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Abstract— The three-dimensional orthogonal matrix group
SO(3) offers global, unique, and nonsingular attitude rep-
resentation of the rotational motion. This paper addresses
the attitude consensus problem with disturbance rejection
for multi-agent systems consisting of incompletely cooperative
agents evolving on SO(3). Firstly, we establish an individual
cost functional that evaluates the agent consensus aim using
the natural Riemannian metric on SO(3), and formulate the
considered consensus problem as a differential game. Secondly,
a baseline consensus protocol is designed following the inverse
optimal control procedure. In addition, a finite-time disturbance
observer on SO(3) is developed based on the non-singular
terminal sliding mode technique, which is used for estimating
and compensating for disturbances. The effectiveness of the
proposed schemes is verified with simulations on a 4-vehicle
formation setting.

I. INTRODUCTION
Motivation and literature survey: The study of multi-agent

systems (MASs) has a significant impact on several fields,
such as power, transportation, finance, and healthcare [1],
[2], [3]. Some vehicle applications of MASs are spacecraft
formation, multi-unmanned aerial vehicles and underwater
swarm systems. As one of the most important objectives of
such systems, the problem of achieving attitude coordination
through suitable consensus control schemes has attracted
extensive attention in the literature [4], [5], [6].

Suitable approaches have been developed that enable im-
proved attitude consensus in the Euclidean space [7], [8],
[9], where the agent attitudes are parameterized by using
Euler angles, quaternion and modified Rodrigues parameters
methods. However, the existing parameterized representation
methods have significant disadvantages such as the inabil-
ity to achieve large-angle maneuvering and the unwinding
phenomenon. On the contrary, the three-dimensional special
orthogonal group SO(3) can characterize attitude motion
globally, uniquely, and non-singularly, which makes it an
attractive option for controller design [10]. In the recent
decade, the attitude control design on SO(3) has attracted
broad attention and led to valuable results [11], [12], [13].

For the MASs on SO(3), several consensus control results
can be found in the literature, utilizing switching topologies
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[14], optimal control methodologies [15], and enabling finite-
time convergence [16]. It should be mentioned that, in the
above papers, the agents are assumed to be fully cooper-
ative, i.e. they have no individual objective or payoff to
actively pursue by themselves. This may not appropriately
characterize certain practical scenarios. To the authors’ best
knowledge, there are currently no results on the coordination
control of incompletely cooperative MASs on SO(3).

A problem of high importance associated with attitude
control is that of disturbance/uncertainty rejection, since
in practice the existence of external perturbations, measure
noise, and un-modeled dynamics reduce the control accuracy
and might even compromise the system stability [17]. The
terminal sliding-mode based disturbance observer provides
nonlinear disturbance compensation with strong robustness,
high precision, and fast convergence rate, and is hence an
effective solution approach for the attitude control system in
non-SO(3) models [18]. Therefore, extending this technique
to MASs on SO(3) is significant and highly relevant.

Contribution: In this paper, we address the attitude con-
sensus control problem for incompletely cooperative MASs
on SO(3) with diverse individual objectives and disturbance
rejection. The contributions of the paper are the following:
(i) it explores differential game-based coordination strate-

gies for MASs with incompletely corporative agents on
SO(3) that aim to balance global control objectives and
individual optimization goals;

(ii) it introduces the terminal sliding-mode technique into
the finite-time and bounded error disturbance observa-
tion design of MASs on SO(3) to achieve consensus in
the presence of disturbances.

Paper structure: The rest of the paper is organized as
follows. In Section II, we provide some math preliminaries,
followed by a description of the attitude consensus control
problem of the MASs on SO(3). A game-based baseline con-
trol policy without disturbances and the disturbance rejection
technique are presented in Sections III and IV, respectively.
Section V verifies the effectiveness of the proposed control
strategy via numerical simulations. Finally, Section VI pro-
vides some concluding remarks.

II. PROBLEM FORMULATION

A. Preliminaries

Consider a MAS consisting of N agents,
described by the directed graph G = (V ,E ),
where V ≜ {1,2, · · · ,N} denotes the node set and
E ≜ {(i, j) | j can obtain information from i} the edge set.
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A path p is a sequence of connected edges in the graph
G that connects two nodes, i.e., p ≜ (v1,v2, · · · ,vq), where
vi ∈ V and (vi,vi+1) ∈ E , i = 1,2, · · · ,q− 1. The neighbor
node-set of i is defined as Ni ≜ { j ∈ V | ( j, i) ∈ E }. For a
vector x ∈ Rn, xi denotes its ith element and x−i the vector
that follows by removing the ith element from x.

We let In denote the identity matrix of dimension n and
det(·) the determinant of (·). The state of each agent evolves
in SO(3), which consists of the matrices R ∈ R3×3 such that
R⊤R = I3 and det(R) = 1. The identity element of SO(3)
is I3, where the tangent space is defined as its Lie algebra
so(3)≜ {X ∈R3×3 : X +X⊤ = I}. For all x,y ∈R3, the map
x̂ : R3 → so(3) satisfies x̂y = x×y and its inverse operator is
vex(·) : so(3)→R3. For x̂, ŷ∈ so(3), define the inner product:

⟨x̂, ŷ⟩≜ tr(x̂ · ŷ) ,

where tr(·) is the trace of matrix (·). To possess the property
⟨x̂′, x̂⟩= x⊤x ∈ R, the dual space so′(3) is defined as

so′(3)≜
{

x̂′ ∈ R3×3 | x̂′ =
1
2

I3x̂⊤,∀x̂ ∈ so(3)
}
.

To formulate the coordinate independent distance function
on SO(3), the following logarithmic map is introduced.

Definition 1 ([19]): Let R ∈ SO(3) be such that tr(R) ̸=
−1. Then

log(R)≜
φ

2sinφ

(
R−R⊤

)
∈ so(3),

where φ satisfies cosφ = 1
2 (tr(R)−1) and |φ |< π . □

Then, ∀R ∈ SO(3), the metric ∥R∥SO(3) satisfies

∥R∥2
SO(3)≜−1

2
tr
(
[log(R)]2

)
=−1

2
⟨log(R), log(R)⟩ .

The coordinate independent property of this metric is guar-
anteed since, ∀S ∈ SO(3),

⟨AdSlog(R),AdSlog(R)⟩= ⟨log(R), log(R)⟩ ,

where AdSlog(R) ≜ S · log(R) · S−1 denotes the adjoint map
that converts the state log(R) into coordinate S. The deriva-
tive of the above metric can be computed by using the
following lemma.

Lemma 1 ([19]): For the compact Lie group SO(3), let
R(t)∈ SO(3) be a smooth trajectory that never passes through
a singularity on tr(R) =−1. Then

d
dt

∥R(t)∥2
SO(3) =−1

2
⟨log(R(t)), ω̂(t)⟩ , (1)

where ω̂(t)≜ R⊤(t)Ṙ(t). □
Similarly, the metric on so(3) is defined as

∥ω̂∥2
so(3) ≜−1

2
⟨ω̂, ω̂⟩ .

A n × n matrix H is called Hurwitz if all eigenvalues
of det(λ In −H) = 0 have negative real part. A Hermitian
matrix is a complex square matrix that is equal to its complex
transpose. We let | · | and ∥ ·∥ denote the absolute value of a
scalar x ∈R and the 2-norm of a vector y ∈Rn, respectively.
The sign function is defined by sign(·) : R → R satisfying,
sign(x)≜ x

|x| , x ∈ R\{0}, and sign(0) = 0.

B. Incompletely cooperative consensus control problem with
disturbance rejection

In a MAS, the attitude dynamics of each agent on SO(3)
are described by

Ṙi(t) = Ri(t)ω̂i(t)+ d̂i, i ∈ V , (2)

where Ri(t) ∈ SO(3) denotes the attitude, ω̂i(t) ∈ so(3) the
velocity, and d̂i ∈ so(3) the lumped disturbance of agent i.
Here, we assume that ω̂i can be controlled directly.

The following assumptions are made to facilitate the
controller design.

Assumption 1: The attitude Ri(t) of MAS (2) is available
to agent i, i ∈ V . □

Assumption 2: There exist positive constants d̄i and d̃i

such that
∥∥d̂i

∥∥
so(3) ≤ d̄i,

∥∥∥ ˙̂di

∥∥∥
so(3)

≤ d̃i, i ∈ V . □

Assumption 3: The communication graph G of the MAS
is assumed to be directed and at least connected. □

Denote the relative attitude between agents i and j by
Ri j ≜ R⊤

j Ri. As a result, the consensus task it to ensure that
at the terminal time t f :

Ri j(t f ) = I3, i, j ∈ V . (3)

Considering the consensus aim (3) with disturbance rejec-
tion, the control input ω̂i can be designed as follows

ω̂i = ω̂ic + ω̂id = ω̂ic −R⊤
i d̂i, (4)

where ω̂ic is responsible for the attitude maneuver of agent i
so as to achieve the consensus, while ω̂id is used for com-
pensating the lumped disturbance d̂i. In this case, the lumped
disturbance d̂i should be estimated by some means. Note
that due to the randomness or uncertainty of disturbances, it
is difficult that those are fully estimated and compensated.
Therefore, what we call “disturbance rejection” in the fol-
lowing refers to restricting the effect of the disturbance to
a sufficiently small neighborhood of the origin, see e.g. the
definition in [18].

C. Optimal control problem

Consider an incompletely cooperative case where in addi-
tion to achieving consensus, each agent aims to minimize its
energy consumption. From (4), the total energy consumption
of agent i can be divided into two parts, described by ω̂id
and ω̂ic. For the former, the value of energy consumption
∥ω̂id∥2

so(3) is minimal if the disturbance is perfectly com-
pensated. As for ω̂ic, its energy consumption is represented
by the term ∥ω̂ic∥2

so(3).
Combining the minimal energy consumption with the

formation aim (3) yields the following cost functional

Ji = ∑
j∈Ni

1
2

K fi

∥∥Ri j(t f )
∥∥2

SO(3)︸ ︷︷ ︸
ξi(Ri j(t f ))

+
1
2

∫ t f

0
Kui∥ω̂ic∥2

so(3)dt,
(5)

for each agent, where K fi ,Kui are positive constants. In the
above definition, the control for disturbance-rejection ω̂d is
neglected, and is considered in the next section. Note that, in
the presence of the dynamics (2) with d̂i = 0 and given initial
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conditions, then Ri j(t f ) can be uniquely determined by the
trajectories of ω̂c. Hence, there exists some cost functional
J̃i(ω̂c) that satisfies J̃i(ω̂c) = Ji(ω̂c,Ri j(ω̂c, t f ,R0), t f ,R0),
where R0 ≜ (R1(0),R2(0), · · · ,RN(0)), and ω̂c ∈ U ≜ U1 ×
U2 × ·· · ×UN with Ui ≜ {ω̂ic(t,R0) ∈ so(3) | t ∈ [0, t f ]}.
The above motivates the following optimization problem for
each agent i ∈ V

min
ω̂ic∈Ui, t∈[0,t f ]

J̃i(ω̂c)

s.t. (2) and d̂i = 0.
(6)

Note that for the MAS (2), the individual cost func-
tional (5) is a trade-off between the overall consensus goal
and the aim to minimize individual energy consumption.
Specifically, the greater the value of K fi , the more expensive
it will be for agent i to achieve consensus, while a larger
value for Kui implies that agent i is less willing to maneuver.

The consensus control problem (6) can be formulated as
a differential game. In particular, it can be shown that the
solutions of (6) coincide with the Nash equilibrium definition
provided in Definition 2 below.

Definition 2 ([20]): The control strategy ω̂∗
c ≜

(ω̂∗
1c, · · · , ω̂∗

Nc) defines a Nash equilibrium for cost
J̃i(ω̂c), i ∈ V , if the following inequalities hold:

J̃i(ω̂
∗
c )≤ J̃i(ω̂ic, ω̂

∗
−ic), i ∈ V ,

for each admissible control strategy ω̂ic ∈ Ui. □

D. Problem statement

This section presents a statement of the problem consid-
ered in this paper, which is provided below.

Problem 1: Design control schemes for the MAS (2)
which, when Assumptions 1-3 hold, satisfy
(i) Constitute a Nash equilibrium according to Definition 2

for individual costs described by (5);
(ii) Achieve disturbance rejection;

(iii) Use locally available information. □
Property (i) minimizes the energy consumption of each

agent under the premise of taking into account the global
coordination objective (3). In the sense of bounded estimate
errors, (ii) requires to compensate as much as possible for
the effects brought by disturbances. Finally, (iii) aims for a
distributed controller scheme that has significant advantages
such as scalability and fault-tolerance in the presence of a
single point of failure.

III. CONSENSUS CONTROL WITHOUT DISTURBANCES

For the case when the disturbances d̂1, d̂2, · · · , d̂N of the
MAS (2) are neglected or compensated, this section proposes
the following consensus protocol.

Theorem 1: Consider a group of N agents with dynamics
described by (2) with d̂i = 0, i∈V , and cost functional given
by (5) and let Assumptions 1 and 3 hold. In addition, let ω̂ic
satisfy

ω̂
∗
ic =− 1

Kui
∑

j∈Ni

Ki(t)log(Ri j), i ∈ V , (7)

where Ki(t) is a time-varying positive scalar function that
satisfies

Ki(t) =− 3
Kui(t − 3

K fi Kui
− t f )

, t ∈ [0, t f ]. (8)

Then, the control strategies ω̂∗
1c, ω̂

∗
2c, · · · , ω̂∗

Nc consist a Nash
equilibrium in accordance with Definition 2. □

Proof: According to (2) and (5), we introduce the
following Hamiltonian function:

Hi(Ri, ω̂i, p̂Ri) =
1
2

Kui∥ω̂ic∥2
so(3)+ ⟨p̂Ri ,Riω̂ic⟩ , (9)

where p̂Ri ∈ so′(3) denotes the costate. The optimal control
ω̂∗

ic satisfies

Hi(Ri, ω̂
∗
ic, p̂Ri) = min

ω̂ic∈so(3)
Hi(Ri, ω̂ic, p̂Ri).

Then, we can obtain the optimal control strategy for
each agent by implementing the inverse optimal control
procedure [21]. From the definitions of ∥·∥SO(3) and ∥·∥so(3),
it can be verified that

ξi(I3) =−1
4

K fi tr
[
log(I3)

2]= 0.

Also, ∀R ∈ SO(3) such that R ̸= I3, ξi(R) > 0. Therefore,
we can select the following candidate Lyapunov function for
agent i as,

Vi(Ri)≜
1
2 ∑

j∈Ni

Ki(t)∥Ri j∥2
SO(3), (10)

where Ki(t) is a positive time-dependent and first-order
differentiable function to be determined. Therefore, by using
(1), the derivative of Vi is

V̇i = ∑
j∈Ni

[
1
2

K̇i(t)∥Ri j∥2 +Ki(t)
〈
Rilog(Ri j),Riω̂ic

〉]
.

These relations give the resulting gradient equation of Vi as

p̂Ri = ∇RiVi =
1
2 ∑

j∈Ni

Ki(t)Rilog(Ri j), (11)

where ∇RiVi ≜
∂Vi
∂Ri

denotes the partial derivative of Vi with
respect to Ri. Substituting (11) into (9) yields

Hi =
1
2

Kui∥ω̂ic∥2
so(3)+ ∑

j∈Ni

〈
Ki(t)Rilog(Ri j),Riω̂ic

〉
. (12)

As a result, one can see that the Hamiltonian function Hi
of agent i is also influenced by other agents’ states R j, j ∈
Vi, which depend on the trajectories of ω̂ j. Specifically,
to achieve Nash equilibrium, each agent needs to adopt a
control strategy ω̂∗

i with the goal of minimizing their own
Hamiltonian function (12) so as to satisfy

Hi(ω̂
∗
i , ω̂

∗
−i)≤ Hi(ω̂i, ω̂

∗
−i).

In this case, no agent can improve their Hamiltonian func-
tions by changing their control strategy alone. Therefore,
the solution of the differential game is transferred into
the individual optimal control problem under the remaining
agents’ influence.
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From the stationarity condition ∂Hi
∂ω̂i

= 0, the form of the
optimal control ω̂∗

ic is given by

ω̂
∗
ic =− 1

Kui
∑

j∈Ni

Ki(t)log(Ri j).

Since the Hamilton-Jacobi-Bellman (HJB) function:

V̇i(Ri)+Hi(Ri, ω̂ic,∇Vi)

= ∑
j∈Ni

1
2

K̇i(t)∥Ri j∥2 − 3
2Kui

K2
i (t)∥Ri j∥2 = 0,

and the terminal condition ϕi(Rt(t f )), we have

1
2

K̇i(t)−
3

2Kui

K2
i (t) = 0, Ki(t f ) = K fi . (13)

Solving (13) yields (8) and completes the proof.
Theorem 1 offers a comprehensive result that takes into ac-

count the specified terminal time t f , and the cost parameters
Kui and K fi . The amplitude of the control signal ∥ωic∥so(3)
increases as K fi increases and Kui , t f decrease. Note also that
(7) is a feasible distributed solution of the consensus problem
under Assumptions 1 and 3, since for each agent only its
own information and that of its neighbors are used. One can
see from (8) that only local parameters Kui ,K fi are required
for the parameter design of agent i, although the scheme is
distributed in terms of its information exchange. This admits
a decentralized design, which facilitates the simplicity of
control algorithm.

IV. CONSENSUS CONTROL WITH DISTURBANCE
REJECTION

In this section, we combine the proposed consensus pro-
tocol described by (7)-(8), with a sliding-mode disturbance
observer on SO(3). The latter aims to compensate the im-
pact of the lumped disturbances, resulting in a finite-time
consensus controller with disturbance rejection.

The following sliding variable is defined for agent i

σi ≜ vex(Ri −R⊤
i ).

Then, the derivative of σi is given by

σ̇i = vex
(

Riω̂i + d̂i + ω̂iR⊤
i − d̂⊤

i

)
. (14)

Define the estimations of σi, d̂i by σo
i , d̂

o
i , and the associated

errors by eσi ≜ σo
i − σi, edi ≜ d̂o

i − d̂i. Then, a finite-time
disturbance observer is established that satisfies

σ̇
o
i = vex

(
Riω̂i + ω̂iR⊤

i

)
+vex

(
d̂o

i − (d̂o
i )

⊤
)

−α1 (⌈eσi⌋
γi + eσi)

ḋo
i =−α2 (⌈eσi⌋

γ2 +2⌈eσi⌋
γ1 + eσi) ,

(15)

where ⌈eσi⌋γ j ≜
[
⌈eσi1⌋γ j ,⌈eσi2⌋γ j ,⌈eσi3⌋γ j

]⊤ with elements
⌈eσip⌋γ j ≜ sign(eσip)|eσip |

γ

j , j = 1,2, p = 1,2,3, and gain
parameters α1 > 0, α2 > 0, 1

2 < γ1 < 1, γ2 = 2γ1 −1.
This enables a finite time estimate of the lumped distur-

bance d̂i as shown in the following theorem.
Theorem 2: Consider the MAS (2) and the disturbance

observer (15), and let Assumptions 1-2 hold. Then, the

observation error eo
i ≜

[
e⊤σi

,e⊤di

]⊤
converges to a bounded

set that includes the origin in finite time. □
Proof: Introduce the auxiliary variable

ε ≜
[(
⌈eσi⌋

γ1 + eσi

)⊤
,e⊤di

]⊤
.

The convergence of ε implies that eo
i converges to the origin.

Therefore, we focus on investigating the convergence of ε

by defining the Lyapunov function

Vo (eo
i ) = ε

⊤Pε

where P is a symmetric and positive-definite matrix. Taking
the derivative of Vo along the solutions of (14)-(15) yields

V̇o = ε
⊤P

(
diag

(
|eσi |

γ1−1 , |eσi |
γ1−1

)
H1ε +H2ε +D

)
(16)

where H1 = [−α1γ1I3,γ1I3;−α2I3,03×3], H2 = [−α1I3,I3;
−α2I3,03×3], D =

[
03; ḋi

]
. It can be verified that H1 and

H2 are Hurwitz matrices. Therefore there exist symmetric
Hermitian matrixes Q1,Q2 such that

H⊤
1 P+PH1 =−Q1, H⊤

2 P+PH2 =−Q2.

Substituting the above equalities into (16) yields

V̇o =ε
⊤
[
diag

([
|eσi |

γ1−1 , |eσi |
γ1−1

])(
H⊤

1 P+PH1

)]
ε

+ ε
⊤
(

H⊤
2 P+PH2

)
ε +D⊤Pε + ε

⊤PD

≤−
(
|eσi |max

)γ1−1
ε
⊤Q1ε − ε

⊤Q2ε +2∥ε∥∥P∥∥D∥,

where |eσi |max ≜ max{|eσi1| , |eσi2| , |eσi3|}. By Assump-
tion 2, since ∥di∥≤ d̄i and

∥∥ḋi
∥∥≤ d̃i, we have 2∥ε∥∥P∥∥D∥≤

2
√

3d̃i∥ε∥∥P∥ ≤ 2
√

3d̃iλmin(P)V
1
2 ∥P∥ with the minimum

eigenvalue of (·) as λmin(·). Given |eσi |max ≤ ∥eσi∥ ≤ ∥ε∥
1
γ1 ,

one further has

V̇o ≤−λ1V
3
2−

1
2γ1

o −λ2Vo +λ3V
1
2

o

where λ1 = λmin (Q1)λmax(P)
1

2γ1−
3
2 , λ2 =

λmin(Q2)λmax(P)−1, λ3 = 2
√

3 ˙̄diλmin(P)−
1
2 ∥P∥. According

to Proposition 2 in [18], the trajectory of the proposed
disturbance observer is finite-time uniformly ultimately
bounded stable, which implies the error eo

i will converge to
the following small region near origin

Co ≜

{
eo

i | β1Vo (eo
i )

1
2−

1
2γ1 +β2Vo (eo

i )
1
2 < λ3

}
(17)

with settling time

To ≤
ln
[

1+(λ2 −β2)Vo(eo
i (0))

1
2γ1

− 1
2 /(λ1 −β1)

]
(λ2 −β2)

(
1

2γ1
− 1

2

) , (18)

where βi ∈ (0,λi), i = 1,2. This completes the proof.
From the above result, one can see that the estimation error

edi can be adjusted by appropriately selecting the values of
parameters αi, γi, i = 1,2, as follows from (17). Also, the
settling time can be specified through the system parameters,
as shown in (18). Thus, the lumped disturbance term d̂i can
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be estimated by d̂o
i , which combined with (7) yields the

following controllers with disturbance rejection.

ω̂
∗
i =− 3

K2
ui

(
t − 3

K f iKui−t f

) ∑
j∈Ni

log(Rij)−R⊤
i d̂o

i , i ∈ V . (19)

Based on the separation principle and Theorems 1-2, we
draw the following conclusion directly.

Theorem 3: Consider the MAS (2) satisfying Assump-
tions 1-3 and the cost functional (5). The control policy (19)
achieves the attitude consensus with disturbance rejection. □

V. SIMULATIONS

This section validates our analytic results with numerical
simulations on a MAS consisting of 4 agents with dynamics
given by (2) and the communication network topology de-
picted in Fig. 1 below. It can be seen that the communication
network satisfies Assumption 3 since there always exists a
path from agent 4 to the other agents.

1 2

3 4 0

Fig. 1. The communication topology of the considered MAS with 4 agents.

For our simulation, we consider the initial conditions of
the attitude represented by Euler angles as shown in Table I,
and the parameters presented in Table II. In the simulation,
we consider noise, denoted by dnoise, with values randomly
selected from the uniform distribution [−0.01,0.01]. The
lumped disturbances of agents are given by

d11 = d42 = 0.01 rad/s,

d21 = d41 = 0.01sin(
1

2π
t) rad/s,

d32 = d43 = dnoise,

d12 = d13 = d22 = d23 = d31 = d33 = 0.

(20)

It can be seen that Assumption 2 is satisfied for the above
disturbances with the forms of constant, sine-wave, and
random noise. As shown in Table. I, agents 1-3 are subjected
to a single type of disturbance, while agent 4 is disturbed
by the hybrid disturbances consisting of constant, sine and
random noise.

TABLE I
THE INITIAL CONDITIONS OF THE MAS.

No. Pitch angle Yaw angle Roll angle disturbance
1 50◦ 75◦ 30◦ constant
2 75◦ -25◦ 65◦ sine
3 -50◦ 30◦ -100◦ random noise
4 120◦ -45◦ 85◦ hybrid

To make the control effect more intuitive, assume that
agent 4 implements the attitude regulation strategy, which
can be achieved by using a virtual neighbor agent 0 that

TABLE II
THE CONTROLLER PARAMETER VALUES.

No. t f Ku K f α1 α2 γ1 γ2
1 15 0.05 10 2 1 0.66 0.32
2 15 0.5 10 2 1 0.66 0.32
3 15 0.5 2 0.2 0.07 0.8 0.6
4 15 0.05 2 0.2 0.07 0.66 0.32

stays at the origin of the attitude. The time response of the
Euler angles, control variables and disturbance estimation
errors are shown in Fig. 2, Fig. 3, and Fig. 4, respectively.
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Fig. 2. The response of pitch angle φi, roll angles θi and yaw angles ψi,
i = 1,2,3,4, to the disturbance characterized by (20).
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Fig. 3. The response of velocity ω1,ω2,ω3,ω4 to the disturbance
characterized by (20).

As depicted in Fig. 2, controllers (19) achieve attitude
consensus at t f = 15 s, which demonstrates the validity of
Theorem 3. Moreover, by comparing the responses between
agents with different cost functionals, one can see that
the control amplitude increases when Kui decreases. For
example, by comparing the responses of agents 1 and 2,
from Fig. 3, it can be seen that, although all parameters
except for Kui are the same, the control amplitude of agent 1
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Fig. 4. The response of error lumped disturbance ed11 ,ed21 ,ed32 , ed4 .

is two orders of magnitude greater than that of agent 2.
Correspondingly, the attitude angle response of agent 1 is
much faster than that of agent 2, as shown in Fig. 2. Notably,
according to the communication network depicted in Fig. 1
and the form of controller (19), the control effect of agent 1
is determined by the attitude error with both agent 2 and
agent 3. Therefore, the attitude angles of agent 1 converge
to the average of the attitude angles of agents 2 and 3 at
a relatively fast rate, and the situation is maintained until
convergence is reached.

The effectiveness of the proposed disturbance ob-
server (15) can be verified in Fig. 4, where the errors of
the estimation disturbances can be seen to converge in a
small region around the origin. To be more specific, it can
be seen that the settling time of ed11 and ed21 is shorter
than that of ed32 . This can be explained from (18), since
as parameters α1,α2 increase, the settling time To decreases.
However, as described by (17), the estimation error will
increase with the increase of parameters α1,α2. This is
verified by the zoomed-in figures in Fig 3. To compensate for
the disturbances, after the attitude converges, the controllers
need to generate signals of equal magnitude and opposite
sign to the estimation signals from the disturbance observers.
Disturbed by the same constant disturbance d11 and d43, as
shown by the responses of ω13 and ω43, the disturbance
observer of agent 4 generates more accurate estimates than
the disturbance observer of agent 1.

In conclusion, this simulation results verify that under the
control schemes proposed in this paper, the MAS (2) subject
to disturbances and uncertainties achieves attitude consensus
and disturbance rejection under diverse performance indexes.

VI. CONCLUSION

This paper considered the problem of consensus control
of incompletely cooperative MAS with disturbance rejection
in SO(3). A suitable optimal control problem has been
formulated, taking into account the conflicting objectives
of reaching consensus and minimizing individual energy

consumption. In addition, it is analytically shown that the
considered problem is solved by means of a distributed con-
trol design, which results in Nash equilibrium trajectories of
individual velocities. The developed framework is combined
with finite-time disturbance observers, enabling a disturbance
rejection attitude consensus control strategy. This provides a
solution for the incompletely cooperative MASs with global,
nonsingular, and large angle attitude consensus maneuver.
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