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Abstract— Bearing-only formation control problem for agents
over directed graphs, due to the loss of symmetry in the
sensing graph, has been explored sparingly in comparison to
the undirected counterpart. The few existing results mainly
consider single intergrator agents that achieve stationary forma-
tions. This paper studies the problem of bearing-only formation
control for double integrator agents under a leader-first follower
(LFF) structure where the underlying graph is directed acyclic
in nature. We characterize the equilibrium points under our
proposed control law and present local stability analysis around
them. We further show that scale of the formation can be
controlled purely through bearings by considering the leader’s
physical dimensions to be non-trivial.

I. INTRODUCTION
Technological advancement in recent years has paved the

way for synthesizing distributed engineering systems such
as multi-vehicle systems, sensor networks [1], which have
wide range of applications in automated highways, satellite
formations, search and rescue operations [2]. Decentralized
control of such multi-agent systems has attractive advantages
such as low operational costs, high robustness, strong adapt-
ability.When dealing with multiple mobile agents, formation
control is of significance and finds applications in underwater
exploration, target detection, surveillance using unmanned
aerial vehicles, etc.
The main goal of formation control is to maintain a desired
formation shape while performing tasks demanded by the
mission. In order to do so, the agents are required to satisfy
a set of constraints with respect to their neighboring agents.
Depending on the type of constraints imposed, formation
control can be classified as displacement-based, distance-
based, and bearing-based formation control [3]. Distance
rigidity theory emerged as a consequence of detailed in-
vestigations on distance-based and displacement-based for-
mation control strategies [2], [4]–[6]. Distance-based and
displacement-based control laws require relative position
information or range information, which entails relying on
external positioning systems such as GPS. However GPS
cannot be used in environments like deep space. Use of on-
board sensors presents a practical solution to such problems.
Cameras are popularly used as onboard sensors [7], which
provide more reliable relative bearing measurements with
respect to a target than the corresponding range information
[8]. These cameras can also provide relative bearing rates
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using optical flow based on the pin-hole camera model [9],
due to which the study of bearing based and bearing-only
formation control has been of particular interest. Bearing
based and bearing-only control laws for multi-agent sys-
tems over undirected graphs have been studied extensively
[9]–[11]. Undirected graphs imply bidirectional sensing of
bearings, whereas directed graphs entail one way sensing,
which reduces sensing burden on the agents. The control
laws for the undirected case are mostly some form of
gradient or modified gradient based laws due to the symmetry
in the sensing graph. This simplifies the stability analysis
considerably, compared to the directed case, since the choice
of a Lyapunov candidate/function is often apparent. However,
with a directed sensing graph, the symmetry is lost and
therefore similar techniques of analysis cannot be employed.
Several studies on bearing-based and bearing-only forma-
tion control under directed sensing topologies for single
integrators have been carried out in recent years [12]–
[14]. However, double integrators are realistic since they
capture the dynamics of omni-directional ground vehicles
and unmanned air vehicles. Another crucial aspect is that
these results are applicable to stationary target formations
rather than to formation tracking. In [15] the authors studied
LFF formation control problem with double integrators for
time varying formations. However, the agents were capable
of measuring relative velocities. Furthermore, the desired
relative positions were used to decide the formation scale.
To the best of our knowledge, there has been no work
that studies the formation control problem over directed
topologies for double integrators that rely only on relative
bearing and relative bearing rates. Motivated by this, we
studied such a control law for agents in two dimensional
euclidean space in [16] and presented some preliminary
results. However, the equilibrium set was not characterized
and no stability analysis had been carried out as the Jacobian
evaluated at the claimed desired equilibrium was singular. No
guarantee on the formation scale could be provided either.
In our current work, we consider that the leader has a circular
disk shape of finite constant radius. This allows us to control
the scale of the formation without requiring any distance
measurements. This consideration is not restrictive as any
vehicle moving in a two-dimensional plane has a non-trivial
dimension, as in [17]–[19]. We then prove the existence
of two equilibria for our proposed control law and provide
local stability analysis for each of the equilibria. Finally, we
provide simulations to compare our proposed control strategy
with the one proposed in [16].
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II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notation

Consider a multi-agent system of n agents with one agent
being the leader (labelled as agent 1) and the remaining n−1
being followers. Let G(V, E) or G be a directed graph with
vertex or node set V = {v1, . . . , vn} and |V| = n. The edge
set, E , consists of |E| = m ordered pairs of vertices from the
vertex set, defined as E = {(vi, vj)|vi, vj ∈ V, vi ̸= vj} ⊆
V × V . The vertex vj is said to be a neighbor of vertex
vi if (vi, vj) ∈ E , and the set of all neighbors for vertex
vi is denoted as Ni = {vj ∈ V|(vi, vj) ∈ E}. Consider
a set of n points in the two-dimensional Euclidean space,
pi ∈ R2, i ∈ {1, 2, . . . , n} that are uniquely mapped to each
vertex vi ∈ V . The stacked vector p = [pT1 , . . . , p

T
n ]

T ∈ R2n

is called the configuration of G. The configuration, p, along
with the directed graph, G, define a framework in R2, denoted
by G(p). Given a framework, G(p), we define the following

ek = eij := pj − pi; gk = gij :=
ek
∥ek∥

∀k ∈ {1, . . . ,m}

as the edge vector and bearing vector for the kth directed edge
(vi, vj) ∈ E , respectively. Note the slight abuse of notation
in the subscript of the edge vector and the bearing vector,
where a single subscript indicates the edge index, while a
double subscript indicates the vertices on which the edge
is incident. Depending on the context and the use, we will
employ either notation for the edge vector. The unit vector,
gij , is the relative bearing of pj to pi. We denote distance
between the points pi and pj with dij = ∥pj − pi∥ = ∥eij∥.
Here ∥ · ∥ is the L2 vector norm or the induced L2 norm of
a matrix. The matrices 0k, Ik denote the zero and identity
matrices of size k × k, respectively.
For a given unit vector, x ∈ R2, the orthogonal projection
matrix is defined as Px = I2−xxT .The matrix Px is symmet-
ric, i.e., Px = PT

x , and idempotent, i.e., P 2
x = Px. Further,

we have Pxx = 0, indicating that Null(Px)=span{x}, and
Px has eigenvalues {0, 1}. From the definition of gij , the
bearing rate or the time derivative of gij can be obtained as
ġij =

Pgij

∥eij∥ ėij =
Pgij

∥eij∥ (ṗj− ṗi). It immediately follows from
the expression for ġij and the properties of the orthogonal
projection matrix above that gTij ˙gij = eTij ˙gij = 0, implying
that ġij is orthogonal to gij and eij .

B. Bearing based Henneberg construction

The bearing based Henneberg construction is employed to
construct the underlying graph that has the LFF structure.
A graph with n vertices can be constructed in n − 1 steps,
every step after the first effectively adds two directed edges,
hence there are 2(n − 2) + 1 = 2n − 3 directed edges.
All the vertices except v1 and v2 have two neighbors. A
directed edge (vi, vj) ∈ E assigns the task of controlling
the bearing gij to vertex/agent vi. The construction starts
with a simple graph with two vertices, v1, v2, and a directed
edge (v2, v1). Each step thereafter involves performing two
operations, vertex addition and edge splitting, to build the
underlying graph, as illustrated in Fig 1.

v1

v2

v3

v2

v1
v1

v3

v2

v4

1 2 3

Fig. 1. An LFF graph with 4 vertices, Vertex addition is performed in step
2 and edge splitting is performed in step 3

Vertex addition: A new vertex along with two directed edges
is added to the existing graph as shown in Step 2 of Fig
1. Vertex v3 is added with two directed edges (v3, v2) and
(v3, v1), hence v3 has two neighbors v1 and v2.
Edge splitting: A vertex vi with two neighbors is selected
and an edge with one of its neighbors is removed. A new
vertex vk is added along with three directed edges. In step 3
of Fig 1, the edge (v3, v2) is removed, and vertex v4 is added
along with 3 directed edges (v3, v4), (v4, v2) and (v4, v1). A
detailed account of bearing-based Henneberg constructions is
presented in [14], [20].

C. Problem formulation

Consider a system of n agents in R2, where each agent is
modelled by a double integrator given by

ṗi(t) = vi(t) v̇i(t) = ui(t), (1)

where pi ∈ R2, vi(t) ∈ R2 and ui(t) ∈ R2 are the position,
velocity, and acceleration input to be designed for agent i,
respectively. Each agent is capable of sensing bearing vectors
and bearing rates relative to their neighbors, with respect to
a common global frame of reference.

Definition 1 (Target Formation): An LFF target forma-
tion (G, p∗(t)) satisfies the desired constant interneighbor
bearings {g∗ij}(vi,vj)∈E and translates with a velocity that
is equal to the constant leader velocity v∗1 .
The existence of such a translating target formation is a direct
consequence of [14, Lemma 2]. In summary, the following
assumptions are made for the n agent system.

Assumption 1: The underlying graph, G, of the target
formation is generated using the bearing based Henneberg
construction and each agent can measure bearing and bearing
rate vectors with respect to their neighbors.
The assignment of bearings in bearing-based Henneberg con-
struction is such that the resulting LFF formation guarantees
bearing rigidity [20].

Assumption 2: The desired position, p∗i (t), of agent vi
(3 ≤ i ≤ n) in the target formation (G, p∗(t)) is not collinear
with its 2 neighboring agents vj and vk, i.e., g∗ij ̸= ±g∗ik.

Assumption 3: The leader has a circular disk shape with
constant radius r ∈ R+, and the first follower v2 measures
two bearing vectors relative to the leader: g21, measured with
respect to the center of the aforesaid disk, and ḡ21, measured
along a tangent to the disk passing through p2. Agent v2 also
measures the corresponding bearing rates ġ21 and ˙̄g21.
Let p̄1 be the point on the disk with respect to which ḡ21
is measured. Similar to other relative bearing vectors, define
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ḡ21 = p̄1−p2

∥p̄1−p2∥ = ē21
∥ē21∥ , with ē21 = p̄1−p2. From Fig 2, we

have p̄1 = p1 + r̂, where r̂ is the radius vector (∥r̂∥ = r).
Both p1 and p̄1 move with same velocity, i.e, ṗ1 = ˙̄p1 = v1.
Since the agent v2 senses ḡ21 along the tangent to the disk,
it tracks the outermost point along the disk using its sensor.
Hence, the position p̄1 is invariant under learder’s rotation.

2

p2

1

p1

p̄1
r̂

g21

ḡ21

x− axis

y − axis

Fig. 2. Agent 2 measuring two bearings relative to the leader

Assumption 4: No inter-neighbour agent collisions occur
during the formation evolvement.

The bearing-only formation control problem is as follows.
Problem 1: Under the Assumptions 1 − 4, with agent

dynamics given in (1), design acceleration inputs for the
n − 1 followers using only the instantaneous bearings
{gij}(vi,vj)∈E and bearing rates {ġij}(vi,vj)∈E , such that a
given target formation is achieved.

III. MAIN RESULTS

The following bearing-only formation control law is pro-
posed for the n− 2 followers (i ∈ {3, · · · , n})

ṗi = vi

v̇i = −kp
∑
j∈Ni

Pgijg
∗
ij + kv

∑
j∈Ni

ġij (2)

and for the first follower (i = 2)

ṗ2 = v2

v̇2 = −kpPg21g
∗
21 − kpPḡ21 ḡ

∗
21 + kv ġ21 + kv ˙̄g21

(3)

where kp and kv are constant positive control gains.
1) The leader
The leader’s motion is governed by ṗ1 = v1, v̇1 = 0 and
moves with a constant desired velocity v1 = v∗1 . Its position
is given by p∗1 = p1(0) + v∗1t for all t ≥ 0. Since the leader
is already on its desired trajectory, we have the error states
δp1

:= p1 − p∗1 = 0 and δv1 := v1 − v∗1 = 0.
2) The first follower and the n− 2 followers
We define error states for each follower as δpi

:= pi−p∗i and
δvi := vi−v∗1 . Stacking all the position and velocity errors we
have δp = [δTp2

, . . . , δTpn
]T and δv = [δTv2 , . . . , δ

T
vn ]

T . From
(3) and the equations for ġ12 and ˙̄g12, the error dynamics for
the first follower is as follows

δ̇p2
= δv2

δ̇v2 = −kpPg21g
∗
21 − kpPḡ21 ḡ

∗
21 − kv

[
Pg21

∥e21∥
+

Pḡ21

∥ē21∥

]
δv2

The vectors g21 and ḡ21 in terms of δp2
are given by

d21g21 = −δp2
+ e∗21, d̄21ḡ21 = −δp2

+ ē∗21, (4)

where d21=∥− δp2+e∗21∥ and d̄21=∥− δp2+ē∗21∥. Thus δ̇v2
is a function of δp2 and δv2 . Similarly, from (2), the error
dynamics for agent 3 is

δ̇p3 = δv3

δ̇v3 = −kpPg31g
∗
31−kpPg32g

∗
32−kv

Pg31

∥e31∥
δv3+

Pg32

∥e32∥
(δv2−δv3)

Similarly, the bearing vectors g31 and g32 can be written as

d31g31 = −δp3
+ e∗31, d32g32 = δp2

− δp3
+ e∗32 (5)

where d31=∥−δp3
+e∗31∥ and d32=∥δp2

−δp3
+e∗32∥, making

δ̇v3 a function of δp2
, δp3

, δv2 and δv3 . As every agent, vi, for
i > 3 has 2 neighbors, their corresponding error dynamics
assumes a similar form as that of agent v3. Thus, we write

δ̇p=


δv2
δv3

...
δvn

 δ̇v=


f2(δp2 ,δv2 )

f3(δp2 ,δp3δv2 ,δv3 )

...
fn(δpk ,δpl ,δpn ,δvk ,δvl ,δvn ),

 (6)

where agents vk and vl are the neighbors of vn (vk, vl ∈
Nn). Before we characterize the equilibrium points of the
error dynamics in (6), we introduce two important definitions
of the terms path of least indices, and formation scale.

Definition 2 (Path of least indices): A sum of a sequence
of edge vectors starting from any agent, vi, to the leader, v1,
in a given target formation, of the form

E∗
i1 = e∗ij + e∗jk + · · ·+ e∗oq + e∗q1,

where vj ∈ Ni, vk ∈ Nj , . . . , v1 ∈ Nq , such that j, k, · · · , q
are the least indices in Ni,Nj , · · · ,No, respectively is
defined as the path of least indices for vertex vi.

Definition 3 (Formation Scale [14]): For an LFF frame-
work, G(p), formation scale is defined as the average of all
the inter-agent distances defined on the edge set, E , and is
given by, s(G(p)) = 1

|E|
∑

(vi,vj)∈E dij .
Lemma 1: The relative bearing constraints g∗21 and ḡ∗21 fix

the distance d21 between the leader and the first follower to
some desired value d∗21, thereby fixing the formation scale.

Proof: The two bearing vectors g21 and ḡ21 are related
to each other by the constant radius vector as (see Fig. 2)

d̄21ḡ21 − d21g21 = r̂, (7)

where d̄21 = ∥ē21∥, d21 = ∥e21∥. The positions p1, p̄1 and
p2 form a right angled triangle (say p1p2p̄1) with a fixed
base which is the radius vector r̂. Once the relative bearing
constraints g∗21 and ḡ∗21 are specified, the angle between the
two sides p1p2 and p2p̄1 of the triangle gets specified. Hence,
for the angle specified by the desired bearing constraints and
the fixed base of the right angled triangle, there exist unique
scalars d̄∗21 and d∗21 such that (7) is satisfied, i.e., d̄∗21ḡ

∗
21−

d∗21g
∗
21= r̂. Finally, we refer the reader to [14, Lemma 3] for

the proof that d∗21 determines the scale of the formation.
Note that d21 gets fixed at d∗21 even when the conditions
g21 = −g∗21 and ḡ21 = −ḡ∗21 hold.
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Theorem 1: Under Assumptions 1-4, the error dynamics
for the n−1 agent system in (6) has two equilibrium points:
(a) δp = 0 (when gij = g∗ij ∀(vi, vj) ∈ E), δv = 0

(b) δp = 2E∗ = 2[E∗
2
T E∗

3
T . . . E∗

n
T ]T where E∗

i = E∗
i1

(when gij = −g∗ij ∀(vi, vj) ∈ E), δv = 0.
Proof: From (6), δ̇p = 0 gives δv = 0, substituting this

in δ̇v = 0, we have

−kp


Pg21

g∗
21+Pḡ21

ḡ∗
21

Pg31g
∗
31+Pg32g

∗
32

...
Pgnk

g∗
nk+Pgnl

g∗
nl

 = 0 (8)

We now consider the first equation in (8), which corresponds
to the first follower: Pg21g

∗
21 + Pḡ21 ḡ

∗
21 = 0. Premultiplying

this with gT21 we obtain gT21Pg21g
∗
21 + gT21Pḡ21 ḡ

∗
21 = 0 =⇒

gT21Pḡ21 ḡ
∗
21 = 0. This is possible if ḡ21 = ±g21, which

would imply that the leader is simple point in space, con-
tradicting Assumption 3. Hence the only possibility is when
ḡ21 = ±ḡ∗21. Substituting this in Pg21g

∗
21 + Pḡ21 ḡ

∗
21 = 0,

it follows that g21 = ±g∗21. Note that the combinations
g21 = g∗21, ḡ21 = −ḡ∗21 and g21 = −g∗21, ḡ21 = ḡ∗21
are physically unrealizable in R2. When g21 = g∗21 and
ḡ21 = ḡ∗21, from Lemma 1, we have d21 = d∗21. This, along
with equations in (4), leads to δp2

= 0. Taking g21 = −g∗21
and ḡ21 = −ḡ∗21 in (4), we see that δp2

= 2e∗21, observe that
the path of least indices for the first follower is E∗

21 = e∗21.
We next consider the equation corresponding to agent v3 in
(8): Pg31g

∗
31 +Pg32g

∗
32 = 0. Premultiplying this with gT31 we

obtain gT31Pg31g
∗
31 + gT31Pg32g

∗
32 = 0 =⇒ gT31Pg32g

∗
32 = 0.

This holds when g31 = ±g32, which suggests that agent v3
is collinear with the first follower and the leader. This along
with g21 = ±g∗21 we have Pg31 = Pg32 = Pg∗

21
. Substituting

this in second equation of (8), we get Pg∗
21
(g∗31 + g∗32) =

0 =⇒ g∗31 + g∗32 = κg∗21, where κ is a scalar. Since
agent v3 in the desired target formation is coplanar with
v1 and v2 there exist nonzero positive constants d∗31 and
d∗32 such that d∗21g

∗
21 + d∗32g

∗
32 − d∗31g

∗
31 = 0, can be further

simplified as d∗
21

κ (g∗31 + g∗32) + d∗32g
∗
32 − d∗31g

∗
31 = 0 =⇒

(d∗21 −κd∗31)g
∗
31 +(d∗21 +κd∗32)g

∗
32 = 0. This shows that g∗31

and g∗32 are parallel and implies that agent v3 is collinear
with the leader and agent v2 in the target formation, which
contradicts Assumption 2. Thus, g31 = ±g32 does not hold
and the only other possibility is g31=±g∗31. Substituting in
Pg31g

∗
31 + Pg32g

∗
32 = 0, it immediately follows that g32 =

±g∗32. Considering δp2 = 0 with g31 = g∗31, g32 = g∗32, from
Lemma 1 we have d31=d∗31, d32=d∗32, Combining this with
equations in (5), we have d∗31g

∗
31=−δp3

+e∗31, and d∗32g
∗
32=

−δp3
+e∗32, which implies δp3

=0. Note that when δp2
=0, the

combinations g31=g∗31, g32=−g∗32 or g31=−g∗31, g32=g∗32
or g31=−g∗31, g32=−g∗32 are physically unrealizable in R2.
Similarly when δp2 = 2e∗21, the only realizable conditions
are g31 = −g∗31 and g32 = −g∗32. Hence, equations in (5)
lead to −d∗31g

∗
31=−δp3

+ e∗31, −d∗32g
∗
32=2e∗21 − δp3

+ e∗32.
For δp3

= 2e∗31, both the conditions in (5) hold. Observe
that the path of least indices for agent v3 is E∗

31 = e∗31.
For every agent vi, i ⩾ 4, similar arguments as agent v3
show that when δpj

= 0, δpk
= 0 with gij = g∗ij , gik = g∗ik

we have δpi
= 0, and when δpj

= 2E∗
j1, δpk

= 2E∗
k1 with

gij=−g∗ij , gik=−g∗ik we have δpi =2E∗
i1 (vj , vk ∈ Ni).

When δp = 2E∗, geometrically the formation shape is a
reflection of the desired formation shape about the leader
as illustrated in Fig 3. We now linearize the error dynamics

g21 = g
∗

21

g31 = g
∗

31

g32 = g
∗

32

g21 = g
∗

21,

g31 = −g
∗

31

g32 = g
∗

32 g21 = −g
∗

21

g31 = −g
∗

31

g32 = −g
∗

32

g21 = −g
∗

21,

g31 = −g
∗

31

g32 = g
∗

32

v1

v1

v1

v1

v2

v2

v2

v2

v3

v3

v3
v3

v3

v3

(a) (b) (c) (d)

Fig. 3. Illustration of unrealizable bearing constraints in R2

in (6) around the two equilibrium points to investigate their
local stability. Expressing the error dynamics as [δ̇Tp δ̇Tv ]

T =
[δTv fT (δp, δv)]

T , the Jacobian can be expressed as

A :=
[

∂(δv)/∂δp ∂(δv)/∂δv
∂(f(δp,δv))/∂δp ∂(f(δp,δv))/∂δv

]
=

[
02(n−1) I2(n−1)

A21 A22

]
The elements of A for the first follower, v2, are:
∂f2

∂δp2
=−kp

(
G21

Pg21

∥e21∥
+Ḡ21

Pḡ21

∥ē21∥

)
;

∂f2

∂δv2
=−kv

(
Pg21

∥e21∥
+

Pḡ21

∥ē21∥

)

G21 = gT21g
∗
21I2 + g21g

∗T
21 , and Ḡ21 = ḡT21ḡ

∗
21I2 + ḡ21ḡ

∗T
21 .

The elements of A for followers vi, i ∈ {3, · · · , n} are:
1. When vj /∈ Ni, ∂fi

∂δpj
= ∂fi

∂δvj
= 02.

2. When vj ∈ Ni and i ̸= j

∂fi
∂δpj

= kpGij

Pgij

∥eij∥
+ kv

∂

∂δpj

[
Pgij

∥eij∥

]
(δvj − δvi) (9)

∂fi
∂δvj

= kv
Pgij

∥eij∥
,

3. When vi ∈ V \ {1, 2} and vj , vk ∈ Ni

∂fi
∂δpi

=−kp

[
Gij

Pgij

∥eij∥
+Gik

Pgik

∥eik∥

]
+ kv

∂

∂δpi

[
Pgij

∥eij∥

]
(δvj −δvi)

+ kv
∂

∂δpi

[
Pgik

∥eik∥

]
(δvk − δvi) (10)

∂fi
∂δvi

= −kv

[
Pgij

∥eij∥
+

Pgik

∥eik∥

]
where Gij = gTijg

∗
ijI2 + gijg

∗
ij

T .
Theorem 2: The origin of the error dynamics δp = 0, δv =

0, for the n−1 agent system is locally asymptotically stable.
Proof: From the calculations above, the Jacobian eval-

uated at δp =0, δv =0 is given by A
∣∣
(0,0)

=
[

0 I
−kpL −kvL

]
.

The matrix L ∈ R2(n−1)×2(n−1) has the following 2 × 2
block entries:

[L]ij = 02, i ̸= 1, i ̸= j, (vi, vj) /∈ E ,

[L]ij = −
Pg∗ij

∥e∗ij∥
, i ̸= 1, i ̸= j, (vi, vj) ∈ E

[L]22 =
Pg∗21

∥e∗21∥
+

Pḡ∗21

∥ē∗21∥

[L]ii =
Pg∗ij

∥e∗ij∥
+

Pg∗
ik

∥e∗ik∥
i ∈ {3, 4, . . . , n}, and vj , vk ∈ Ni.
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Here the index i ∈ {2, · · · , n}, hence the first block matrix
entry of L is denoted by [L]22 (unconventionally). The matrix
L may be obtained from a sub-matrix (L̃B) of the modified
bearing Laplacian L̄B in [16]. We get L̃B by deleting the
row blocks [L̄B ]1j and column blocks [L̄B ]j1 j = 1, · · · , n
of L̄B corresponding to the leader. Thus,

L̄B=


0d 0d 0d ··· 0d

−Pg∗21
∥e∗21∥

Pg∗21
∥e∗21∥ 0d ··· 0d

∗ ∗ Σ3 ··· ∗
...

...
...

. . .
...

∗ ∗ ∗ ··· Σn

L̃B=


Pg∗21
∥e∗21∥

0d · · · 0d

∗ Σ3 · · · ∗
...

...
. . .

...
∗ ∗ · · · Σn

 ,

where Σi =

[
Pg∗

ij

∥e∗ij∥
+

Pg∗
ik

∥e∗ik∥

]
, vj , vk ∈ Ni. Adding

Pḡ∗21
∥ē∗21∥

to the first block element of L̃B gives us the matrix L.
Essentially, L differs from L̃B at just one block, [L]22. In
the proof of [16, Lemma 5], it follows that either L̄B is in a
block lower triangular structure or it can be transformed into
a block lower triangular structure through appropriate permu-
tation matrices. Hence L̃B , and thus L, can be transformed
to a block lower triangular structure. Since L is block lower
triangular, its eigenvalues are the same as the union of the
eigenvalues of the diagonal blocks therein. Now, [L]22 is the
sum of two symmetric positive semi-definite matrices whose
null spaces intersect at {0}. Therefore the first two eigenval-
ues of L, corresponding to those of [L]22, are positive real.
The remaining 2(n−2) eigenvalues of L are same as those of
L̃B , which, in turn, are same as the last 2(n−2) eigenvalues
of L̄B which have been shown to be positive real [16,
Lemma 5]. Hence, all the eigenvalues of L are positive real,
implying that the eigenvalues of −L will be negative real.
Now the eigenvalues of A are the roots of its characteristic
polynomial given by det(λI4(n−1)−A) and can be written as
λi± = 1

2

[
kvµi±

√
k2vµ

2
i + 4kpµi

]
, where µi are eigenvalues

of −L (see [21]). The term under the radical, k2vµ
2
i +4kpµi,

evaluates to either a positive or negative real number since
µi, kp, kv are real. When it evaluates to a negative real
number,

√
k2vµ

2
i + 4kpµi is purely imaginary, leading to a

complex conjugate pair of eigenvalues with negative real
parts for the Jacobian A. When it evaluates to a positive
real number, the root λi− = 1

2

(
kvµi −

√
k2vµ

2
i + 4kpµi

)
will be a negative real number. Now, consider the root λi+

given by λi+ = 1
2

(
kvµi +

√
k2vµ

2
i + 4kpµi

)
= |kvµi|

2

(
−1 +√

1 + (4kp/k2vµi)
)
. We have

√
1 + (4kp/k2vµi) < 1 since

µi < 0 and kp, kv > 0, which implies that λi+ will also be
a negative real root of the Jacobian A. It then follows that
the Jacobian A is Hurwitz and hence, from Theorem 4.7 of
[22], we conclude that the system is locally asymptotically
stable about δp = 0, δv = 0.

Theorem 3: The equilibrium δp = 2E∗, δv = 0 of the
error dynamics (6) for the n− 1 followers is unstable.

Proof: At δpi
= 2E∗

i1 we have Gij = (Pg∗
ij
/∥e∗ij∥)

in (9) and (10). The Jacobian takes the form A
∣∣
(2E∗,0)

=[
0 I

kpL −kvL

]
. The eigenvalues of the Jacobian, λi±, and

that of −L, say µi, are related as λi± = 1
2

(
kvµi ±√

k2vµ
2
i − 4kpµi

)
. The term k2vµ

2
i − 4kpµi, will be pos-

itive since µi < 0. Hence the root λi− = 1
2

(
kvµi −√

k2vµ
2
i − 4kpµi

)
will be a negative real number. Now,

consider the root λi+ given as λi+ = 1
2

(
kvµi +√

k2vµ
2
i − 4kpµi

)
= |kvµi|

2

(
−1 +

√
1− (4kp/k2vµi)

)
, as

µi < 0 and kp, kv > 0 we have
(
1 − (4kp/k

2
vµi)

)
> 1.

Therefore,
(
−1+

√
1− (4kp/k2vµi)

)
> 0 which implies λi+

is positive real. Hence, for every negative eigenvalue, µi of
−L, there is one positive root λi+ and one negative root λi−
for the Jacobian and thus has 2(n − 1) positive real roots.
From [22, Theorem 4.7], the equilibrium δp = 2E∗, δv = 0
is unstable.

IV. ILLUSTRATIVE EXAMPLES

A system of 4 agents is considered, with the desired
formation shape being a square and the edge set consists
of |E| = 5 directed edges. The radius of the leader is taken
as r = 3 units and the design parameters are chosen as
kp = 1 and kv = 20. The desired bearing constraints are
given by g∗21=[−1 0]T , ḡ∗21=[−

√
216
15

3
15 ]

T , g∗32=[0 − 1]T ,
g∗31=

1√
2
[−1 −1]T , g∗43=[1 0]T and g∗41=[0 −1]T . In every

figure, green and blue circles (#) represent initial positions
for first follower and other followers respectively, while the
leader is a red triangle (▷). Solid green and blue circles ( )
represent final positions of the first follower and the other
followers respectively and solid red triangle (▶) represents
the leader. The dashed and solid black lines show the initial
and final formation shape.
For the simulations shown Fig 4, the control law described
by equation (2) in [16] is applied to all the agents. In
Fig 4(a) the distance d21 continues to decrease leading to
an undesirable scenario of consensus among agents. From
Fig 4(b) we see that the bearing error converges to zero,
indicating that formation shape was achieved and the scale
decreased continuously. Fig 4(c) represents the case when
the distance d21 continued to increase with time as shown in
Fig 4(d). Here, yet again, the desired formation shape was
achieved but the inter-agent distances increased with time
leading to a formation whose scale increased continuously.
For the simulations shown in Fig 5(a) and Fig 5(c), the
control law in equations (3) and (2) are applied to the first
follower and the remaining three agents respectively. The
initial conditions for Fig 5(a) and Fig 5(c) are identical to
that of simulations in Fig 4(a) and Fig 4(c), respectively.
Fig 5(b) and Fig 5(d) show the distance d21 settling to the
desired value.

V. CONCLUSIONS

We studied a bearing-only formation control law for
double integrator agents with LFF structure formations. We
show that formation scale can be controlled with bearing and
bearing rates if the leaders physical dimensions are consid-
ered to be non-trivial.We also showed that the multi-agent
system under the proposed control law has two equilibria of
which the desired one is locally stable while the undesired
equilibrium is unstable. From the numerous simulations
carried out we conjecture that the region of attraction around
the desired formation shape is significantly large. Hence the
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Fig. 4. (a): Undesired consensus resulting from the absence of the bearing constraint ḡ21, (b): Bearing error
(∑

(vi,vj)∈E ∥gij − g∗ij∥
)

converges to
zero and is undefined at the point of consensus, (c): Increasing inter-agent distances in the absence of ḡ21, (d):Distance d21 increases with time
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Fig. 5. (a) and (c): Formation when bearing constraint ḡ21 is considered, (b) and (d): distance d21 settling at the desired value d∗21 = 15

immediate future goal is to conduct deeper investigation of
the global behaviour of the agents and to extend the results
presented here to three dimensional Euclidean space.
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