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Abstract— Advances in synthetic biology depend on our
ability to predictably engineer robust biomolecular systems in
living cells. The functioning of these synthetic biomolecular
systems requires the consumption of shared cellular resources,
which imposes a gene expression burden that may impact the
performance of the cell and the synthetic system. In this paper,
we show the effect of resource constraints on quantitative and
qualitative aspects of gene expression in multiple circuits. We
utilise a resource-aware modelling framework to show that
stabilization can be achieved in a class of integral controllers.
The results open possibilities for the design of lean biomolecular
controllers.

I. INTRODUCTION

Designing biomolecular systems in living cells for even-
tual applications in agriculture, healthcare, and industry is
an important aspect of synthetic biology. These engineered
biomolecular systems generally require resources from their
host cell to function. This resource demand imposes a gene-
expression burden on the host cell corresponding to the se-
questration of shared cellular resources from endogenous cel-
lular processes. Such burden typically impacts the dynamic
behaviour of the cell and of the engineered biomolecular
systems it hosts. The impact of burden can be severe and
even cause loss of function of the designed biomolecular
circuits in the cell [1].

Recently, significant attention has been given to the role of
shared cellular resources in synthetic biological designs [2],
[3]. The impact of resources can be further understood by
developing whole-cell mathematical models, which show
the interdependence of gene expression, cell growth, and
resources [4]. Similarly, a quantitative understanding of host
and circuit interaction through host/resource-aware mod-
elling can help predict the performance of synthetic cir-
cuits [5]–[8] as well as highlight systems-level trade-offs
that can emerge from resource constraints [9], [10]. In a
cell-free system, these mathematical predictions have been
used to quantify the cellular competition between synthetic
genes [11]–[13], and similarly, a qualitative relationship
between resources and dynamical performance has been
demonstrated using a gene expression capacity monitor in
living cells [2], [14].

Several approaches have been proposed to mitigate
burden-imposed effects on co-expressed genes. One approach
consists in designing a resource allocation controller to
dynamically distribute ribosomes so as to restore modularity
when heterologous genes are co-expressed [15], [16]. Other
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approaches focus on the use of biomolecular feedback mech-
anisms that respond to gene expression burden by reducing
the net resource demand of synthetic genetic circuits [3],
[17], or of incoherent feedforward loops designed to mitigate
the impact of gene dosage on circuit performance [18]–[20].
Taking shared cellular resources explicitly into account in
the design of biomolecular systems opens up new avenues
for resource-aware designs that strike a balance between
robust performance and efficient use of resources. A recent
example of this is the design of a resource-based incoherent
feedforward loop that can adapt to variations in copy number
under certain conditions related to resource demand [21].

We here aim to leverage resource constraint-based inter-
connections to understand and tune the dynamical response
in synthetically designed biomolecular circuits [22]. To this
effect, in what follows, we present a coarse-grained model
capturing the resource-based interactions created by shared
translational resources in biomolecular circuits. We use this
modelling framework to show that such interactions impact
the dynamical response, paving the way for them to be used
as a design tool. We then show that these resource constraints
can be interpreted as a state-feedback control mechanism
that can be exploited to stabilize a class of integral feedback
controllers without compromising perfect adaptation.

II. RESULTS

A. Modelling resource-aware co-expression of genes

Consider a set of genes, which, when constitutively tran-
scribed produce the corresponding mRNAs Xmi, with i
ranging from 1 to n. The production of proteins Xpi from
these mRNAs requires the use of the shared cellular resource
R, for example Ribosome. A simple set of chemical reactions
representing this gene expression process is given by

ϕ
uiαmi−−−−→ Xmi

γmi−−→ ϕ

Xmi+R
k+
i−−⇀↽−−

k−
i

Ci
αpi−−→ Xpi+R+Xmi

Xpi
γpi−−→ ϕ

where αmi represents the production rate of Xmi, γmi

represents the removal rate (via degradation and/or dilution)
of Xmi, αpi represents the production rate of Xpi and γpi
represents the removal rate of Xpi, ui represents the input
signal to the gene expression system. For regulated gene
expression, ui is a function fi(x) of a regulating effector
molecule x, while for unregulated gene expression, ui is a
constant. The value of ui is assumed to be between 0 and 1.

Using the law of mass action, the following set of Ordi-
nary Differential Equations can be obtained for this simple

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 2699



resource-dependent gene expression system:

ẋmi = αmiui − γmixmi − k+i xmiR+ αpiCi + k−i Ci,

Ċi = k+i xmiR− αpiCi − k−i Ci,

ẋpi = αpiCi − γpixpi,

(1)

where xmi and xpi represent the cellular concentrations of
Xmi and Xpi, respectively, while R and Ci represent the
cellular concentrations of the resource R and translation
complex Ci.

Under the assumption that the complex dynamics is much
faster compared to the dynamics of other molecular species,
using time-scale separation [23], the dynamics of the cellular
concentration of the complex can be assumed to be at quasi-
steady-state (Ċi ≈ 0). Hence, the model reduces to:

ẋmi = αmiui − γmixmi,

ẋpi = αpiKixmiR− γpixpi,
(2)

where Ki =
k+i

αpi + k−i
represents the resource demand

coefficient for gene i.
To capture the resource constraint, we assume that the total

cellular concentration of shared resources RT is constant.
The resource can be either in the free form R or bound as
part of the complex Ci. Considering these, we have:

RT =R+

n∑
j=1

Cj = R+

n∑
j=1

KjRxmj = R(1 +

n∑
j=1

Kjxmj)

=⇒ R =
RT

1 +
∑n

j=1 Kjxmj
.

(3)

It is interesting to note that the amount of available
resource R is inversely proportional, via the resource demand
coefficient Kj , to the cellular concentration of mRNA. A
high value of Kj implies that the expression of gene j
uses more resources, leading to a lower amount of available
resources R.

Substituting R into Eq. (2), we obtain,

ẋmi = αmiui − γmixmi,

ẋpi = αpi
Kixmi

1 +
∑n

j=1 Kjxmj
RT − γpixpi.

(4)

As the dynamics of mRNAs is typically (much) faster
compared to that of protein, we can further reduce the model
using a quasi-steady-state approximation of the mRNAs
dynamics (i.e. ẋmi ≈ 0 when compared to the timescale of
the ẋpi species) to obtain a simplified model, which focuses
exclusively on protein dynamics:

ẋpi = αpi
Ki(αmiui/γmi)

1 +
∑n

j=1 Kj(αmjuj/γmj)
RT − γpixpi. (5)

B. Effect of resource constraint on dynamical behaviour

In this section, we investigate the effect of resource
constraint on two important characteristics i.e. the steady-
state and response time of the system described in (4), of
the co-expressed genes dynamics (Fig. 1a).

The steady-state without resource constraint is given
by xmi,e =

αmiui

γmi
, xpi,e =

αpiαmi

γpiγmi
uiKiR, while

the steady-state with resource constraint is xmi,e =
αmiui

γmi
, xpi,e =

αpiαmi

γpiγmi
Kiui

1

1 +
∑n

j=1 Kj
αmjuj

γmj

RT . R

represents the concentration of resources available for the
gene expression. In the case where there is no resource
constraint (i.e. Kj = 0, ∀j), R is equal to the total con-
centration of resources in the cell RT . Based on these, we
note that resource constraints lead to a lower steady-state
concentration of xpi by a factor 1

1+
∑n

j=1 Kj
αmjuj
γmj

.

In the case of n copies of the same gene, the protein
steady-state concentration for each gene copy is given by

xpi,e =
αpiαmi

γpiγmi
Kiui

1

1 + nKi
αmiui

γmi

RT . The total protein

concentration in the cell is given by xtot
pi,e = nxpi,e =

αpiαmi

γpiγmi
Kiui

n

1 + nKi
αmiui

γmi

RT .

The sensitivity, i.e. the change in xtot
pi,e for a change in n,

can be calculated as

d

dn
xtot
pi,e =

αpiαmi

γpiγmi
Kiui

1(
1 + nKi

αmiui

γmi

)2RT . (6)

This shows that the sensitivity of total protein yield with
respect to copy numbers decreases with an increase in the
copy number.

To understand the timescale around these steady-states,
we linearise the multiple copies model in (4) around its
equilibrium point. The linearised model is given as:

δẋmi = −γmiδxmi,

δẋpi =
αpiKiRT

(1 + nKixmi,e)2
δxmi − γpiδxpi.

(7)

The time response of this system can be inferred by per-
forming a convergence analysis using the Lyapunov function
V (t) = 1/2(δx2

mi+δx2
pi). Using this Lyapunov function, we

have:
dV

dt
=δxmiδẋmi + δxpiδẋpi,

=

[
δxmi

δxpi

]T [
−γmi

KiαpiRT

2(1+nKixmi,e)2

KiαpiRT

2(1+nKixmi,e)2
−γpi

]
︸ ︷︷ ︸

Q

[
δxmi

δxpi

]

≤µ1(Q)V,
(8)

where µ1(Q) = supj{Qjj+
∑

i ̸=j |Qij |} (Qij represents the
entry in the ith row and jth column of matrix Q) is the matrix
measure defined in [24], which here evaluates to: µ1(Q) =
max{−γmi+

KiαpiRT

2(1+nKixmi,e)2
,−γpi+

KiαpiRT

2(1+nKixmi,e)2
}). From

this, we note that, as the number of copies/genes decreases,
the matrix measure increases, leading to a lower-bound
slower convergence rate. This bound of convergence rate
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implies the convergence rate is atleast to the value of the
bounds. Similarly, if the copy number increases, we expect
a faster response time. It is interesting to note that for
the protein dynamics model in (5), the convergence rate
would have been −γpi, i.e. independent of number of genes.
However, protein dynamics in a different configuration of
genes, for example in a gene cascade [22], can show a
resource-constraint-dependent response time.

For cascaded gene expression systems,

ẋpi = αpi

K̄i−1xp(i−1)

1 +
∑n−1

j=1 K̄jxpj

RT − γpixpi, (9)

where K̄i = αmiKi

γmi
, xp0 = 1, K̄0 = 1. It is to be noted

that denominator contains only those proteins xpj which
sequester resources when acting as transcription factors. The
linearised model around the equilibrium point is,

δẋpi =
αpiRT K̄i−1(1 +

∑
j ̸=i−1 K̄jxpj,e)

(1 +
∑

K̄jxpj,e)2
δxp(i−1)

−
(
αpiRT K̄i−1K̄ixp,i−1,e

(1 +
∑

K̄jxpj,e)2
+ γpi

)
δxpi

−
αpiRT K̄i−1xp(i−1),e

(1 +
∑

K̄jxpj,e)2

∑
j ̸=i

K̄jδxpj .

(10)

Consider a two-node gene expression cascade where X1

activates X2. The mathematical model for the protein dy-
namics under resource constraint is,

ẋp1 =
αp1RT

1 + K̄1xp1
− γp1xp1,

ẋp2 =
αp2K̄1xp1RT

1 + K̄1xp1
− γp2xp2,

(11)

where x1 and x2 are protein concentrations, αp1 and αp2 are
the protein production rates, and γp1 and γp2 are the protein
degradation rates of x1 and x2, respectively. The linearised
dynamics can be written as:

δẋp1 =

(
−αp1RT K̄1

(1 + K̄1xp1,e)2
− γp1

)
δxp1,

δẋp2 =
αp2K̄1RT

(1 + K̄1xp1,e)2
δxp1 − γp2δxp2.

(12)

From (12), the δxp1 dynamics has convergence rate of
−αp1RT K̄1

(1+K̄1xp1)2
− γp1 due to the resource constraint whereas

without resource constraint the convergence rate is −γp1.
This increase results in faster response of the dynamics.

We note that resource coefficients act as feedback gains
from other mRNA states. As the number of gene increases
the negative feedback strength increases, which operates in
a similar manner to a negative feedback genetic circuit.
It is well known that negative feedback in genetic circuit
decreases the steady-state and reduces the response time
of the output protein concentration [25]. To verify this, we
simulated the model for different the number of genes. We

note that as the number of genes increases, the steady-
state value decreases as expected (Fig. 1b). Furthermore, we
also observe that the response time also decreases with an
increase in the number of genes (Fig. 1c). This decrease is
not linearly proportional to the increase in the number of
genes. This can be understood from the matrix measure in
(8), where the change due to resource constraint is ∆ =

Ki

2(1+nKixmi,e)2
. The sensitivity of this matrix measure to the

number of genes can be computed as d∆
dn =

−K2
i xmi,e

(1+nKixmi,e)
.

This sensitivity decreases as the number of genes increases.
To further show the difference in response time, we compare
in Fig. 1d the response time for the cases with n = 10 co-
expressed genes with and without resource constraint.

(a) (b)

(c)

2

n

1

1
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C
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(d)

2

n

Fig. 1. (a) Schematic of co-expressed (parallel) genes and cascaded
genes, where the impact of resource constraints are shown as unintended
interactions. (b) Expression dynamics of a protein of interest when several
additional genes are co-expressed. This shows that as the number of genes
increases, the steady-state level of the protein of interest decreases. The
simulation parameters are αmi = 1nM/min, αpi = 1nM/min, γmi =
0.2 1/min, γpi = 0.1 1/min, RT = 100, Ki = 0.01 . (c) Response
time (defined as the time required to reach 90% of the steady-state value) as
a function of the number of co-expressed genes. d) The blue line represents
the case of gene expression without any resource constraint, while the black
line represents the case of gene expression under resource constraint. The
dashed vertical lines indicate the time taken for the concentration of the
protein of interest to reach 90% of its steady-state value (also known as
response time). For both the cases, the total number of genes n = 10.

C. Fold-change detection in Incoherent Feedforward Loops

To investigate whether resource constraints can impact the
qualitative behaviour of gene networks different from those
discussed in the previous section, we consider an incoherent
feedforward loop (iFFL). iFFLs constitute a commonly used
biological motif for step input disturbance rejection and fold-
change detection as their temporal responses are identical for
input step signals exhibiting the same fold change. The gene
network architecture of an iFFL can be described as follows:
an external input u activates two genes X1 and X2, while
the protein expressed from gene X1 acts as a repressor for
the expression of gene X2 (Fig. 2b, inset).
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A standard resource-agnostic model for an incoherent
feedforward loop is given as [26]:

ẋp1 = αp1u− γp1xp1,

ẋp2 = αp2u
K

xp1
− γp2xp2.

(13)

where xp1 and xp2 are protein concentrations for genes X1

and X2, respectively. K is the DNA binding constant of
X1 to the promoter of X2, αp1 is the translation rate for
the protein of gene X1, γp1 is the degradation rate for the
protein of gene X1, αp2 is the translation rate for the protein
of gene X2, and γp2 is the degradation rate for the protein
of gene X2.

(a)

(b)

𝑋1

U

u

u

𝑋2

𝑥
𝑝
2

𝑥
𝑝
2

Fig. 2. Standard model response (a) and resource constraint model response
(b) for a stair case of step signals (light grey). The input signal u starts
with a normalised value of 1 and increases by two fold at regular time
intervals. The parameters for the simulations are αp1 = 100 nM/hr,
αp2 = 100 nM/hr, γp1 = 1 1/hr, γp2 = 1 1/hr, K = 1.

In what follows, this model is simulated considering a
stair case of step signals applied at the iFFL input u, with
the fold change between consecutive steps kept constant.
When considering such a model of the iFFL, i.e. a model
which doesn’t take into account limited resources for gene
expression, one can observe that the output response remains
identical as long as the step fold change remains the same,
irrespective of the absolute values of u (Fig. 2a).

Similarly to what we did in Section II-A, if one takes into
account consumption of shared cellular resources during co-

expression of genes, the model becomes:

ẋp1 = αp1
K̄uu

1 + K̄uu+ K̄1xp1
− γp1xp1,

ẋp2 = αp2
K̄uu

1 + K̄uu+ K̄1xp1

K

xp1
− γp2xp2.

(14)

When simulated for the same stair case step input as for Fig-
ure 2.(a), we observe that the response retains the adaptation
property but loses fold change detection ability (Fig. 2b).
This change in the dynamics is due to resource constraints.
A high absolute value of u generates a larger pool of mRNA
and demands more resources to produce the protein. From a
previously reported mathematical condition for fold change
detection [27], in a system represented as

ẋ = f(x, y, u),

ẏ = g(x, y, u),
(15)

(here, x = xp1 and y = xp2) fold-change detection is guar-
anteed if the system is stable and the following homogeneity
conditions, are met for all positive values of a parameter r:

f(rx, y, pu) =rf(x, y, u),

g(rx, y, pu) =g(x, y, u). ∀r > 0
(16)

We can see that, while the model in (13) meets these
conditions, the model in (14) does not meet them. However,
both these models retain the adaptation property.

D. Stabilization of the antithetic integral feedback controller

A key mechanism for guaranteeing robust perfect adap-
tation (robust zero steady-state error) consists in the use of
negative integral feedback. It has been shown that a special
class of integral controllers, known as antithetic integral
controllers (AICs), can be implemented biomolecularly to
that effect [28]. The robust performance of antithetic integral
controllers is guaranteed only when the closed-loop system
dynamics is asymptotically stable and the sole means of
removal/inactivation of the antithetic controller molecules
from the system is by reacting with themselves (i.e. zero-
order degradation for the antithetic controller molecules).
Although additional biomolecular controllers can be engi-
neered to ensure stability, this comes at the cost of additional
complexity and demand for cellular resources.

In what follows, we consider a simple reaction network
consisting of two species: a controlled species X1, and an
output species X2, with X1 promoting the expression of X2.
An AIC consisting of the molecular species Z1 and Z2 is
connected to this simple reaction network with the aim to
robustly control the steady-state level of the output species
X2. The typical structure of the antithetic controller for this
set of two genes (X1 and X2) is depicted in Fig. 3(a), where
Z1 actuates X1, and Z2 senses X2. In the ideal setting, the
AIC species Z1 and Z2 can only be removed from the system
by binding to each other at a rate η, thereby forming an
inactive complex.

Without accounting for consumption of shared cellular
resources, the dynamics of this prototypical closed-loop
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Fig. 3. (a) Schematic of an antithetic integral controller (Z1, Z2) connected
to a simple reaction network (X1, X2). Due to resource constraints, addi-
tional interactions arise. Explicit regulatory interconnections are represented
in black, while implicit resource-induced interconnections are represented
in grey. (b) The red trace indicates the time evolution of the concentration
of x2 without resource constraints while the black trace indicates the
time evolution of x2 when resource constraints are considered for the
same parameter set and step change in u. The parameters considered for
simulations are α1=0.1125 au, γ1=0.2817 au, γ2=0.2062 au,θ1=1.6321 au
θ2=0.2364 au, η=5.7490 au, µ=8.0898 au.

system is given as [29]:

dx1

dt
= θ1uz1 − γ1x1,

dx2

dt
= α1x1 − γ2x2,

dz1
dt

= µ− ηz1z2,

dz2
dt

= θ2x2 − ηz1z2,

(17)

where x1, x2, z1, and z2 represent the concentrations of the
species X1, X2, Z1, and Z2, respectively. θ1, θ2, α1 are the
production rates of x1, z2, and x2, respectively. η is the rate
at which z1 and z2 bind to and sequester each other. γ1, γ2
are degradation rates of x1, and x2, respectively. µ is the
production rate of z1 providing the reference signal. Here, u
is the disturbance input against which adaptation is sought
by the antithetic integral controller.

At steady-state, if the closed-loop system is stable, x2 =
µ

θ2
[29]. This steady-state value is independent of u as well

as the parameters α1, θ1, and η, making it robust against
perturbations to these parameters.

It has been observed that in certain parameter regimes the
feedback system looses stability [30], [31]. In such cases,

its critical to consider design aspects that can stabilize the
closed-loop system.

In the presence of resource constraint, the dynamical
model of the closed-loop system becomes,

dx1

dt
= θ1 u

J1z1
1 +K1x1 +K2x2 + J1z1

− γ1x1,

dx2

dt
= α1

K1x1

1 +K1x1 +K2x2 + J1z1
− γ2x2,

dz1
dt

= µ
1

1 +K1x1 +K2x2 + J1z1
− ηz1z2,

dz2
dt

= θ2
K2x2

1 +K1x1 +K2x2 + J1z1
− ηz1z2,

(18)

where K1, K2, and J1 are the resource demand coefficients.
These additional interactions have the potential to induce

stability or enlarge the parameter ranges for which the
closed-loop system is stable.

To investigate the stability of the closed loop system, we
linearize the system dynamics around its equilibrium point.
The linearized dynamics is given by:

δẋ1

δẋ2

δż1
δż2

 =

 −γ1 0 θ1uJ1q 0
α1K1q −γ2 0 0

0 0 −ηz2,e −ηz1,e
0 θ2K2q −ηz2,e −ηz1,e


δx1

δx2

δz1
δz2

+


−θ1uJ1z1,eK1q2 −θ1uJ1z1,eK2q2 −θ1uJ1z1,eK1q2 0
−α1K2

1x1,eK1q2 −α1K1x1,eK2q2 −α1K1x1,eJ1q2 0
−µK1q2 −µK2q2 −µJ1q2 0

−θ2K2x2,eK1q2 −θ2K2
2x2,eq2 −θ2K2x2,eJ1q2 0


δx1

δx2

δz1
δz2



=

 −γ1 0 θ1uJ1q 0
α1K1q −γ2 0 0

0 0 −ηz2,e −ηz1,e
0 θ2K2q −ηz2,e −ηz1,e


︸ ︷︷ ︸

A

δx1

δx2

δz1
δz2



− q2

θ1uJ1z1,eα1K1x1,e

µ
θ2K2x2,e


︸ ︷︷ ︸

B

[
K1 K2 J1 0

]︸ ︷︷ ︸
K

δx1

δx2

δz1
δz2

 ,

where q =
1

1 +K1x1,e +K2x2,e + J1z1,e
and[

x1,e, x2,e, z1,e, z2,e
]T

is the vector of steady-state values.
Denoting δX =

[
δx1 δx2 δz1 δz2

]T
, the linearised

system dynamics can be compactly rewritten as,

δẊ = AδX−q2BKδX = (A−q2BK)δX = ArδX, (19)

with Ar = A− q2BK. Interestingly, this feedback structure
is very close to the structure of a state feedback controller.
Note that the resource-aware model retains the adaptation
property of the antithetic controller since x2,e =

µ

K2θ2
.

We observe that this steady-state value is dependent on the
additional parameter K2. This is expected as K2 is the
resource coefficient related X2 and acts as a scaling factor
of θ2 in the model.

Proposition 1. The equilibrium point of (18) can be made
stable, i.e. Ar is Hurwitz, if the resource demand J1 satisfies
J1 < 1

2z1eq
.
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Proof. The closed-loop system matrix Ar = A − q2BK is
given by:

Ar =

 −γ1 0 0 0
α1K1q −γ2 0 0

0 0 −ηz2,e −ηz1,e
0 θ2K2q −ηz2,e −ηz1,e


︸ ︷︷ ︸

A0

+


−θ1uJ1z1,eK1q2 −θ1uJ1z1,eK2q2 −θ1uJ1z1,eK1q2 + θ1uJ1q 0
−α1K2

1x1,eK1q2 −α1K1x1,eK2q2 −α1K1x1,eJ1q2 0
−µK1q2 −µK2q2 −µJ1q2 0

−θ2K2x2,eK1q2 −θ2K2
2x2,eq2 −θ2K2x2,eJ1q2 0


︸ ︷︷ ︸

∆A

The matrix A0 has its rightmost eigenvalue at 0. Pertur-
bation of A0 by the matrix ∆A determines the overall
local asymptotic stability of the steady-state. We use the
perturbation theory from [32], [33] to characterise the local
stability of Ar by considering the value of the drift of
the zero eigenvalue of A0. The perturbation in the zero
eigenvalue is ∆λ = uT∆Av + O(∆A), where uT =α1K1K2θ2q
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For sufficiently small values of J1, i.e. J1 < 1
2z1,eq

, we have

− θ1u
γ1

+
2J1z1,euθ1q

γ1
< 0 and as a consequence the eigenvalue

drift is negative. Under this assumption, the closed-loop
matrix Ar is Hurwitz.

This condition can be physically interpreted as follow. The

resource demand for the expression of x1, J1, should be
sufficiently small, implying the use of a lean biomolecular
controller. As the dynamics of z1 is assumed to be free of
first order degradation, any instability in the dynamics of
x1 is scaled down by J1. Therefore, when J1 satisfies the
condition J1 < 1

2z1,eq
, J1 becomes inversely related to the

steady-state value of z1.
We consider a situation for which the fixed point of

the closed-loop system is unstable and the system exhibits
an oscillatory behaviour around this fixed point (Fig. 3(b),
red trace). However, shown that when resource constraints
are accounted for and the resource demand coefficients are
chosen as per proposition 1, the equilibrium point is lo-
cally asymptotically stable and perfect adaptation is restored
(Fig. 3(b), black trace).

III. DISCUSSION

A conventional approach to control the dynamical be-
haviour of gene networks is through the design of biomolecu-
lar feedback control systems that act upon them. The function
of these biomolecular control systems requires consumption
of shared cellular resources, which are often not taken into
account explicitly. Resource limitation typically couples dif-
ferent co-expressed genes in such a way that overexpression
of a gene leads to reduced expression of other genes. Similar
to transcriptional negative feedback circuit, this resource-
constraint feedback can accelerate the system response at the
cost of reduced steady-state values. Further, we have shown
that resource constraints can alter the qualitative behaviour
of gene regulatory networks such as fold change detection
in incoherent feedforward loop or coupling from upstream
to downstream genes in gene expression cascades. Finally,
we have shown that resource-constraint-based feedback can
be approximated to a state-feedback controller design. We
used this to achieve stabilization in an, otherwise unstable,
antithetic integral feedback system. These preliminary re-
sults open up possibilities for the resource-aware design of
biomolecular controllers.

IV. ACKNOWLEDGMENTS

GBS gratefully acknowledges the support of the UK Royal
Academy of Engineering via the Chair in Emerging Tech-
nologies for Engineering Biology (RAEng CiET 1819\5).
AP would like to acknowledge the support as Early Career
Fellowship by DBT/Wellcome Trust India Alliance.

REFERENCES

[1] E.-M. Nikolados, A. Y. Weiße, F. Ceroni, and D. A. Oyarzún, “Growth
defects and loss-of-function in synthetic gene circuits,” ACS synthetic
biology, vol. 8, no. 6, pp. 1231–1240, 2019.

[2] F. Ceroni, R. Algar, G.-B. Stan, and T. Ellis, “Quantifying cellular
capacity identifies gene expression designs with reduced burden,”
Nature methods, vol. 12, no. 5, p. 415, 2015.

[3] F. Ceroni, A. Boo, S. Furini, T. E. Gorochowski, O. Borkowski, Y. N.
Ladak, A. R. Awan, C. Gilbert, G.-B. Stan, and T. Ellis, “Burden-
driven feedback control of gene expression,” Nature methods, vol. 15,
no. 5, pp. 387–393, 2018.

[4] A. Y. Weiße, D. A. Oyarzún, V. Danos, and P. S. Swain, “Mecha-
nistic links between cellular trade-offs, gene expression, and growth,”
Proceedings of the National Academy of Sciences, vol. 112, no. 9,
pp. E1038–E1047, 2015.

2704



[5] C. Liao, A. E. Blanchard, and T. Lu, “An integrative circuit–host mod-
elling framework for predicting synthetic gene network behaviours,”
Nature microbiology, vol. 2, no. 12, pp. 1658–1666, 2017.

[6] E. Atkinson, Z. Tuza, G. Perrino, G.-B. Stan, and R. Ledesma-
Amaro, “Resource-aware whole-cell model of division of labour in
a microbial consortium for complex-substrate degradation,” Microbial
cell factories, vol. 21, no. 1, pp. 1–12, 2022.

[7] E.-M. Nikolados, A. Y. Weiße, and D. A. Oyarzún, “Prediction of
cellular burden with host–circuit models,” in Synthetic Gene Circuits,
pp. 267–291, Springer, 2021.

[8] C. D. McBride and D. Del Vecchio, “Predicting composition of
genetic circuits with resource competition: demand and sensitivity,”
ACS Synthetic Biology, vol. 10, no. 12, pp. 3330–3342, 2021.

[9] A. Gyorgy and D. Del Vecchio, “Limitations and trade-offs in gene
expression due to competition for shared cellular resources,” in 53rd
IEEE Conference on Decision and Control, pp. 5431–5436, IEEE,
2014.

[10] T. E. Gorochowski, I. Avcilar-Kucukgoze, R. A. Bovenberg, J. A.
Roubos, and Z. Ignatova, “A minimal model of ribosome allocation
dynamics captures trade-offs in expression between endogenous and
synthetic genes,” ACS synthetic biology, vol. 5, no. 7, pp. 710–720,
2016.

[11] A. Gyorgy and R. M. Murray, “Quantifying resource competition and
its effects in the tx-tl system,” in 2016 IEEE 55th Conference on
Decision and Control (CDC), pp. 3363–3368, IEEE, 2016.

[12] D. Siegal-Gaskins, V. Noireaux, and R. M. Murray, “Biomolecular
resource utilization in elementary cell-free gene circuits,” in 2013
American Control Conference, pp. 1531–1536, IEEE, 2013.

[13] O. Borkowski, C. Bricio, M. Murgiano, B. Rothschild-Mancinelli, G.-
B. Stan, and T. Ellis, “Cell-free prediction of protein expression costs
for growing cells,” Nature communications, vol. 9, no. 1, pp. 1–11,
2018.
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