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Abstract— For a large-scale multi-agent system consisting of
agents that have different types of dynamics, employing bearing
rigidity theory to handle formation problems is unrealistic since
the bearing-based rigid graph is extremely complicated and
heterogeneous agents are hard to analyze as a whole. Therefore,
we inventively propose to separate the large-scale system into
smaller subsystems, and each subsystem is generated by agents
which share the same dynamics. In such sense, formation
control turns to focus on several systems with milder conditions
rather than a system with complex analysis. The control objec-
tives are to drive all systems to acquire the desired formation
shapes, and make all systems simultaneously maneuver along
with the desired velocities and maintain the formation shapes.
To reduce communication cost, the leader-follower strategy is
applied. To make formation control suitable for general environ-
ments, nonlinear uncertainties are considered, and the desired
maneuvering velocities are time-varying. Adaptive nonsmooth
distributed controllers are appropriately designed for all agents.

I. INTRODUCTION

Formation control is of great importance in study of multi-
agent systems, which focuses on cooperative behaviors that a
group of agents collectively form specific geometrical shapes
as a whole and maneuver along with common velocities
together [1], [2]. At early stage, behavior-based [3], position-
based [4] and virtual structure [5] methods are introduced
into formation problems, but obvious mathematical limita-
tions in these methods restrict formation control from a wider
application both in theoretical expansion and practical usage.
To overcome limitations, recently, the graph rigidity theory
is widely considered in formation control.

The graph rigidity theory includes branches of distance
[7]–[9], bearing [10]–[12], angle [13]–[15] and ratio-of-
distance (RoD) [16] rigidity. Different branches adopt dif-
ferent inter-vertex information to construct rigid graphs in
different senses, e.g., the bearing rigidity employs bearing
information between neighboring agents to generate bearing-
based rigid formation shapes. The bearing rigidity is evolved
from the distance rigidity, then the angle and RoD rigid-
ity are proposed enlightened by the bearing rigidity. Even
though there have been bountiful studies of formation control
based on different branches of graph rigidity theory (like
[7]–[16]), they hardly focused on large-scale multi-agent
systems combined by heterogeneous agents since the rigid
graph is complicated and inter-agent information is hard to
be unified if neighboring agents have different dynamics.
Furthermore, situations that simultaneously involve several
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multi-agent systems are also really scarce. In this paper, these
absent factors will be well considered by making connection
between a large-scale system with heterogeneous agents and
several systems, i.e., separating the large-scale into several
heterogeneous subsystems. Comparing with other rigidity
theory branches, the bearing rigidity is optimal, since: (i)
distance-, angle- and RoD-based rigid graphs have rotational
motion per se besides maneuvering, so that different systems
may collide, (ii) angle- and RoD-based rigid graphs requires
more complex constraints, and angle-based formation is
only available in 2D and 3D spaces, and (iii) the distance
rigidity only provides scalar information, while the bearing
rigidity also provides vector information to determine relative
directions between neighboring agents, which is helpful for
orientation. These details are given in [8], [10], [14], [16].

Our contributions are: (i) inventively proposing to separate
the large-scale system formed by heterogeneous agents into
smaller homogeneous subsystems, (ii) analyzing formation
control simultaneously involving several systems for the
first time, (iii) considering nonlinear uncertainties and time-
varying maneuvering targets to make formation control suit-
able for extensive situations, and (iv) building an extra
velocity graph inspired by [14] to reduce computation cost.

Notations. All vectors are column vectors. ‖ · ‖ and ‖ · ‖1
denote vector Euclidean norm and 1-norm, respectively. Let
1n = [1, . . . , 1]T ∈ Rn and let 0n = [0, . . . , 0]T ∈ Rn. Let
In ∈ Rn×n be identity matrix. ⊗ denotes Kronecker product.
For arbitrary matrix M used in d-dimensional space, denote
M⊗ ,M ⊗ Id. Let diag(·) be diagonal (or block diagonal)
matrix. Let |S| be the cardinality of given set S. Subscripts
“[1]” and “[2]” in notations like x[1] and x[2] are employed
to discern whether a notation involves single-integrator-based
or double-integrator-based agent dynamics, respectively.

II. PRELIMINARIES

A. Graph and Framework

An undirected graph consisting of n vertices and m edges
is denoted as G = (V, E), where V = {1, . . . , n} is vertex
set and E ⊂ V × V is edge set. The neighbor set of vertex
i is Ni(E) = {j : (j, i) ∈ E , j ∈ V, j 6= i}. Laplacian
matrix is L = [lij ]

n
i,j=1, where lij = 0 if j /∈ Ni(E),

lij = −1 if j ∈ Ni(E), and lii =
∑
j∈Ni(E) 1. The oriented

graph is assigning orientation between neighboring agents
in undirected graph which is still undirected graph, and let
incidence matrix be H = [hki]

m,n
k=1,i=1, where hki = 1 if

i is head vertex of edge k, hki = −1 if i is tail vertex of
edge k, and hki = 0 otherwise. G is connected if and only
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if rank(H) = n − 1. Moreover, the complete graph of G is
denoted as G= = (V, E=) which ensures Ni(E=) = V\{i}.

A framework in d-dimensional space is presented by F =
(G, p), where p = [pT1 , . . . , p

T
n ]T ∈ Rnd is the compact form

generated by vertex’s position pi ∈ Rd, i = 1, . . . , n.

B. Bearing Rigidity Theory

Given a framework F = (G, p), the bearing is defined as

gij ,
pi − pj
‖pi − pj‖

=
eij
‖eij‖

∈ Rd, (1)

where eij , pi−pj . Note that gij = −gji. Then, the bearing
rigidity function rG(p) : Rnd → Rmd is given by

rG(p) , [. . . , gTji, . . .]
T ∈ Rmd, (i, j) ∈ E . (2)

Based on (2), the bearing rigidity matrix R(p) is determined
by the Jacobian matrix of rG(p) as

R(p) =
∂rG(p)

∂p
= diag

(
P (gji)

‖eij‖

)
H⊗ ∈ Rmd×nd, (3)

where P (gji) , Id− eji
‖eij‖

eTji
‖eij‖ is an orthogonal projection.

Then, we give a lemma that will be used in Section V.

Lemma 1. R(p) (1n ⊗ x) = 0md, ∀x ∈ Rd.

Proof. Let DG(p) = [. . . , eTij , . . .]
T ∈ Rmd, and then rewrite

(3) as R(p) = ∂rG(p)
∂DG(p)

∂DG(p)
∂p . Since ∂DG(p)

∂p (1n ⊗ x) = 0md

is proved in [6], R(p) (1n ⊗ x) = ∂rG(p)
∂DG(p)0md = 0md.

Bearing rigidity attributes is clarified through rank criteria
of R(p). Let F= = (G=, p) be the complete framework of F .
F is defined to be infinitesimally bearing rigid if and only if
rank(R(p)) = nd− d− 1. F is defined to be bearing rigid
if and only if rank(R(p)) = rank(R=(p)), where R=(p)
is the bearing rigidity matrix of F=. F is defined to be
globally bearing rigid if and only if F is bearing rigid.
From [1], global bearing rigidity is important in formation
control since it restricts F to be a unique geometrical shape.

Infinitesimal bearing rigidity has excellent properties that
it: (i) implies global bearing rigidity that target geometrical
formation shapes are able to be uniquely determined, and
(ii) remains invariant even if the space dimension varies.
Let the infinitesimal bearing motion of F(t) = (G, p(t))
be pι , lim∆t→0

p(t+∆t)−p(t)
∆t that satisfies R(p)pι = 0md.

The motion pι is trivial if pι are translational and/or scaling
motions. An infinitesimally bearing rigid framework always
maintains the bearing invariance under trivial motions, i.e.,
the shape of the framework remains unique in bearing-based
sense which is described as p(t2) = cp(t1) + 1n ⊗ ξ, where
c ∈ R\{0}, ξ ∈ Rd, and t1, t2 are different points of time.

III. PROBLEM SKELETON
A. System Dynamics

The dynamics for single-integrator-based agents i are

ṗ[1]i = u[1]i + Υi(p[1]i)θi, (4)

where p[1]i ∈ Rd is position and u[1]i ∈ Rd is control input.
Υi(p[1]i) ∈ Rd×r is a matrix consisting of continuous and

(a) (b) (c) (d)
Fig. 1. Single-integrator-based agents (blue dots), and double-integrator-
based agents (orange dots). (a) A hybrid multi-agent system with infinitesi-
mally bearing rigid underlying topology. (b)-(d) examples of separation that
all heterogeneous multi-agent systems still infinitesimally bearing rigid.

bounded nonlinear functions with respect to p[1]i, and θi ∈
Rr is unknown parameter. For other double-integrator-based
agents j, the dynamics are

ṗ[2]j = v[2]j

v̇[2]j = u[2]j + Φj(p[2]j , v[2]j)ϑj ,
(5)

where p[2]j ∈ Rd is position, v[2]j ∈ Rd is velocity and
u[2]j ∈ Rd is control input. Φj(p[2]j , v[2]j) ∈ Rd×s is
a matrix consisting of continuous and bounded nonlinear
functions with respect to p[2]j and v[2]j , and ϑj ∈ Rs is
unknown parameter. In following sections, (4) and (5) will
be in compact forms to depict whole multi-agent systems.

B. Multi-Agent System Separation

We consider infinitesimally bearing rigid graphs are used
to construct underlying topologies for multi-agent systems
which represent the communication conditions. To avoid
misunderstanding, we define some significant conceptions.

Definition 1 (Homogeneous and Heterogeneous Agents).
Homogeneous agents mean that different agents have the
same dynamics, while heterogeneous agents mean that dif-
ferent agents have different dynamics.

Definition 2 (Hybrid Multi-Agent System and Several Het-
erogeneous Multi-Agent Systems). Hybrid multi-agent sys-
tem means that single system is formed by heterogeneous
agents. Several heterogeneous multi-agent systems mean that
there are several systems together, and each system is formed
only by homogeneous agents, but agents between different
systems can be heterogeneous.

Fig. 1(a) shows a hybrid multi-agent system, and Fig. 1(b)-
(d) gives examples of heterogeneous multi-agent systems. It
is hard to use the bearing rigidity theory in large-scale hybrid
multi-agent systems. Fig. 1(a) for example, there are two
downsides: (i) it needs plethora of communication between
agents since the infinitesimally bearing rigid graphs have too
many edges, and (ii) hybrid systems are difficult to analyze
in formation control. Thus, we separate the hybrid system
and rebuild several smaller heterogeneous subsystems.

The separation process is: (i) classifying all the heteroge-
neous agents, (ii) restricting the scale of each subsystem, i.e.,
subdividing homogeneous agents into different subsystems,
and (iii) ensuring each subsystem’s underlying topology is
infinitesimally bearing rigid. Fig. 1(b)-(d) give three exam-
ples of separation consequences.
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This separation has advantages that: (i) the communication
cost is largely decreased thanks to the stark decline of edges
in underlying topologies, and (ii) bearing-based formation
control is easy to fulfill when each system only contains few
homogeneous agents. In this way, the bearing-based forma-
tion control simultaneously involves several heterogeneous
multi-agent systems rather than a hybrid multi-agent system.

C. Problem Description

Given a hybrid multi-agent system in d-dimensional space
with n heterogeneous agents, there are n[1] single-integrator-
based agents and n[2] double-integrator-based agents, i.e.,
n = n[1] + n[2]. This hybrid system can be separated into
k heterogeneous systems that contains k[1] single-integrator-
based systems and k[2] double-integrator-based systems, i.e.,
k = k[1] + k[2] (k[1], k[2] > 0). Let G[1]a = (V[1]a, E[1]a)
be the underlying topology of the single-integrator-based
system, where a = 1, . . . , k[1] and

∑k[1]
a=1 |V[1]a| = n[1].

Similarly, let G[2]b = (V[2]b, E[2]b) be the underlying topology
of the double-integrator-based system, where b = 1, . . . , k[2]

and
∑k[2]
b=1 |V[2]b| = n[2]. Besides, after separation, all the

systems satisfy 2 ≤ |V[1]a| ≤ n[1] and 2 ≤ |V[2]b| ≤
n[2]. The related frameworks are F[1]a = (G[1]a, p[1]a) and
F[2]b = (G[2]b, p[2]b), where p[1]a = [. . . , pT[1]i, . . . ]

T ∈
R|V[1]a|, i ∈ V[1]a, and p[2]b = [. . . , pT[2]j , . . . ]

T ∈ R|V[2]b|,
j ∈ V[2]b. These frameworks represent formtion shapes of
multi-agent systems. Then, let F∗[1]a = (G[1]a, p

∗
[1]a) and

F∗[2]b = (G[2]b, p
∗
[2]b) be the desired formation shapes where

p∗[1]a and p∗[2]b are desired positions.

Assumption 1. Frameworks F∗[1]a and F∗[2]b are infinitesimal
bearing rigid, where a = 1, . . . , k[1] and b = 1, . . . , k[2].

Remark 1. Unlike distance, angle, and RoD rigidity theo-
ries, in bearing rigidity theory, collinear cases are allowed
in infinitesimal bearing rigid frameworks [10]. Therefore,
the desired formation shapes are less restricted. Collinear
cases are those that exist more than two neighboring agents
collinear, and some collinear cases are given in Fig. 1(b)-(d).

We focus on the following formation control problem.

Problem 1. Given a hybrid multi-agent system, the forma-
tion control objectives are that after system separation and
subsystem rebuilding, all heterogeneous subsystems: (i) will
acquire the desired bearing-based formation shapes, and (ii)
will simultaneously maneuver along with a desired velocity
and maintain the desired formation shapes.

To deal with Problem 1, it should: (i) use Assumption 1 to
generate the desired formation shapes for all subsystems, and
(ii) use the leader-follower strategy and additionally create a
velocity-sensing graph to lessen communication cost.

IV. PROBLEM ANALYSIS

A. System Dynamics Analysis

System dynamics are considered in term of compact
forms corresponding to (4) and (5). To design formation

(a) (b) (c)
Fig. 2. Single-integrator-based agents (blue dots), double-integrator-based
agents (orange dots), and leader agents connecting with transmitter {0} by
red edges. (a) Assignment of leader-follower strategy after system separation
and rebuilding. (b)-(c) Two available cases of Gv under Assumption 3.

controllers, relative measurement is embedded. By compact
form notations, the bearing errors are

δ[1]a = g[1]a − g∗[1]a ∈ R|E[1]a|d, a = 1, . . . , k[1],

δ[2]b = g[2]b − g∗[2]b ∈ R|E[2]b|d, b = 1, . . . , k[2],
(6)

and the unknown parameter estimations are

θ̃a = θa − θ̂a ∈ R|V[1]a|r, a = 1, . . . , k[1],

ϑ̃b = ϑb − ϑ̂b ∈ R|V[1]b|s, b = 1, . . . , k[2],
(7)

where θ̂a and ϑ̂b are estimates of θa and ϑb, respectively.
Moreover, since the velocity state v[2] from (5) cannot be
directly accessed in double-integrator-based dynamics, the
velocity-level fictitious control is introduced as

z[2]b = v[2]b − v̌[2]b ∈ R|V[2]b|d, b = 1, . . . , k[2], (8)

where v̌[2]b is fictitious control law and z[2]b is velocity error.

B. Leader-Follower Strategy with Velocity Graph

The leader-follower strategy can lessen communication
cost to satisfy velocity consensus [17]. Let vertex {0} be the
transmitter that generates the desired velocity v∗(t) ∈ Rd.

Assumption 2. The time-varying v∗(t) satisfies: (i) v∗(t) ∈
L∞, and (ii) v∗(t) is of class C1 with supt≥0‖v̇∗(t)‖ ≤ σ,
where σ is positive constant.

While [11] sets two leader agents which are initialized
at desired positions and spontaneously generate desired ve-
locities, we loosen such strict conditions. For each system,
there is only one leader agent which is randomly initialized
and directly accesses the transmitter {0} to learn the desired
velocity. Leader sets are V [1]a = {1}, a = 1, . . . , k[1] and
V [2]b = {1}, b = 1, . . . , k[2]. Follower sets are V [1]a =
{2, . . . , |V[1]a|}, a = 1, . . . , k[1] and V [2]b = {2, . . . , |V[2]b|},
b = 1, . . . , k[2]. Fig. 2(a) explains how to assign the leader-
follower strategy for all the heterogeneous systems.

Actually, velocity consensus can be held in an easier way
rather than use bearing-based underlying topologies. We set
an extra topology namely velocity graph as Gv = (Vv, Ev)
to communicate velocity information between neighboring
agents. Gv contains several subgraphs Gv[1]a = (V[1]a, Ev[1]a)
and Gv[2]b = (V[2]b, Ev[2]b) which illustrate the inner velocity
graphs for all the heterogeneous systems. Thus, Vv = {0}∪(⋃k[1]

a=1 V[1]a

)
∪
(⋃k[2]

b=1 V[2]b

)
, and Ev = EV0 ∪

(⋃k[1]
a=1 Ev[1]a

)
∪(⋃k[2]

b=1 Ev[2]b

)
with EV0 =

{
(i, 0) : i ∈ N0(Ev)

}
.
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Assumption 3. The velocity graph Gv: (i) is undirected and
connected, (ii) includes a spanning tree with the root vertex
{0}, and (iii) Ev[1]a ⊂ E[1]a, a = 1, . . . , k[1], and Ev[2]b ⊂ E[2]b,
b = 1, . . . , k[2].

Remark 2. For each system, the desired formation shape
can be unique only when underlying topology is infinites-
imally bearing rigid. However, the velocity consensus can
be ensured in many cases when each agent can learn the
desired velocity by communicating with others, i.e., Gv is
available when connected. Fig. 2(b)-(c) show available cases
of Gv . The velocity consensus analysis is under Gv , but (8) is
excepted as state v[2]b is an inner state of system dynamics.

Based on Gv , the maneuvering velocity errors are

ṽ[1]a = v̂[1]a − 1|V[1]a| ⊗ v
∗, a = 1, . . . , k[1],

ṽ[2]b = v̂[2]b − 1|V[2]b| ⊗ v
∗, b = 1, . . . , k[2],

(9)

where v̂[1]a ∈ R|V[1]a|d and v̂[2]b ∈ R|V[2]b|d are velocity
estimates, ṽ[1]a and ṽ[2]b are maneuvering velocity errors. To
mathematically distinguish leader and follower agents, we
denote D[1]a = diag(. . . , d[1]i, . . .), i ∈ V[1]a and D[2]b =
diag(. . . , d[2]j , . . .), j ∈ V[2]b, where d[1]i = 1 (resp. d[2]j=1)
if i ∈ V [1]a (resp. j ∈ V [2]b), and d[1]i = 0 (resp. d[2]j=0) if
i ∈ V [1]a (resp. j ∈ V [2]b), then give the following definition.

Definition 3. The leader-follower coalescent matrix is de-
fined as C[1]a = Lv[1]a + D[1]a (resp. C[2]b = Lv[2]b + D[2]b)
with a = 1, . . . , k[1] (resp. b = 1, . . . , k[2]), where Lv[1]a and
Lv[2]b are Laplacian matrices of Gv[1]a and Gv[2]b, respectively.
Note that C[1]a and C[2]b are positive definite since D[1]a,
D[2]b and Laplacian matrices are semi-positive definite.

V. FORMATION CONTROLLER DESIGN

In Rd space, the formation controllers for all agents in
different systems ensure: (i) δ[1]a → 0|E[1]a|d and δ[2]b →
0|E[2]b|d as t → ∞, and (ii) ṽ[1]a → 0|V[1]a|d and ṽ[2]b →
0|V[2]b|d as t→∞, where a = 1, . . . , k[1] and b = 1, . . . , k[2].

A. Single-Integrator-Based Controller

As all the single-integrator-based multi-agent systems have
the similar dynamics, we choose one system to analyze, and
the controllers in this system also fit in other systems.

For a certain system F[1]a = (G[1]a, p[1]a) with the inner
velocity graph Gv[1]a = (V[1]a, Ev[1]a) where a ∈ {1, . . . , k[1]},
we select a Lyapunov function as

V[1]a =
1

2

(
δT[1]aδ[1]a + θ̃Ta Γ

−1
a θ̃a

)
︸ ︷︷ ︸

V1

+
1

2
ṽT[1]aC

⊗
[1]aṽ[1]a︸ ︷︷ ︸
V2

,
(10)

where Γa = diag(Γ1, . . . , Γ|V[1]a|) ∈ R|V[1]a|r×|V[1]a|r is
positive definite, and C[1]a is in Definition 3. Involving the
compact form of (4), the time derivative of (10) is

V̇[1]a =δT[1]aδ̇[1]a − θ̃Ta Γ−1
a

˙̂
θa + ṽT[1]aC

⊗
[1]a

˙̃v[1]a

=δT[1]aR[1]a

(
u[1]a + Υaθa

)
− θ̃Ta Γ−1

a
˙̂
θa

+ ṽT[1]aC
⊗
[1]a

(
˙̂v[1]a − 1|V[1]a| ⊗ v̇

∗
)
,

(11)

where Υa = diag(. . . , Υi(p[1]i), . . .), i ∈ V[1]a, R[1]a ,
R(p[1]a) is used to simplify the notation, and the fact δ̇[1]a =
R[1]aṗ[1]a is involved based on (3). Then, we design

u[1]a = −γ1R
T
[1]aδ[1]a − Υaθ̂a + v̂[1]a

˙̂
θa = ΓaΥ

T
a R

T
[1]aδ[1]a,

(12)

where γ1 > 0 is control gain. By employing (12) and Lemma
1, (11) becomes

V̇[1]a =−γ1δ
T
[1]aR[1]aR

T
[1]aδ[1]a + δT[1]aR[1]aṽ[1]a︸ ︷︷ ︸

V̇1

+ ṽT[1]aC
⊗
[1]a

(
˙̂v[1]a − 1|V[1]a| ⊗ v̇

∗
)

︸ ︷︷ ︸
V̇2

.
(13)

Next, based on (13), we design

˙̂v[1]a = −(C⊗[1]a)−1RT[1]aδ[1]a − γ2sgn
(
C⊗[1]aṽ[1]a

)
, (14)

where γ2 > 0 is control gain, and sgn(·) is signum vector
that all entries are signum functions. Equation (14) makes
˙̃v[1]a = ˙̂v[1]a − 1|V[1]a| ⊗ v̇∗ , f(ṽ[1]a, t) ∈ K[f ](ṽ[1]a, t),
where K[f ](·) is a compact, convex, nonempty, upper semi-
continuous set-valued map defined in [18]. Employing (14)
and differential inclusion [18] into (13) renders

V̇[1]a = V̇1 + V̇2

a.e.
∈ V̇1 +

˙̆
V2, (15)

where a.e. means “almost everywhere”, and ˙̆
V2 is given by

˙̆
V2 =

⋂
$∈(∂V2/∂ṽ[1]a)

$TK[f ](ṽ[1]a, t)

⊂− ṽT[1]aR
T
[1]aδ[1]a − ṽT[1]aC

⊗
[1]a

(
1|V[1]a| ⊗ v̇

∗
)

− γ2ṽ
T
[1]aC

⊗
[1]aK

[
sgn
(
C⊗[1]aṽ[1]a

)]
=− ṽT[1]aR

T
[1]aδ[1]a − ṽT[1]aC

⊗
[1]a

(
1|V[1]a| ⊗ v̇

∗
)

− γ2ṽ
T
[1]aC

⊗
[1]asgn†

(
C⊗[1]aṽ[1]a

)
=− ṽT[1]aR

T
[1]aδ[1]a − γ2 ‖C⊗[1]aṽ[1]a‖1

+ (v̇∗)T
∑|V[1]a|d

i=1

(
C⊗[1]aṽ[1]a

)
i

≤− ṽT[1]aR
T
[1]aδ[1]a − γ2 ‖C⊗[1]aṽ[1]a‖1

+ ‖v̇∗‖1 · ‖C⊗[1]aṽ[1]a‖1
≤− ṽT[1]aR

T
[1]aδ[1]a − (γ2 − σ) ‖C⊗[1]aṽ[1]a‖1,

(16)

in which σ is in Assumption 2, and each entry of sgn†(·) is
defined as sgn†(xi) with sgn†(xi) = 1 if xi > 0, sgn†(xi) =
−1 if xi < 0, and sgn†(xi) = [−1, 1] if xi = 0. Therefore,

V̇[1]a ≤ −γ1δ
T
[1]aR[1]aR

T
[1]aδ[1]a − (γ2 − σ) ‖C⊗[1]aṽ[1]a‖1

≤ −γ1λ
(
R[1]aR

T
[1]a

)
‖δ[1]a‖2− (γ2 − σ) ‖C⊗[1]aṽ[1]a‖1,

(17)
where λ(·) > 0 is the minimum eigenvalue since R[1]a has
full row rank which implies R[1]aR

T
[1]a is positive definite.

According to (17), V̇[1]a < 0 if σ < γ2, so that controllers
combined with (12) and (14) are valid when σ < γ2. Besides,
[10] has verified that the bearing rigidity matrix R[1]a (which
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is defined by (3) as R(p) = diag
(
P (gji)/‖eij‖

)
H⊗) can be

replaced by a simplified matrix R̄[1]a (which is given by the
form like R̄(p) = diag

(
P (gji)

)
H⊗). Substituting R̄[1]a into

controllers helps reduce computation cost as relative position
measurement ‖eij‖ is omitted. Under the condition σ < γ2,
the controllers for the whole systems become

u[1]a = −γ1R̄
T
[1]aδ[1]a − Υ θ̂a + v̂[1]a

˙̂v[1]a = −(C⊗[1]a)−1R̄T[1]aδ[1]a − γ2sgn
(
C⊗[1]aṽ[1]a

)
˙̂
θa = ΓaΥ

T
a R̄

T
[1]aδ[1]a,

(18)

and agent-wise controllers can be extracted from (18) as

u[1]i =− γ1ζ[1]i − Υiθ̂i + v̂[1]i

˙̂v[1]i =− (C⊗[1]a)−1
i ζ[1]i

− γ2sgn
(
di(v̂[1]i − v∗) +

∑
j∈Ni(Ev[1]a)

(
v̂[1]i − v̂[1]j

) )
˙̂
θi =ΓiΥ

T
i ζ[1]i,

(19)

where i ∈ V[1]a, ζ[1]i ,
∑
j∈Ni(E[1]a) P (gij)g

∗
ij , (C⊗[1]a)−1

i ∈
Rd×|V[1]a|d is a submatrix given by the (di−d+ 1)-th to the
di-th rows of (C⊗[1]a)−1, a = 1, . . . , k[1], and σ < γ2 is held.

B. Double-Integrator-Based Controller

Since the controller design is similar to Section V-A, this
part is simplified. For a certain system F[2]b = (G[2]b, p[2]b)
with the inner velocity graph Gv[2]b = (V[2]b, Ev[2]b) where
b ∈ {1, . . . , k[2]}, we select a Lyapunov function as

V[2]b=
1

2

(
δT[2]bδ[2]b + zT[2]bz[2]b + ϑ̃TbΓ

−1
b ϑ̃b + ṽT[2]bC

⊗
[2]bṽ[2]b

)
,

(20)
where Γb = diag(Γ1, . . . , Γ|V[2]b|) ∈ R|V[2]b|s×|V[2]b| is
positive definite, and C[2]b is in Definition 3. Involving the
compact form of (5), the time derivative of (20) is

V̇[2]b =δT[2]bR[2]b

(
z[2]b + v̌[2]b

)
+ zT[2]b

(
u[2]b + Φbϑb

)
+ ṽT[2]bC

⊗
[2]b

(
˙̂v[2]b − 1|V[2]b| ⊗ v̇

∗
)
− ϑ̃TbΓ−1

b
˙̂
ϑb,

(21)

where Φb = diag(. . . , Φi(p[2]i), . . .), i ∈ V[2]b, R[2]b ,
R(p[2]b), and δ̇[2]b = R[2]bṗ[2]b = R[2]bv[2]b. Then, we design

u[2]b = −γ3z[2]b −RT[2]bδ[2]b − Φbϑ̂b
v̌[2]b = −γ4R

T
[2]bδ[2]b + v̂[2]b

˙̂v[2]b = −(C⊗[1]a)−1RT[2]bδ[2]b − γ5sgn
(
C⊗[2]bṽ[2]b

)
ϑ̇b = ΓbΦ

T
b z[2]b,

(22)

where γ3, γ4, γ5 > 0 are control gains. Then, (21) becomes

V̇[2]b ≤− γ3‖z[2]b‖2 − γ4λ
(
R[2]bR

T
[2]b

)
‖δ[2]b‖2

− (γ5 − σ) ‖C⊗[2]bṽ[2]b‖1,
(23)

where λ(·) > 0 is the minimum eigenvalue. Similar to (18),
the bearing rigidity matrix R[2]b in (22) can be also replaced
by R̄[2]b which omits relative position measurement ‖eij‖ to

reduce computational cost. After replacement, when σ < γ5,
the agent-wise controllers are

u[2]i =− γ3z[2]i − ζ[2]i − Φiϑ̂i
v̌[2]i =− γ4ζ[2]i + v̂[2]i

˙̂v[2]i =− (C⊗[2]b)
−1
i ζ[2]i

− γ5sgn

(
di(v̂[2]i − v∗) +

∑
j∈Ni(Ev[2]b)

(v̂[2]i − v̂[2]j)

)
˙̂
ϑi =ΓiΦ

T
i z[2]i,

(24)

where i ∈ V[2]b, ζ[2]i ,
∑
j∈Ni(E[2]b) P (gij)g

∗
ij , (C⊗[2]b)

−1
i ∈

Rd×|V[2]b|d is a submatrix given by the (di−d+ 1)-th to the
di-th rows of (C⊗[2]b)

−1, b = 1, . . . , k[2], and σ < γ5 is held.

VI. SIMULATION
By using adaptive distributed controllers (19) and (24) for

agents in heterogeneous systems, Problem 1 can be solved
in Rd space. We consider a simulation example in 2D plane,
while the desired formation shape is given by Fig. 2(a) and
the velocity graph is given by Fig. 2(c). Initial positions for
all agents are random (we also consider collinear cases here).
Let desired velocity be v∗(t) = [1,−0.5cost]T . The single-
integrator-based agent dynamics are given by

ṗ[1]i = u[1]i + sin(p[1]i)θi, i ∈ V[1]a, a = 1, 2,

where θi ∈ R is unknown parameter. The double-integrator-
based agent dynamics with nonlinear uncertainties are

ṗ[2]j = v[2]j

v̇[2]j = u[2]j + [sin(p[2]j), sin(v[2]j)]ϑj , j ∈ V[2]b, b = 1, 2,

where ϑj ∈ R2 is unknown parameter.
Fig. 3 verifies that distributed controllers (19) and (24) can

drive all heterogeneous systems to acquire desired formation
shapes and make all the systems simultaneously maneuver
along with the desired velocity while maintaining the forma-
tion shapes. It is worth noting that unique formation shapes in
bearing-based sense can have different scales as mentioned in
Section II-B, which means the control objectives are fulfilled
as shown in Fig. 3 despite existing different scales. Fig. 4
shows convergence performances which verify all the closed-
loop heterogeneous systems are asymptotically stable.

VII. CONCLUSIONS AND FUTURE WORKS
The bearing rigidity theory is employed into formation

control. Since a large-scale hybrid multi-agent system includ-
ing agents that have different types of dynamics is difficult
to handle, the innovation of system separation and rebuilding
is introduced to make the formation control simultaneously
involve several heterogeneous multi-agent systems, which
lessens communication cost and improves the formation
feasibility of complex hybrid systems. Adaptive nonsmooth
distributed controllers are appropriately designed both for
single-integrator-based and double-integrator-based agents to
fulfill the formation control objectives when nonlinear uncer-
tainties exist and the desired velocities are time-varying.

The future work will study how to make all the systems
have the same formation shapes without different scales.
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Fig. 3. Bearing-based formation trajectories simultaneously involving 4 heterogeneous multi-agent systems with desired v∗(t) = [1,−0.5cost]T , where
control gains γ1, γ3, γ4 = 1 > 0, γ2 = 3 and γ5 = 4.5 with γ2, γ5 > σ ≥ supt≥0‖v̇∗(t)‖.

(a) (b) (c)
Fig. 4. (a) Total bearing error for each system in form of Euclidean norm. (b) Velocity tracking performance for each agent on x direction with desired
v∗x(t) = 1. (c) Velocity tracking performance for each agent on y direction with desired v∗y(t) = −0.5cost.
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