Network (NN) controllers.
First, we transform the infinite-dimensional semi-definite pro-
gram (SDP) for CCM computation into a tractable inequal-
ity feasibility problem using element-wise bounds of matrix-
valued functions. The terms in the inequality can be efficiently
computed by our novel algorithms. Second, we propose a free
parametrization of NCMs guaranteeing positive definiteness
and the satisfaction of a partial differential equation, regardless
of trainable parameters. Third, this parametrization and the
inequality condition enable the design of contractivity-enforcing
regularizers, which can be incorporated while designing the NN
controller for exponential stabilization of the underlying nonlin-
ear systems. Furthermore, when the training loss goes to zero,
we provide formal guarantees on verification of the NCM and
the exponentional stabilization under the NN controller. Finally,
we validate our method through benchmark experiments on set-
point stabilization and increasing the region of attraction of a
locally pre-stabilized closed-loop system.

I. INTRODUCTION

Learning-enabled control has demonstrated state-of-the-
art empirical performance on various challenging tasks in
robotics [1]. However, this performance boost often comes at
the cost of safety and stability guarantees, and robustness to
disturbances of the learned NN controllers [2]. Traditionally,
engineers faced challenges in manually designing certificates
such as Lyapunov functions [3], barrier functions [4], and
contraction metrics [5], often relying on intuition or expe-
rience for specific applications. While numerical methods
like sum-of-squares (SoS) have emerged for computing these
certificates, many remain impractical [2]. To address these
limitations, researchers have employed Neural Networks
(NNs) to learn both control policies and safety functions,
referred to as neural certificates [6], [7]. These methods have
been applied successfully to complex nonlinear control tasks
such as stable walking [8], quadrotor flight [2], and safe
decentralized control of multi-agent systems [9]. Besides,
designing NN controller on dynamical system, several ap-
proaches propose modelling the system under control as a
NN from data [10], [11], [12] and later ensure the stability
of the closed-loop system. However, the main challenge lies
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in finding tractable and scalable verification techniques for
these neural certificates.

In this paper, we train a state feedback controller,
parametrized by slope-restricted neural networks (NNs), to
achieve exponential stabilization of control-affine nonlin-
ear systems. To this end, we leverage the well-established
framework of Control Contraction Metrics (CCMs) [5], [13].
While the existence of CCMs for a dynamical system en-
sures exponential stabilization, they usually leverage infinite-
dimensional intractable inequalities. To tackle this, we derive
a tractable inequality guaranteeing exponential stabilizability
of the closed-loop system. This condition relies on element-
wise bounds of some specific matrix-valued functions. More-
over, we parametrize the CCMs via NNs and guarantee
that they are inherently positive definite and satisfy a PDE
for all trainable parameters. We call them Neural Contrac-
tion Metrics (NCMs). By leveraging both the stabilizability
inequality and NCMs, we design regularizers that enforce
closed-loop contractivity. These regularizers directly penalize
the NN controller’s weights based on the Gershgorin disk
theorem. Moreover, if the regularizer loss goes to zero, we
can formally guarantee the verification of the learned NCM
certificate for the NN controller.

Related works: Traditional methods for formulating
CCMs, such as SoS programming [14] and Reproducing Ker-
nal Hilbert Space (RKHS) theory [6], suffer from limitations.
These include structural restrictions on control input matri-
ces, separate synthesis of controllers and CCMs, assumptions
about system dynamics (polynomial or approximated as
such), and poor scalability [15]. These drawbacks make these
approaches impractical for many real-world applications.
Other approximation techniques using gridding methods lack
rigorous guarantees [13]. Our proposed method addresses
some of the limitations of existing approaches. It provides
strong guarantees when the loss function approaches zero
and scales well to handle a large number of states. However,
there is still room for improvement in terms of conservatism.

Recent research explores synthesizing safety certificates
through NNs. Both the controller and certificates are usually
parameterized via NNs, followed by verification [15]. A
popular technique, the learner-verifier approach (also called
counter-example guided inductive synthesis), involves train-
ing a certificate network while a verifier (usually using a
satisfiability modulo theory (SMT) solver) assesses its fea-
sibility [15]. If valid, the verifier halts training; if invalid, it
provides counterexamples for training data enrichment. Ver-
ification can be implemented in various ways. For instance,
if given piecewise affine dynamics and NNs (for controllers
and certificates) are implemented with ReLU activations,
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verification can be formulated as a Mixed-Integer Linear
Program (MILP) solved with standard solvers [16], [17].
These methods have gained traction and have been applied to
learning Lyapunov functions for general nonlinear systems
[6], [18] and hybrid systems [19]. However, both SMT- (NP-
complete [15]) and MILP-based methods are computation-
ally expensive and their complexity grows exponentially with
the number of neurons in the NN certificate, limiting their
applicability [15]. Additionally, Lyapunov-based methods
are restricted to non-autonomous systems. On the contrary,
CCMs, being more general, can handle time-varying systems
and are the focus of this paper.

Some recent works explore learning CCMs with NNs. For
example, the work [20] uses recurrent NNs to parametrize the
contraction metric before constructing the controller. How-
ever, this approach assumes specific dynamics and is limited
to convex combinations of state-dependent coefficients. In
contrast, under mild assumptions, our method can simultane-
ously synthesize the controller and the associated CCM cer-
tificate for general control-affine systems. The work [2] also
proposes an NN-based framework for co-synthesizing CCMs
and controllers for control-affine systems. However, there are
several key differences with our work. First, [2] addresses
tracking problems, assuming access to desired trajectories
and control policies. We focus instead on the exponential
stabilization of equilibrium, a different problem formulation.
Second, we provide a free-parametrization of NCMs that
are positive definite by design and satisfy a PDE constraint
characteristic of CCMs for all trainable parameters. On the
other hand, the authors of [2] try to penalize this constraint
empirically, and do not provide rigorous guarantees. Finally,
in specific cases, for instance, when the underlying system
is global Lipschitz, our method provides global stability
guarantees, which is not the case in [2].

Contributions: The contributions of our paper can be
summarized as follows:

o We propose an NN training problem that simultaneously
learns both the controller and the CCM for achieving
exponential stabilization of control-affine nonlinear sys-
tems. We provide formal guarantees for the verification
of the learned NCM under the condition that the training
loss converges to zero. Furthermore, our approach is
scalable w.r.t both the dimension of state and the number
of neurons in the NN controller.

« We introduce a novel free parametrization for NCMs.
These NCMs are inherently positive definite, and their
Jacobians satisfy a PDE constraint regardless of the
trainable parameters. This eliminates the need for ex-
plicit penalization of the constraint violation during
training, simplifying the training process.

e We develop an algorithm that computes element-wise
upper and lower bounds of the Jacobian of the NN
controller. These bounds are then leveraged to transform
the verification of CCMs from an infinite-dimensional
SDP into a more tractable finite-dimensional inequality
(see Theorem 2).

« We validate the efficacy of our method through bench-

mark experiments on two key tasks: set-point stabiliza-
tion and expanding the region of attraction of a locally
pre-stabilized closed-loop system.

Organization: Section II provides a brief overview of
contraction theory and CCMs. Section III presents our core
contributions: designing regularizers that enforce closed-loop
contractivity, introducing a free parametrization of NCMs,
and outlining Algorithm 1 to facilitate implementation of
these regularizers. Section IV validates the proposed methods
through benchmark experiments. Finally, Section V draws
some conclusions.

Notation: We denote by R and R, the set of real and
non-negative real numbers respectively. For a symmetric
matrix A € R"*", the notation A > 0(A < 0) means A is
positive (negative) definite. The set of positive definite n xn
matrices is denoted by S, . For a matrix-valued function
M(z) : R™ — R™ " its element-wise Lie derivative along
a vector v € R" is O,M = ), vigTj‘{. Unless otherwise
stated, x; denotes the i-th element of vector x. For a matrix
M € R™", we denote M + M T by Sym[M]. For two
matrices A and B of the same dimensions, the notation
A < (<)B means that all the entries of A are element-
wise less (less-equal) than the entries of B. The maximum
eigenvalue of a symmetric matrix A is given by A(A). The
kernel of a linear map g is defined by Ker(g).

II. PRELIMINARIES

In this paper, we consider control-affine systems as

&= f(z) +gu(t) (1)

where z € X C R”, u(t) € U C R™ for all t € Ry are
states, and inputs respectively. Here, X', and U/ are compact
state and input sets, respectively. We assume that f : R" —
R™ is a smooth map, the control input u : R>¢ — U/ is a
piece-wise continuous function. The goal of this paper is to
design a NN state-feedback controller ug(z), where 6 are
the trainable parameters, such that the controlled trajectory
z(t) can reach the desired equilibrium point z* whenever
2(0) is in a neighborhood of z*. In this work, we leverage
contraction theory to achieve our goal.

Contraction theory [21], [5] analyzes the incremental
stability of systems by examining the evolution of the dis-
tance between neighboring trajectories. For a time-invariant
autonomous system & = f(z), given a pair of neighboring
trajectories denote the infinitesimal displacement between
them by dz (also called a virtual displacement). The evo-
lution of Jz can be represented by a linear time-varying
(LTV) system: 0z = O, f(x)0z. Then, the squared dis-
tance between these trajectories Sz T éx, evolves according
to 4 (627 0x) = 26wdx = 262" 9, f(x)éx. If the symmetric
part of the Jacobian 0, f is uniformly negative definite, i.e.,
(0 f + 0:fT) = —pI for some p > 0, then the system
is contracting. This condition ensures that 6z ' 6 converges
exponentially to zero at a rate of 2p. Consequently, all
trajectories of the system converge to a common equilibrium
trajectory [21].
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The concept of contraction can be generalized using a con-
traction metric M : R™ — S, o, which is a smooth matrix-
valued function. Since M (z) is always positive definite, if
Sz " M (x)dz converges exponentially to zero, the system
is contracting. The converse is also true [13]. Contraction
theory can be further extended to control-affine systems.
First', the corresponding differential dynamics of (1) is given
by dx = F(x)dx + gou, where F(z) := 0,f, and du
is the infinitesimal displacement between two neighboring
inputs. A fundamental theorem in Control Contraction Metric
(CCM) theory [13] says that if there exists a metric M (x)
such that the following conditions hold for all  and some
p>0

M (z) + Sym[M ()8, (f (x) + gu)] < =2pM () .

Then, the closed-loop system is contracting with rate p
under metric M (x) [13]. However, as pointed out in [13],
finding a suitable metric or designing a controller based on
a predetermined metric can be challenging. To address this
limitation, we propose a method that leverages NN to learn
both the metric and the controller simultaneously, as explored
in [2].

III. MAIN RESULTS

This section leverages contraction theory to design NN
controllers for exponential stabilization. We begin by in-
troducing a class of NNs with slope-restricted activation
functions, well-suited for parameterizing the control policy
for the system (1). Next, we establish a sufficient condition to
guarantee the exponential stabilization of the system (1). This
condition relies on element-wise upper and lower bounds of
terms crucial for CCM synthesis. We also provide algorithms
for computing these bounds efficiently. Furthermore, we
propose a novel free parametrization of NCMs that ensures
they are inherently positive definite and their Jacobians
satisfy CCM-related PDE constraint by design. By leveraging
our proposed condition, and NCMs, we design regularizers
that enforce contractivity in the closed-loop system.

NN architecture: We consider the following class of NN
controllers

21 =01 (W1Z+bl)
ZgZO’g(Wng_l—Fb@),522,-”,]\7, 2)
ug = Wozn ,

where N > 1 represents the depth of the NN, and the
set 0 = {W,,Wn, -+ ,Wq,by,--- by} contains all the
trainable parameters. We consider a class of slope-restricted
activation functions o(-) such that their derivative w.r.t. the
input satisfies 0 < a < o’(+) < b. A typical activation func-
tion that satisfies this assumption is the smooth LeakyReLu

o(xz) =azx+ (1 —a)log(l+€"), 3)

where « controls the angle of the negative slope. The
proposed parametrization exhibits universal approximation
properties [22].

Neural contractive closed-loop system: Before present-
ing our main results, let us define the set containing the
desired equilibrium point x* for the system (1) as

€= {x € X|f(z*) + gug(z*) = o} .

Then, the following result holds, adapted from [13]

Theorem 1: Suppose the set £ is non-empty, and there
exists a NN My : & — Sy endowed with some trainable
parameters ¢, such that

My + Sym [Myd, (f(x) + gue(z))] < —2pMy  (4)

holds for all + € X and for some p > 0. Then, the
equilibrium point z* is exponentially stable. ]

Note that the inequality (4) in Theorem 1 is an infinite-
dimensional SDP and can be cumbersome to verify for all
r € X using standard convex optimization solvers [13].
To tackle this issue, we provide a sufficient condition for
ensuring the exponential stability of the closed-loop system.
Specifically, this condition is based on the Gershgorin disc
theorem and the proof is provided in Appendix of the
accompanying technical report [23].

Theorem 2: Suppose z* € & is the desired equilibrium
point of the system (1) and there exists a metric NCM
My : X — S, endowed with some trainable parameters ¢.
Then, x* is exponentially stable if the following inequality
is satisfied

2+ < =Y max{|Ly + Lyl |Uy + U}, (5)
i
where U;; is the ith diagonal entry of the matrix U = Uy +
Uy, and L;; is the (4, j) entry of the matrix L = Lg + Ly
and Lg, Lg,Ug, Uy verify

Ly < My(2)g0zup(x) < Up, Ly < qu(ﬂﬂ) <Uy.

Moreover, 7 = —(c1 + ¢2) is a scalar and the constants ¢;
and cy satisfy

c1 > 2psup A(Mj(s)), c2 > sup A (Sym[My(s)0, f (5)])

sEX sEX

for all x € X. n

Once the constants ¢; and cs, and the element-wise bounds
L and U have been determined, condition (5) becomes
a finite-dimensional scalar inequality, making its verifica-
tion significantly easier. While Theorem 2 leverages the
Gershgorin disc theorem, resulting in a more conservative
condition compared to Theorem 1, this trade-off is necessary
for tractability. Nevertheless, as shown in Section IV, good
performance can still be achieved despite this conservatism.

Neural Contraction Metric (NCM): An integral part of
Theorem 2 is the parametrization of the CCM by a NN.
In this paper, motivated by [2], we parametrize NCM as
My(z) = Ty(z) TTy(x) + €I, where Ty : X — R™" is a
smooth matrix-valued function depending on some trainable
weights ¢, and € > 0 is a small positive constant. Since
My(x) is positive definite irrespective of the weight matrices
¢ and for all values of x € X, as desired, we call it a free
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parametrization. Besides the positive definiteness of M (z),
in inequality (4), My (x) is a matrix with (4,7) elements
given by 0, (MJ”(Z‘)) (f(xz) + gug(x)), which are affine
in the control signal u. Therefore, for inequality (4) to hold
for all u, it is crucial that

0z (M 5(x)) g =0 (6)

for all x € AX. The constraint (6) is a PDE and is
cumbersome to solve. Motivated by [24], the next result
provides a parametrization of the NCM M, (x) such that
the state-dependent equality (6) is satisfied by design, that
is, regardless of the choice of trainable parameters.
Proposition 1: Suppose the dimension of Ker(g) is r, and
let vy, ...,v, be the basis of Ker(g). Define each entry of

Ty(x) as
Ly (@) == Kij <Z 5e,z'j($TW)> AN (7
=1

for some continuously differentiable NNs K;; : R
R,Beij : R — R, ¢ = 1,...,r. Then, taking My(z)
Ly(z) "Ty(x) + €l satisfies (6) for all z € X.

The proof is provided in Appendix of the accompanying
technical report [23]. Notably, in most real-world applica-
tions, the systems are under-actuated where the rank of the
control matrix, i.e. input dimension is lower than the number
of states (m < n). This guarantees the existence of a non-
trivial subspace Ker(g). Interested readers are deferred to
[23, Example 1] for a an example that showcases the essence
of Proposition 1 by demonstrating how to parameterize
NCMs for a single-input control-affine system.

NN controllers with bounded Jacobians: To compute the
element-wise lower and upper bounds Ly and Uy appearing
in Theorem 2, it is crucial to calculate the element-wise
bounds of the Jacobian of the NN controller (2). To this
end, we write the Jacobian as:

Opug(x) = WoJNWNIN_AWN_1 ... IW1,  (8)

where each J; = o/ (W;xz + b;) and satisfies 0 < al <
J; < bl. Leveraging the special structure of the proposed
NN controller (2), in the following, we propose Algorithm 1
to compute element-wise lower Lg_,, and upper Up_,, bounds
of (8). This algorithm relies on two functions:

m

e Funcl: This function, provided in Appendix of [23],
calculates the element-wise lower L and upper bound
U of a matrix product WQ. It takes the element-wise
upper bound U and lower bound L of a matrix (), along
with the matrix W as inputs.

e Func2 This function, provided in Appendix of [23],
calculates the element-wise lower L and upper bound
U of the matrix product J; P, where J; are the Jacobian
matrices as in (8). It takes the element-wise upper U and
lower bound L matrices of an arbitrary matrix P, and
the scalars a and b (bounds on the slope of activation
functions) as inputs.

Note that once the element-wise bounds on the Jacobian
of the NN controller are determined, it is straightforward

Algorithm 1 Returns the upper Up,_,, and lower Lj_,, bound
of O, ug
Set L=I1,U=1
fori=1,---, N do
call Funcl(W;, L,U) and return i, U (which cal-
culates the element-wise upper and lower bound of
Widi_aWi_1 ... J1W1)
call Func2(I~/7 U', a,b) and return L U (which cal-
culates the element-wise upper and lower bound of
JWidi Wiy ... JIWh)
set L = f/, U=0U
end for
return L, U

to calculate the bounds Ly and Uy in Theorem 2 using
the Func3, provided in Appendix of [23]. Moreover, one
can employ bounded activation functions, e.g. tanh(-) in
the output layer of NNs Kj; in (7) to easily calculate the
element-wise lower and upper bounds of the NCM My(x).
Likewise, the element-wise lower Ly and upper Uy bounds
of My(z) can be computed via Funcl.

Remark 1 (Computational complexity of Algorithm 1):
The complexity of Funcl(W, L, U), where W € R™*", and
L, U € R"™P is O(mnp) and for Func2(L, U, a,b) where
L,U € R"*P is O(np). Finally, for Algorithm 1, we have
O(Nmnp), where N is the total number of layers in the NN
controller (2). In the worst case scenario, i.e., m = n = p,
our verification method has the computational complexity
of O(Nn3). On the other hand, both MILP and SMT-
based verification methods have significant computational
overhead and their complexity grows exponentially with the
number of neurons [2].

Non-uniform bounded Jacobian of f(xz): After deter-
mining the element-wise lower L and upper U bounds
inequality (5), our goal becomes computing the positive
scalar n = —(c¢1 + ¢2) to leverage Theorem 2 for designing
contractivity-enforcing regularizers. Finding cs is crucial for
this step, and it necessitates a uniformly bounded Jacobian
Oz f for all x € X. In many real-world applications (e.g.,
globally Lipschitz-bounded nonlinear systems), the Jacobian
of the underlying dynamics exhibits uniform global bound-
edness (see Section IV). However, for systems that lack
this property, careful gridding in the neighborhood of the
desired equilibrium point z* can be employed. Nevertheless,
to provide deterministic guarantees that this uniform bound
holds across all x € X, it is necessary to define an
upper bound on the distance between two adjacent gridding
samples [2].

Given a Lipschitz continuous function A : X — R en-
dowed with a Lipschitz constant Ly, assume one discretizes
the domain X such that the distance between any sampled
point z; and its nearest neighbor x; is less than ||z; —z;|| <
7. If h(x;) < —Lp7 holds for all sampled points x; € X,
then h(x) < 0 holds for all z € X. The following proposition
provides deterministic guarantees of the existence of ¢y and
provides an upper bound on the resolution of the gridding
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Fig. 1. Closed-loop response for 20 different initial conditions demonstrat-
ing stabilization at (7/4,0).

samples.

Proposition 2: Let Ls, and Ly be the Lipschitz
constants of 0,f, and My(z), respectively. Then,
A(Sym[My(z)d, f(x)]) has the Lipschitz constant

of 2(SayLs, + Ss;Lnr), where Sy and Ss, satisfy
|[Mgll2 < Sar, and [|0, f(z)[]2 < Ss,, respectively. [ |

The detailed proof is given in Appendix of [23]. Likewise,
Proposition 2 can be utilized to compute the constant c;
in Theorem 2. Moreover, the readers are deferred to [2,
Appendix B.2] for more information on the calculations of
these Lipschitz constants.

Control and NCM design: Based on Theorem 2, and
Algorithm 1, we define the following optimization problem
to simultaneously train the NN controller (2) and NCM
M¢(l‘):

%1%161(93*)+V€2(77,L7 U) s &)
with

b(z7) = [|f(=") + gug(z™)|
52(7%L7 U) = [QUM +7

+ > max(|Li; + Lyl, [Us; + Uzl
i

where [x]+ = max{0,z} operates element-wise. The regu-
larizer ¢; assigns the equilibrium condition, the regularizer
{5 enforces the contractivity, rendering the equilibrium point
exponentially stable, and v trades off both regularizers. If
both losses converge to zero, we have a valid certificate NCM
for the corresponding state-feedback controller policy ug(z).

IV. EXPERIMENTS

In this section, we discuss two numerical examples to
validate the efficacy of our method. In Section IV-A, the
objective is to stabilize a standard pendulum. In Section IV-
B, we consider a pre-stabilized non-linear system with an
LQR controller and then, we leverage our method to design
an NN controller to expand the region of attraction.

A. Exponential set-point stabilization

Standard pendulum: Consider the following dynamics

T2
—mglsin(x;)—0.1x2+u )
ml?

(10)

i‘:

where z; and zo are the positions and the angular velocity,
respectively. Moreover, g = 9.81, m = 0.15, and [ = 0.5.
In this experiment, our goal is to design a NN controller
(2) such that the closed-loop dynamics are contractive and
have the equilibrium point (x7,23) = (7/4,0). We choose
CCM M = I, and for the NN controller, we choose a three-
layered network with 32 neurons in the hidden layer, and
the activation function (3) with @ = 0.3, and b = 1.0. In this
case, the Jacobian of the dynamics is

0 1
855 - )
) f% cos(z1) 7%

and we can uniformly bound its eigenvalues as co =
Sup,crn A(Sym[d, f]) = 20.45. We trained the NN con-
troller using the loss ¢ = {1 + {5 and in this case, the optimal
value of ¢ was zero. This is also evident from the evolution
of the closed-loop trajectories starting from 20 arbitrary
initial conditions depicted in Fig. 1, where all the trajectories
converge to the desired equilibrium point.! Curious readers
are deferred to [23, Section IV] for a similar experiment with
an inverted pendulum.

B. Enhancing the region of attraction

As discussed in a prior work [13] and references therein,
researchers have investigated the challenge of unifying lo-
cally optimal and globally stabilizing controllers. This task is
particularly difficult within the Lyapunov framework because
the set of control Lyapunov functions for a system is non-
convex. However, the CCM framework offers a straightfor-
ward approach to achieving this goal. Let us illustrate with
an example taken from [13], where state z = [x1, T2, 73]
and the system follows the dynamics (1) with

—r1 + 23 0
flz)=| 2?—29 —2z235+23 | ,9=| 0 Y
— I 1

We first solve the linear quadratic regulator (LQR) problem
for the system linearized at the origin with cost function
fooo(xTx + ruQ)dt, where r = 1, obtaining a solution P =
PT > 0 of the algebraic Riccati equation and the locally
optimal controller u = —r~'BT Pz.

Next, we trained an NN controller for 2000 epochs to
achieve a desired equilibrium point of (2%, 23, z§) = (0,0, 0)
for the pre-stabilized closed-loop system. The NN controller
architecture consisted of a single hidden layer with 64
neurons and utilized the activation function (3) with a = 0.3
and b = 1.0. For the sake of simplicity, we choose NCM

Figure 2 demonstrates that for small initial conditions, the
performance of the NN controller is nearly identical to that of

'Our code is available at https:/github.com/DecodEPFL/Neural-
Exponential-Stabilization
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Fig. 2. Response of nonlinear system (11) with NCM and LQR control to
initial state £(0) = [0.5,0.5,0.5] T (left) and 2(0) = [10,10,10] " (right).
This exhibits the locally optimal and increased region of attraction of the
NCM controller.

the LQR controller. Additionally, with a contraction rate of p
and My (x), the NN control law (refer to (2)) approximates
a basic linear feedback on the error x — z*. In contrast,
the LQR controller fails to achieve stability for larger initial
conditions, while the NN controller successfully stabilizes
the system. The simulations under LQR control shown in the
right panel of Figure 2 diverge rapidly after approximately
1 second. Conversely, the NN control law demonstrates its
efficacy by achieving stability even for a large initial state
of xy = [10.0,10.0,10.0] .

V. CONCLUDING REMARKS

For decades, automatic certificate synthesis in control
theory has been elusive. Traditional methods like LP-based
synthesis and SOS programming provide partial solutions
but lack scalability. This paper details a novel co-synthesis
approach for a NN controller and its NCM certificate for
exponential stabilization of a class of nonlinear systems.
Specifically, we transformed an intractable NCM computa-
tion (an infinite-dimensional SDP) into a tractable condi-
tion based on some element-wise upper and lower bounds
of some matrix-valued functions. Our proposed algorithm
efficiently computes these bounds. We leveraged this to
design contraction-enforcing regularizers for equilibrium-
assignment problems and enhancing region of attraction.
Furthermore, under zero training loss, this training scheme
provides us with a formal verification of the NN controller.
Finally, we introduce a novel NCM parametrization ensur-
ing positive definiteness and a PDE constraint satisfaction
regardless of trainable parameters. The future efforts will
be devoted to generalizing our approach to other classes of
nonlinear systems.
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