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Abstract— We employ reachability analysis in designing dy-
namic quantization schemes for the remote state estimation
of linear systems over a finite date rate communication chan-
nel. The quantization region is dynamically updated at each
transmission instant, with an approximated reachable set of the
linear system. We propose a set-based method using zonotopes
and compare it to a norm-based method in dynamically updat-
ing the quantization region. For both methods, we guarantee
that the quantization error is bounded and consequently, the
remote state reconstruction error is also bounded. To the best
of our knowledge, the set-based method using zonotopes has no
precedent in the literature and admits a larger class of linear
systems and communication channels, where the set-based
method allows for a longer inter-transmission time and lower
bit rate. Finally, we corroborate our theoretical guarantees with
a numerical example.

I. INTRODUCTION

Cyber-physical systems integrate multiple agents and their
sensing and actuation devices over a communication channel.
Therefore, the remote estimator is responsible for recon-
structing the state information based on the sensor’s data
transmitted over a communication channel [1]. For systems
requiring signal communication via a bandwidth-limited net-
work, the analog signal must be converted into discrete-
valued digital symbols before being transmitted. This opera-
tion inevitably causes an error, called the quantization error.
Furthermore, the total amount of information that may be
transmitted per unit of time is often limited due to bandwidth
constraints of the digital channels, which further degrades
the precision of the information that is exchanged over
the network. Therefore, novel approaches for remote state
estimation over communication channels with bandwidth
constraints are needed.

First, to minimize or even eliminate the effect of the
quantization error, many studies of quantizer design have
been done in the past decades. A quantizer is a mathematical
mapping from a continuous region called the quantization
region to a finite discrete set of indexes, which we call
quantization levels. A quantizer with fixed parameters is
called a static (or memory-less) quantizer. In this case, a
low bit rate has a strong negative effect on the resolution of
quantization. Another strategy for improving the resolution
under a fixed bandwidth constraint is dynamic quantization
[2], where the quantization parameters are dynamically ad-
justed based on the received data and knowledge of the plant
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dynamics. In [3], [4], the robustness of dynamic quantization
against external disturbances is studied based on the notion
of input-to-state stability [5]. The surveys [6], [7] give
recent developments of dynamic quantization for linear and
nonlinear systems, respectively.

So far, stabilization problems with controller and quantizer
designs are the main focus of the aforementioned papers,
where the origin is often assumed to be a stable fixed point
under the designed closed-loop controllers. On the other
hand, the input and/or control laws are unknown to the
remote state estimator. In this case, a conservative prediction
for all the reachable states based on a constrained input is
more reliable for adjusting the quantization parameters and
resolution. In [8], [9], [10], a set-based observer without the
consideration of quantization effects propagates the set of
all possible states with bounded inputs using reachability
analysis based on zonotopes [11]. We will use this result to
propagate a conservative approximation of the quantization
region for dynamic quantization. In this case, we choose
the uniform quantizer [12] so that the resolution is evenly
distributed across all components of the state.

In this paper, we design dynamic quantization schemes
by performing reachability analysis of continuous-time linear
time-invariant (LTI) dynamical systems with external distur-
bances, for remote state estimation. We over-approximate the
terminal reachable set at each transmission instant to update
the quantization region and further improve the resolution
of the quantization. Polytope-based over-approximation of
the reachable set can provide better results but the dramatic
increase of vertices and surfaces makes it difficult to prop-
agate. To that end, we were inspired by [11] which uses
zonotopes to over-approximate the terminal reachable set of a
LTI system which have desirable properties. The propagation
of zonotopes relies on the centroid and generators, which
are easy to compute and store. Although the number of
generators increases linearly with time, in the dynamic
quantization scheme, we only over-approximate the terminal
set in one inter-transmission interval, by which the issue
is avoided. We then compare our results to a norm-based
method, which was inspired by [12] that uses the Lipschitz
condition to upper-bound the terminal state. However, this
only provides the norm bound instead of the more precise
bound afforded by considering a component-wise bound of
each individual state provided by the zonotopic method.

Similar to [13], we employ a pre-estimator before trans-
mission to avoid remote estimation based on the outputs.
We assume the input signal is known to the pre-estimator
before transmission, but the remote state estimator has no
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access to either the inputs or the control laws. Under the
aforementioned setup and its corresponding properties, sev-
eral objectives are achieved:

1) To the best of our knowledge, the first set-based dy-
namic quantization scheme using zonotopes.

2) Comparison between our set-based and a norm-based
dynamic quantization scheme.

3) No overflow occurs for both dynamic quantization
schemes.

4) Conditions for the transmission bit rate and inter-
transmission interval are given to ensure the bounded-
ness of the quantization error.

5) An upper bound is given for the state reconstruction
error with respect to bounds on the quantization error,
the input, and the disturbance.

All proofs can be found in the extended version of the
paper [14].

II. PRELIMINARIES

A. Notations

Let R := (−∞,∞), R≥0 := [0,∞), Z+ := {0, 1, . . . },
Z>0 := {1, 2, . . . } and In := {1, 2, ..., n}. λi(A) denotes
the i-th eigenvalue of matrix A, λmax(A), λmin(A) denote
the maximum and the minimum eigenvalues, respectively.
In denotes the identity matrix of size n× n and 0n denotes
the n-dimensional vector [0, 0, ..., 0]T , and 1n×m denotes the
m×n matrix with all elements as 1. σn,i is the n-dimensional
vector with 1 as its i-th element and 0 otherwise. We write σi

when its dimension is clear from context. An n-dimensional
hypercube with center c ∈ Rn and radius l ∈ R≥0 is
denoted B(c, l). The infinity norm of a vector x ∈ Rn

is denoted by |x| := max
i∈In

|xi|. For a matrix A ∈ Rn×n,

|A| := max
j∈In

∑n
i=1 |aij |, where aij is the (i, j)-component

of the matrix A. The Minkowski sum is denoted by ⊕. ⌊b⌋
denotes the floor function that returns the greatest integer
that is less than or equal to b ∈ R. A continuous function
γ : R+ → R+ is a class-K (L) function, if it is strictly
increasing (decreasing) and γ(0) = 0. A continuous function
α : R+ × R+ → R+ is a class-KL function, if α(·, s)
is a class-K for all s ≥ 0, α(r, ·) is non-increasing and
α(r, s) → 0 as s → ∞ for all r ≥ 0.

B. Set representation

A zonotope Z ⊂ Rn is a set that satisfies

Z :=

{
x ∈ Rn

∣∣∣∣x = c+

p∑
i=1

ϵigi, ∀ϵi ∈ [−1, 1]

}
, (1)

where c ∈ Rn is the geometric center of the zonotope and
the line segments gi ∈ Rn are called the generators of the
zonotope. We denote Z = ⟨c,G⟩, where G := (g1, ..., gp) ∈
Rn×p.

C. Terminal reachable set and its over-approximation

The terminal reachable set of a dynamical system is
defined as follows.

Definition 1: Consider ẋ = f(x, u), for a finite time
interval [t0, t1], the terminal reachable set R[t0,t1](X ,U) is
defined as the set of all states that are reachable at time t1
with x(t0) ∈ X , with u(t) ∈ U for all t ∈ [t0, t1], i.e.,

R[t0,t1](X ,U)
:={x(t1) :∀x(t0)∈X,u(t)∈U, ẋ=f(x, u),∀t∈ [t0, t1]}.

Next, we generalise Lemma 1 in [11] to arbitrary finite
time intervals [t0, t1] for (t0, t1) ∈ R2

≥0 which we state
below and will form a crucial step in the reachable set based
approach we will take for our dynamic quantization schemes
in this paper.

Lemma 1: Consider a LTI system in the finite time inter-
val t ∈ [t0, t1], where t1 − t0 ≤ τ and (t0, t1) ∈ R2

≥0, given
by

ẋ(t) = Ax(t) +Bu(t), (2)

with x(t0) ∈ X , Bu(t) ∈ U ,∀t ∈ [t0, t1]. The sets X and
U are zonotopes. Its terminal reachable set R[t0,t1](X ,U)
satisfies

R[t0,t1](X ,U) ⊆ eτAX ⊕ B(0n, β(τ, µ)), (3)

where µ := supBu∈U |Bu|, and β(τ, µ) := |A|−1eτ |A|µ.
Lemma 1 is a generalization of [11, Lemma 1] to an arbitrary
finite time interval, which can be achieved through standard
calculations based on the development in [11].

III. PROBLEM SETUP AND APPROACH

A. Setup and plant

We consider the problem of remote state estimation over
a finite data rate channel in the setup depicted in Figure 1.
The plant has dynamics

ẋ = Ax+Bu+ Ed, y = Hx, (4)

with state x ∈ Rn input u ∈ Rm, output y ∈ Rny , and un-
known disturbance d ∈ Ro. The system matrices A,B,H,E
are known, real matrices with appropriate dimensions. We
assume that the pair (A,H) is observable.

Fig. 1. Remote state estimation setup

Assumption 1: The initial state x(0) and the input signals
Bu(t) and disturbance Ed(t) for t ∈ R≥0 reside in known
hypercubes X ⊂ Rn, U ⊂ Rn and D ⊂ Rn, respectively,
defined as

X := B(xc, xb), U := B(0m, ub), D := B(0o, db), (5)
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where xc ∈ Rn is the center of the initial set X , and
xb, ub, db ∈ R≥0.

Assumption 1 requires the unknown initial state x(0) of
the system to reside in a known set X and the input u to be
bounded in U , which is reasonable in most physical systems.

B. Local observer

The local observer estimates the state of the plant (4)
which is designed as follows

˙̂x = Ax̂+Bu+K(Hx̂− y), (6)

where x̂ ∈ Rn is the local state estimate. The local observer
matrix K ∈ Rn×ny can be designed according to the
following conditions.

Assumption 2: There exist a matrix P = PT ≻ 0, a
matrix Q and two scalars ν1 > 0, ν2 > 0 such that[

ATP + PA+HQT +QH + ν1In P
P −ν2In

]
⪯ 0. (7)

The inequality (7) is a linear matrix inequality (LMI) in
P , Q, ν1 and ν2 which can be solved efficiently with
computational tools such as the LMI toolbox in MATLAB.
The local observer matrix K is then designed as K = P−1Q.

We assume that the local observer (6) is initialized at xc

(recall that xc ∈ Rn comes from Assumption 1), i.e.,

x̂(0) = xc. (8)

Therefore, the initial local estimation error resides in the
hypercube X from Assumption 1, i.e., ê(0) := x(0)− xc ∈
X . This is essential as we use the bound on the local state
estimation error ê in approximating the reachable set of the
local observer (6) for the construction of the quantization
region Sk

Q at each tk, k ∈ N.
Lemma 2: Consider the plant (4) and local observer (6)

under Assumptions 1 - 2. The local state estimation error
ê(t) := x(t)− x̂(t) of the local observer (6) satisfies

|ê(t)| ≤ β̂(xb, t) + γ̂(db), t ∈ R≥0, (9)

where xc, xb come from (5), β̂(r, s) :=
√

nλmax(P )
λmin(P ) e−

λes
2 r

and γ̂(r) :=
√

nν2

λmin(P )λe
r, with λe :=

ν1

nλmax(P ) ; ν1 and ν2

come from (7).
Corollary 1: The set Et of all the possible state estimation

errors ê(t) is given by

ê(t) ∈ Et := B(0n, βd(t)) (10)

for all t ∈ R≥0 with βd(t) := β̂(xb, t) + γ̂(db), β̂, γ̂ are
defined in (9).

C. Transmission times and the dynamic quantization scheme

We assume that the inter-transmission times are known
and is periodic with period T ∈ R>0, i.e., the time at the
k-th transmission satisfies tk = kT , k ∈ Z+.

Given a quantization level* N ∈ Z+, we employ a
dynamic quantization scheme by updating the quantization

*The quantization level N is related to the number of bits Br ∈ Z+

available to the communication channel according to N = 2Br/n, where
n is the dimension of the packet vector x.

region denoted by Sk
Q ⊂ Rn at each transmission time tk,

k ∈ Z+. We perform reachability analysis to update the
quantization region Sk

Q. In Section IV, we propose using a
set-based method of approximating the reachable set, which
we achieve with zonotopes. We then compare it to a norm-
based method of reachable set approximation in Section V.
In both cases, we further regularize the reachable set as
a hyperrectangle with Ck ∈ Rn being the center of the
quantization region (the centroid), and Lk ∈ Rn being the
segment length vector (the quantization range), i.e.,

Sk
Q := H(Ck, Lk). (11)

We do so for ease of dividing Sk
Q into hyperrectangular sub-

regions denoted by Sk
q,j , j ∈ INn . Although other quantizer

designs such as logarithmic or the more general Voronoi
quantizer exist [15], we consider the uniform quantizer in this
paper for a fair comparison between the two reachable set
approximation methods we will present later in Section V-A.
To this end, with quantization level N ∈ Z+, the quantization
region Sk

Q is divided into Nn ∈ Z+ sub-regions at each tk,
k ∈ Z+. Each subregion is then numbered from 0 to N − 1
in the i-th dimension. Hence, the local state estimate x̂(tk)
is encoded into {0, 1, . . . , N − 1}n, i.e, component i ∈ In
of the encoded packet is defined by

P k
e,i = Qe(x̂i(tk), C

k
i , L

k
i , N), (12)

where the encoding map Qe : R × R × R × Z+ →
{0, 1, ..., N − 1} is

Qe(x̂i(tk), C
k
i , L

k
i , N) :=

⌊
(x̂i(tk) + Lk

i − Ck
i )

N

2Lk
i

⌋
.

(13)
The parameters Lk

i , C
k
i are the i-th element of the vector Lk

and Ck, respectively.
Each subregion has a centroid ckj ∈ Sk

Q ⊂ Rn with a
quantization range lk := Lk

N , which is defined as

Sk
q,j := H(ckj , l

k), j ∈ INn . (14)

In our communication scheme, the decoded packet P k
d =

(P k
d,1, P

k
d,2, . . . , P

k
d,n) ∈ Rn is a member of the set of cen-

troids {ckj }j∈INn of the subregions. Therefore, component
i ∈ In of the decoded packet is given by

P k
d,i = Qd(P

k
e,i, C

k
i , L

k
i , N), (15)

where the decoding map Qd : Z+ × R× R× Z+ → R is

Qd(P
k
e,i, C

k
i , L

k
i , N) := Ck

i − Lk
i

2
+

Lk
i

2N
(2P k

e,i + 1). (16)

Remark 1: We assume that the quantization parameters
Ck and Lk are not transmitted over the communication
channel. Instead, they are updated on both the encoder and
the decoder sides simultaneously and therefore do not occupy
any bandwidth. The robustness of a zoom-in and zoom-out
dynamic quantization scheme in the context of stabilizing a
linear system when the encoder and decoder asynchronously
update their parameters was investigated in [16], but not in
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the context of the reachable-set based dynamic quantization
scheme considered in this paper.

To prevent overflow at the first quantization step (k = 0),
the initial quantization parameters satisfy the following.

Assumption 3: The initial quantization region is chosen as
S0
Q = H(C0, L0) with C0 = xc, L0 = 1nxb, where xc and

xb come from Assumption 1.
Assumption 3 guarantees that the initial local state estimate
x̂(0) ∈ S0

Q with arbitrary l0. Moreover, we will show in
Sections IV and V that by updating Ck and Lk for k ∈ Z+

appropriately, we can always prevent overflow, i.e., x̂(t) ∈
Sk+1
Q , for t ∈ [tk, tk+1), k ∈ Z+ as stated below.
Assumption 4: The quantization parameters Ck and Lk

for k ∈ Z+ are updated such that x̂(t) ∈ Sk+1
Q for t ∈

[tk, tk+1).

D. Reconstructor

The reconstructor is responsible for producing a contin-
uous prediction of the state x, based on the information
received at discrete instances in time tk. The dynamics of
the reconstructed state xr ∈ Rn satisfies, for all k ∈ Z+,

ẋr = Axr +Kr(Hxr −HP k
d ), ∀t ∈ [tk, tk+1), (17)

and xr(tk) = P k
d with the reconstructor gain matrix Kr ∈

Rn×ny is chosen such that to satisfy Kr = P−1Q, where
matrices P and Q come from Assumption 2. The recon-
structor (17) is initialized according to xr(0) = xc, where
xc ∈ Rn comes from Assumption 1. At every transmission
instant tk, the reconstructor is initialised at P k

d , which we
recall is the decoded state at tk.

E. Objective and Approach

The overall objective is to design a dynamic quantization
scheme for the encoder and decoder, as well as a local
observer and a reconstructor that converts the discrete-
time decoder data into continuous-time reconstructed state
xr(t) ∈ Rn, such that the state reconstruction error er(t) :=
x(t)−xr(t) is upper-bounded with respect to the quantization
error eq(t) := x̂(t) − P k

d , input u, and the unknown
disturbance d.

To this end, we provide the following guarantee for the
state reconstruction error er of our remote state estimation
setup depicted in Figure 1.

Theorem 1: Consider the plant (4), the local observer (6),
encoder (12), decoder (15) and reconstructor (17) under
Assumptions 1-4. The state reconstruction error er(t) :=
x(t)− xr(t) satisfies the following

|er(t)| ≤βr(|er(tk)|, t− tk)

+ γr
(
max{|u|[tk,t], |d|[tk,t], |ê|[tk,t], |eq|[tk,t]}

)
,

(18)

for t ∈ [tk, tk+1) and for all er(tk) ∈ Rn, where βr ∈ KL,
γr ∈ K and |z|[tk,t] denotes sups∈[tk,t]

|z(s)|.
From Theorem 1, we see that the reconstruction error er

is ultimately bounded by the input u, disturbance d, local
estimation error ê and the quantization error eq . Since we

have established that u and d are bounded by Assumption
1 and ê by Lemma 2, we focus on establishing that the
quantization error eq is also bounded.

In this paper, we employ a reachable set-based approach
in the dynamic quantization scheme. We propose over-
approximating the reachable set with zonotopes in Section
IV and compare it to a norm-based over-approximation of the
reachable set in Section V. Both methods employ the idea of
over-approximating the terminal reachable sets of the local
state estimate x̂(tk) and using it as the quantization region
Sk
Q. To the best of our knowledge, the set-based approach

using zonotopes which we will present in Section IV, has
not been done in the literature. We show that this provides
relaxed conditions over the norm-based dynamic quantization
scheme in Section V-A.

IV. SET-BASED DYNAMIC QUANTIZATION USING
ZONOTOPES

First, the dynamics of the local observer (6) can be
rewritten as

˙̂x = Ax̂+Bu−KHê. (19)

We can propagate the terminal reachable set of the local state
estimate x̂ based on the dynamics (19) by treating the term
KHê as an additional input. Since

KHê(t) ∈ KHEt ⊆ KHEtk , ∀t ∈ [tk, tk+1),

where Et = B(0n, βd(t)) is defined in (10), and βd satisfies
βd(t

′) ≥ βd(t
′′), for all t′′ ≥ t′ ≥ 0. Then

Bu(t)−KHê(t) ∈ U ⊕KHEtk , ∀t ∈ [tk, tk+1).

Finally, given that x̂(tk) ∈ Sk
Q, it implies that x̂(tk) ∈

Sk
q,j for some j ∈ INn . This is guaranteed for k = 0 by

Assumption 3. Then, the terminal reachable set of the local
state estimate x̂ at the next transmission time tk+1 can be
deduced from Lemma 1, that for t ∈ [tk, tk+1)

x̂(t) ∈ R[tk,tk+1](S
k
q,j ,U ⊕KHEtk) ⊆ ΛSk

q,j ⊕ B(0n, β
k
ue),
(20)

with Λ := eAT , where we recall that T ∈ R>0 is the inter-
transmission interval, and βk

ue is the upper bound of the input
term (Bu −KHê) of the local observer dynamics (19) for
all t ∈ [tk, tk+1), which is

βk
ue := |A|−1e|A|T (ub + |KH|βd(tk)), (21)

where ub comes from (5) and βd is defined in (9).
We then over-approximate the terminal reachable set of

the state estimate with a hyperrectangle such that the quan-
tization region Sk+1

Q at the next transmission time tk+1 is

Sk+1
Q := H(Ck+1, Lk+1) ⊇

(
ΛSk

q,j ⊕ B(0n, βk
ue)

)
. (22)

Hence, the dynamic quantization update law can be formu-
lated as

Ck+1 = ΛP k
d , Lk+1

i = βk
ue +

n∑
j=1

|σT
i Λσj |

Lk
j

N
, i ∈ In,

(23)
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with initialization P 0
d := xc, L0

i := xb for i ∈ In according
to Assumption 3 and we recall that βk

ue is defined in (21).
We guarantee that by updating the dynamic quantization
parameters Ck and Lk for k ∈ Z+ according to (23), the
quantization region Sk+1

Q always contains the local state
estimate x̂(t) for t ∈ [tk, tk+1), k ∈ Z+, which we state
in the following lemma.

Lemma 3: Consider the plant (4), the local observer (6),
encoder (12), decoder (15) under Assumptions 1-3. Suppose
the quantization parameters Ck and Lk for k ∈ Z+ are
updated according to the set-based scheme (23). Then As-
sumption 4 holds.

We denote the quantization error at t = tk as ekq :=
x̂(tk) − P k

d . We show that its i-th component is always
bounded by ēkq,i, i.e.,

|ekq,i| ≤ ēkq,i, k ∈ Z+. (24)

We call ēkq := (ēkq,1, ē
k
q,2 . . . , ē

k
q,n)

T the maximum quanti-
zation error which we will show is bounded. Therefore, in
conjuction with Lemma 3, we guarantee that the quantization
error eq(t) is also bounded in between transmission times,
i.e. for t ∈ [tk, tk+1). By Lemma 3, we have that x̂(t) ∈
Sk+1
Q for t ∈ [tk, tk+1], k ∈ Z+ which implies that x̂(tk) ∈

Sk
q,j for some j ∈ INn , where Sk

q,j is defined in (14). Hence,
the maximum quantization error satisfies

ēkq = lk =
Lk

N
, k ∈ Z+. (25)

Therefore, by the dynamic quantization law in (23), the
maximum quantization error satisfies

ēk+1
q =

Λ̄

N
ēkq +

βk
ue

N
1n, (26)

where

Λ̄ := (|Λij |)i,j∈In
, (27)

is a matrix where each (i, j)-th component is the absolute
value of Λij and Λij is the (i, j)-th component of matrix Λ
(recall from (20) that Λ = eAT ).

We are now ready to show that by choosing the transmis-
sion time T ∈ R≥0 and total quantization level N ∈ Z>0

appropriately, the maximum quantization error ēkq is bounded
for all k ∈ Z+.

Theorem 2: Consider the plant (4), the local observer (6),
encoder (12), decoder (15) under Assumptions 1-3. Suppose
the quantization parameters Ck and Lk for k ∈ Z+ are
updated according to (23). If the transmission interval T > 0
and quantization level N ∈ Z+ are chosen such that the
matrix Λ̄

N is Schur, i.e.,

max
i∈In

∣∣∣∣λi

(
Λ̄

N

)∣∣∣∣ < 1, (28)

then the quantization error eq(t) is bounded for all t ∈
[tk, tk+1), k ∈ Z+.

V. NORM-BASED DYNAMIC QUANTIZATION

We now present a norm-based scheme in updating the
quantization region Sk

Q, k ∈ Z+. We adapted the dy-
namic quantization scheme in [12] which was used in a
stabilization setting to our remote state estimation problem.
We choose the quantization region to be a hypercube, i.e.,
Sk
Q := B(C(tk), L

k), where the centroid C has the following
dynamics

Ċ(t) = AC(t), t ∈ [tk, tk+1), C(tk) = P k
d , (29)

and we recall that P k
d is the decoded packet defined in (15).

At the next transmission instant tk+1, the quantization
region Sk+1

Q is designed as

Sk+1
Q := B(C(tk+1), L

k+1), (30)

where the quantization parameters are updated according to

Ck+1 := C(tk+1) = ΛP k
d , L

k+1 =
e|A|T

N
Lk + βk

ue, (31)

with initialization P 0
d := xc, L0 := xb, where xc and xb

come from Assumption 1. Just as in the set-based method
in Section IV, we show that the quantization region Sk+1

Q

contains the local state estimate x̂(t) for t ∈ [tk, tk+1), k ∈
Z+.

Lemma 4: Consider the plant (4), the local observer (6),
encoder (12), decoder (15) under Assumptions 1-3. Suppose
the quantization parameters Ck and Lk for k ∈ Z+ are
updated according to the norm-based scheme (30)-(31). Then
Assumption 4 holds.

We can now provide conditions on the transmission time
T ∈ R≥0 and the total quantization level N ∈ Z>0 such
that quantization error eq(t) := x̂(t) − P k

d is bounded for
t ∈ [tk, tk+1).

Theorem 3: Consider the plant (4), the local observer (6),
encoder (12), decoder (15) under Assumptions 1-3. Suppose
the quantization parameters Ck and Lk for k ∈ Z+ are
updated according to the norm-based scheme (30)-(31). If the
inter-transmission interval T ∈ R≥0 and total quantization
level N ∈ Z>0 are chosen such that

e|A|T

N
< 1, (32)

then the quantization error eq(t) is bounded for all t ∈ R≥0.

A. Comparison

The difference between the set-based and norm-based
schemes lies in how they over-approximate the ‘size’ of
the reachable set, which is captured by the quantization
range Lk. The set-based method propagates the zonotope,
and thereby provides upper bounds for each individual
component in the state, while the norm-based method only
considers the norm of eAT . In fact, the set-based method
provides a relaxed condition (28) in Theorem 2 compared to
the norm-based method. We see this by first establishing the
following.
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Lemma 5: Given any matrix A ∈ Rn×n, scalars T ∈ R≥0

and N ∈ Z>0, the following holds

max
i∈In

∣∣∣∣λi

(
Λ̄

N

)∣∣∣∣ ≤ e|A|T

N
, (33)

where Λ̄ is as defined in (27).
By Lemma 5, we see that condition (28) of the set-based

scheme in Theorem 2 relaxes condition (32) of the norm-
based scheme in Theorem 3. We state this result in the
proposition below.

Proposition 1: Consider the plant (4), the transmission
interval T ∈ R≥0 and quantization level N ∈ Z>0. If the
parameters T and N satisfy condition (32) of the norm-based
scheme, then condition (28) of the set-based scheme will also
hold.

Consequently, when designing a dynamic quantization
scheme, the designer first checks if the norm-based method
(Theorem 3) is met. If so, then the designer has the option
of both the set and norm-based methods presented so far in
Sections IV and V, respectively. Future work would include
deriving analytical bounds on the quantization error for both
methods. In this paper, we compare them in simulation which
we present in the next section.

VI. NUMERICAL SIMULATION

We consider a 2-dimensional LTI system in the form of
(4) with

A =

[
−1 −4
4 −1

]
, B = E =

[
1
1

]
, H =

[
1 0

]
, (34)

with the initial state x(0) ∈ X = B([10,−5]T , 1) = [9, 11]×
[−6,−4], the input u(t) = 0.5 sin(t) ∈ B(0, 0.5), ∀t ≥ 0,
and the disturbance d(t) is a random noise that is upper-
bounded by 0.05 for all t ≥ 0. Hence, Assumption 1 is
satisfied with xc = [10, 5]T , xb = 1, ub = 0.5 and db = 0.05.

We solve (7) using the LMI toolbox in MATLAB to obtain

P =

[
2.0648 0.9237
0.9237 1.9195

]
, Q =

[
−7.7353
−0.0248

]
,

ν1 = 8.2561, ν2 = 7.2571.

(35)

Hence, the local observer gain K of (6) and the reconstructor
gain Kr of (17) are

K = Kr = P−1Q =

[
−4.7666
2.2808

]
. (36)

In our simulation study, the plant (4), the local ob-
server (6) and reconstructor (17) are initialized at x(0) =
[10.5,−5.5]T , x̂(0) = xc = [10, 5]T and xr(0) = xc =
[10, 5]T , respectively.

Our communication setup depicted in Figure 1 has quan-
tization level N = 4, bit rate Br = 4, and the inter-
transmission interval is T = 0.1. With these parameters,
we can verify that Λ̄

N is Schur and e|A|T

N < 1, where
each satisfies the condition of the set-based (Theorem 2)
and norm-based (Theorem 3) quantization schemes, respec-
tively. Therefore, the set-based and norm-based dynamic

quantization schemes presented in Sections IV and V, re-
spectively, are applicable. Moreover, the reconstructor xr

given by (17) has bounded reconstruction error according
to Theorem 1. We simulated for the time-interval [0, 20]s,
i.e., with transmission interval T = 0.1, we transmit 200
times. By defining the steady state quantization error as
e∞q := limk→100 |ekq | and steady-state reconstruction error
as ē∞r := limt∈[10,20] |er(t)|, we compare them for each
scheme, which we summarise in Table I. In both cases, the
set-based scheme outperforms the norm-based scheme.

TABLE I
SET-BASED AND NORM-BASED DYNAMIC QUANTIZATION SCHEMES

Dynamic quantization schemes
Set-based Norm-based

Steady-state quantization er-
ror e∞q

0.0571 0.0684

Steady-state reconstruction
error e∞r

0.0921 0.1170

REFERENCES

[1] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results
in networked control systems,” Proceedings of the IEEE, vol. 95, no. 1,
pp. 138–162, 2007.

[2] R. W. Brockett and D. Liberzon, “Quantized feedback stabilization
of linear systems,” IEEE Transactions on Automatic Control, vol. 45,
no. 7, pp. 1279–1289, 2000.

[3] D. Liberzon and D. Nesic, “Input-to-state stabilization of linear
systems with quantized state measurements,” IEEE Transactions on
Automatic Control, vol. 52, no. 5, pp. 767–781, 2007.

[4] Y. Sharon and D. Liberzon, “Input to state stabilizing controller for
systems with coarse quantization,” IEEE Transactions on Automatic
Control, vol. 57, no. 4, pp. 830–844, 2011.

[5] E. D. Sontag, “Input to state stability: Basic concepts and results,” in
Nonlinear and Optimal Control Theory, pp. 163–220, Springer, 2008.

[6] G. N. Nair, F. Fagnani, S. Zampieri, and R. J. Evans, “Feedback control
under data rate constraints: An overview,” Proceedings of the IEEE,
vol. 95, no. 1, pp. 108–137, 2007.

[7] Z. Jiang and T. Liu, “Quantized nonlinear control—a survey,” Acta
Automatica Sinica, vol. 39, no. 11, pp. 1820–1830, 2013.

[8] C. Combastel, “A state bounding observer for uncertain non-linear
continuous-time systems based on zonotopes,” in Proceedings of the
44th IEEE Conference on Decision and Control, pp. 7228–7234, IEEE,
2005.

[9] J. K. Scott, D. M. Raimondo, G. R. Marseglia, and R. D. Braatz,
“Constrained zonotopes: A new tool for set-based estimation and fault
detection,” Automatica, vol. 69, pp. 126–136, 2016.

[10] J. Su and W.-H. Chen, “Model-based fault diagnosis system verifica-
tion using reachability analysis,” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, vol. 49, no. 4, pp. 742–751, 2017.

[11] A. Girard, “Reachability of uncertain linear systems using zonotopes,”
in International Workshop on Hybrid Systems: Computation and
Control, pp. 291–305, Springer, 2005.

[12] C. De Persis and A. Isidori, “Stabilizability by state feedback implies
stabilizability by encoded state feedback,” Systems & Control Letters,
vol. 53, no. 3-4, pp. 249–258, 2004.

[13] Y. Xu and J. P. Hespanha, “Estimation under uncontrolled and con-
trolled communications in networked control systems,” in Proceedings
of the 44th IEEE Conference on Decision and Control, pp. 842–847,
IEEE, 2005.

[14] Y. Li and M. S. Chong, “Reachable set-based dynamic quantization
for the remote state estimation of linear systems,” 2023. Extended
version on arXiv:2309.04006.

[15] F. Bullo and D. Liberzon, “Quantized control via locational optimiza-
tion,” IEEE Transactions on Automatic Control, vol. 51, no. 1, pp. 2–
13, 2006.
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