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Abstract— We consider a revenue maximization model, in
which a company aims at designing a menu of contracts, given
a population of customers. A standard approach consists in
constructing an incentive-compatible continuum of contracts,
i.e., a menu composed of an infinite number of contracts, where
each contract is especially adapted to an infinitesimal customer,
taking his type into account. Nonetheless, in many applications,
the company is constrained to offering a limited number of
contracts. We show that this question reduces to an optimal
quantization problem, similar to McEneaney’s pruning problem
that appeared in the max-plus based numerical methods in
optimal control. We develop a new quantization algorithm,
which, given an initial menu of contracts, iteratively prunes
the less important contracts, to construct an implementable
menu of the desired cardinality, while minimizing the revenue
loss. We apply this algorithm to solve a pricing problem with
price-elastic demand, originating from the electricity retail
market. Numerical results show an improved performance by
comparison with earlier pruning algorithms.

I. INTRODUCTION

A. Motivation from electricity markets

Electricity retail markets are now open to competition in
most countries, and providers are free to design a menu of
offers/contracts in addition to regulated alternatives (fixed
prices), so that each consumer can select among the vast
jungle of offers the one which maximizes his utility. In this
paper, the choice of a contract is based on the minimization
of the invoice (rational choice theory, see e.g. [1]), and we
suppose that each customer can adjust his consumption to
the electricity prices (price elasticity). This phenomenon is
highlighted by the current spike in energy prices: consumers
are likely to make huge consumption reduction efforts in
order to save money.

A key problem for electricity providers is to design an
optimal menu of offers, maximizing their revenue, under a
restriction on the “size” of the menu (number of contracts).
In fact, from an optimization point of view, proposing more
contracts increases the revenue, as it allows one to adjust the
menu to the individual preferences of the different types of
customers. However, in practice, it is essential to restrict the
number of contracts, in order to make the commercial offer
more visible to agents, easier to understand, and also to keep
an implementable menu for the company.
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B. The optimal nonlinear pricing problem

We consider more generally the revenue maximization
problem faced by a seller, called principal, or leader in the
setting of Stackelberg games [2]. This problem has been
addressed by the theory of mechanism design [3] through
the question of nonlinear pricing. The so-called monopolist
problem is among the most studied ones: in this approach, the
population is represented as a continuum of buyers (called
agents or followers), and a contract can be specifically de-
signed for each agent (continuum menu). In the seminal pa-
per [4], Rochet and Choné study the monopolist problem by
introducing a dual approach. In some specific cases (linear-
quadratic setting and specific agents distribution), analytic
solutions can be found in one [5] or many dimensions [6],
via reformulation as welfare maximization using virtual
valuation technique. Extending the framework of Rochet and
Choné to decomposable variational problem under convexity
requirement, Carlier [7] addresses the question of the exis-
tence and uniqueness of a solution, and proposes an iterative
algorithm. In the specific case R2, Mirebeau [8] introduces
a more efficient method using an adaptive mesh based on
stencils. The infinite-size menu is therefore characterized
by a value-function satisfying the incentive-compatibility
conditions as with the full-participation condition, the latter
supposing that contracting with the whole population is
optimal. Bergemann, Yeh and Zhang recently considered the
question of the optimal quantization of a menu [9].

C. Contributions

Our main contribution is the development of new quan-
tization algorithms which, given the infinite-size menu, aim
at finding the best n-contracts approximation that maximizes
the revenue. This 2-step strategy bypasses the combinatorial
difficulty tackled in bilevel pricing – see e.g. [10, 11] –
where formulations directly embed customer choices over
the n contracts, becoming rapidly untractable for large
size of menu. We show that the quantization problem is
equivalent to the pruning problem, which arose, following
McEneaney [12], in the development of the max-plus based
curse-of-dimensionality attenuation methods in numerical
optimal control, see [13, 14, 15], and [16] for an application.
In these methods, the value function of an optimal control
problem is represented as a supremum of “basis functions”,
and one looks for a sparse representation – with a prescribed
number of basis functions. In the present application, the
basis functions are linear functions, representing contracts.
We develop a greedy descent algorithm which iteratively
removes the less “important” contracts. We consider different
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importance measures, taking into account the L1 and L∞
approximation errors previously considered in the study of
the pruning problem, and also a specific measure of the loss
of revenue, see Algorithms 1 and 2. An essential feature of
these algorithms is the low incremental cost per iteration,
with an update rule requiring only local computations – in
a “small neighborhood” of the active set of a basis function.
To do so, we exploit discrete geometry techniques, by
associating to a basis decomposition a polyhedral complex,
which is updated dynamically.

To apply this algorithm to the optimal design of a menu
in the electricity retail market, we generalize the framework
of [7] to allow for a nondecomposable (still convex) cost.
Indeed, the revenue of the provider depends on the supply
cost, supposed to be an increasing function of the global
consumption, see e.g. ([17, 18]). In this extended setting,
we prove the existence and uniqueness of the solution for
the infinite-size menu (Proposition 2.2). The solving of this
problem is then tackled by a direct method (discretization of
the variational problem). We also take into account the elastic
behavior of the customers, who adapt their consumption
according to prices, even on an annual scale (we focus here
on year-based contracts). We show that, after a change of
variables, the addition of a uniform elasticity actually reduces
to the previous model (Proposition 4.1). Numerical tests, on a
realistic instance (arising from the French electricity market),
illustrate the efficiency of our approach both in terms of
revenue gain and of computational time, see Figure 3. Our
algorithm also allows one to estimate the minimal admissible
number of contracts, given a target of acceptable revenue loss
by comparison with the infinite-size case.

D. Related works

In the nonlinear pricing context, the restriction to a finite
number of offers has been regarded only recently. In [9],
the authors analyze the loss of revenue induced by this
restriction, exhibiting upper bounds of order 1/n2/d, where
d is the dimension and n the maximal number of contracts.
A similar asymptotic error rate arose in a different setting
of quantization theory, see e.g. [14]. Moreover, in the linear-
quadratic setting of [9], the extreme distributions realizing
the worst revenue loss satisfies separability conditions à la
Armstrong [6], leading to an explicit expression for the
optimal quantization. We do not satisfy these requirements
here, as we tackle a broader class of variational problem,
hence the need of efficient methods to solve the pricing
problems with a finite number of contracts. In [19], a
discretization is obtained by writing the utility function as
a supremum of finitely many affine functions, and so the
solution they obtain can be viewed as a n-contracts menu.
However, the scheme also discretizes the population (with
the same size as the contracts). In the present application,
this is not desirable, since the size of the population has to
be much larger that the size of the menu.

The present algorithms should be compared with the
pruning methods to compute a sparse representation of a
function as maximum of a prescribed number of basis

functions. The pruning problem was shown in [14] to be
a continuous version of the facility location problem, a hard
combinatorial optimization problem. The pruning algorithms
developed in [13, 14] rely on a notion of importance metric,
measuring the contribution of each basis function to the
approximation error. A basic algorithm in [13, 14] performs
a single pass which keeps only the n basis functions with the
highest importance metric, the latter being evaluated either
by solving a convex programming problem or in approximate
way, after a discretization of the state space. A greedy ascent
algorithm is also implemented in [14], adding incrementally
functions by decreasing order of importance. In contrast, the
present algorithm does not require a discretization of the
state space. Moreover, the use of fast (local) updates of the
importance measure allows us to perform a greedy descent
starting from the complete family of basis functions, and
removing at each stage the less important one. This leads to
improved performances on our application case.

The paper is organized as follows: in Section II, we define
the nonlinear pricing problem, adapted to our application
case, and encompassing the monopolist framework. In Sec-
tion III, we approximate the continuum menu by a finite
set of contracts, and present refined pruning algorithms with
local update. Then, in Section IV, we specify the problem
encountered in electricity markets, and show how it boils
down to the general case of Section II. Finally, we numeri-
cally study the effectiveness of our approach in Section V.

II. NONLINEAR PRICING WITH COUPLING
COSTS

A. Notation
For two vectors x and y of Rd, we denote by ⟨x, y⟩ the

scalar product and x ⊙ y the entrywise product. Moreover,
for a discrete set S, we denote by |S| the cardinality of S.

B. Generalized monopolist problem
Let us consider a heterogeneous population, where each

agent in the population is defined by a d-dimensional vector
of characteristics x ∈ X . We suppose that X ⊂ Rd

>0 is a
compact polyhedral domain. An agent of type x will derive
a utility ⟨x, α⊙ qk⟩ − pk from consuming a good k with
quality qk ∈ Rd

>0 and price pk ∈ R>0. The vector α ∈ (R∗)d

is an exogeneous data, viewed as a varying perception of the
quality. The agents are distributed according to ρ satisfying∫
X
ρ(x)dx = 1.

Let us consider a monopolist (principal) who designs a
contract menu represented by a pair of functions x 7→
(p(x), q(x)) ∈ P × Q. For each agent x, these functions
indicate respectively the price and the quality that the agent
is supposed to prefer. Here, P and Q are compact subsets
of R>0 and Rd

>0. To ensure that the contract (p(x), q(x))
really satisfies agent of type x (i.e., is optimal for him), an
additional constraint on the shape of the function, called
incentive-compatibility condition is required: denoting by
u(x) := ⟨x, α⊙ q(x)⟩ − p(x) the utility function for the
menu designed by the monopolist,

u(y)− u(x) ≥ ⟨y − x, α⊙ q(x)⟩ , ∀x, y ∈ X . (1)
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Let Ux be the set of admissible values of u for type x:

Ux := {⟨x, α⊙ q⟩ − p | (p, q) ∈ P ×Q} .

Each set Ux is compact by compactness of P and Q.
Proposition 2.1 ([20]): Let q(·) be defined on X , with

values in Q. There exists a function p : X → P such that
u(·) satisfies (1) if and only if

(i) u(x) ∈ Ux, for x ∈ X ,
(ii) u is convex on X ,

(iii) ∇u(x) = α⊙ q(x) for a.e. x ∈ X .
The aim of the monopolist is then to maximize a revenue

function, defined as

J(u, q) :=

∫
X

L(x, u(x), q(x))dx−C
(∫

X

M(x, q(x))dx
)

,

(2)
In (2), the cost function C takes as input data aggregated on
the whole domain X . Such coupling cost naturally appears
in some applications, for instance in electricity retail market,
see Section IV.

Assumption 2.1: The integrand L is linear in u and q.
Moreover, the integrand M is strictly convex in q, and C
is increasing and strictly convex.
In addition to the incentive-compatibility condition, the util-
ity must be greater than a reservation utility:

u(x) ≥ R(x) . (3)

The problem solved by the monopolist is then

max
u,q

{
J(u, q)

∣∣∣∣∣u, q satisfy (1), (3)
(u(x), q(x)) ∈ Ux ×Q for x ∈ X

}
(4)

Theorem 2.2: Under Assumption 2.1, Problem (4) has a
unique optimal solution.
The proof of Theorem 2.2 is given in Section VII-A. This
result should be compared with [21], where the (decompos-
able) criteria is defined by an integrand that must satisfy co-
ercivity condition, which entails that a minimizing sequence
(un) must be bounded in the W 1,1 Sobolev norm. Here, J is
not necessarily coercive. Instead, the compactness argument
directly comes with assumptions on P and Q.

C. Resolution of the infinite-size case
As an extension of the monopolist problem, Problem (4)

can be solved to optimality through a discretization scheme.
In [19], the authors proved the convergence of the discretized
problem to the continuous one, which can be extended to
nondecomposable cost. Efficient numerical methods have
been proposed in [7] and [8]. Let us define a regular grid Σ
of X . Each of the methods provides a solution {(p̂i, q̂i)}i∈Σ,
inducing a convex utility function ûΣ that can be represented
as the supremum of affine functions, with the notation:

ûS(x) = max
i∈S

ûi(x), S ⊆ Σ , (5)

where ûi : x ∈ Rd 7→ ⟨α⊙ q̂i, x⟩ − p̂i. In the context of
max-plus methods [12, 22], the functions ûi are called basis
functions and can be more general than affine functions, but
we focus here on this specific case, as this naturally appears
in the model (affine contracts).

III. PRUNING PROCEDURES

A. Pruning method for max-plus basis decomposition

Let us now suppose that the monopolist has a maximal
number of n contracts he can design. Given the discretized
infinite-size solution uΣ, the question can be recast as the
following combinatorial problem:

min
S⊆Σ

{d(ûS , ûΣ) s.t. |S| ≤ n} , (6)

where the function d(·) can be either
(i) the L∞ norm d∞(u, v) = ∥u− v∥L∞(X),

(ii) the L1 norm d1(u, v) = ∥u− v∥L1(X),
(iii) and the J-based criterion dJ(u, v) = J(v, α−1⊙∇v)−

J(u, α−1 ⊙∇u) .

The third case corresponds to the maximization of the
function J , where α⊙ q = ∇u thanks to Proposition 2.1.

Theorem 3.1 ([14]): Let X ⊆ Rd and v : X → R
strongly convex of class C2. Then, both L1 and L∞ ap-
proximation errors are Ω

(
1

n2/d

)
as n→∞.

Theorem 3.1 exhibits an error rate identical to the complexity
bound proved in [9] in a different setting.

We define the importance metric of basis function i as

ν(S, i) = d(ûS\{i}, ûS) . (7)

This corresponds to an incremental version of the criteria (6).
For the L∞ and L1 case, if ν(S, i) = 0, then the i-th basis
function does not contribute to the max-sum. Otherwise,
if ν(S, i) > 0, then it expresses the maximal difference
between the shape of ûS with and without ûi, depending
on the criterion. For the criterion dJ , it expresses the loss of
revenue for the principal when contract i is removed.

B. Specific case: minimizing L∞ error

For a L∞ approximation error, the importance metric (7)
can be computed by solving a linear program, see [14]:

max
x∈X, ν

ν

s.t ∀j ∈ S\{i}, ûi(x)− ûj(x) ≥ ν (λij)
(PS

i )

In (PS
i ), we denote by (λij)j the dual variable associated

with each constraint. The set of saturated constraints is then
characterized by the positive variables λij .

Algorithm 1 Pruning for L∞ importance metric
Require: n ▷ Desired number of contracts

1: S ← Σ ▷ Indices of kept contracts
2: I ← Σ ▷ Indices of problems to re-compute
3: for t = 1 : |Σ| − n do
4: for i ∈ I do
5: νi, λi ← solution of (PS

i )
6: Ji ← {j ∈ S\{i} | λij > 0}
7: end for
8: r ← argmini∈S νi ▷ Contract to remove
9: S ← S\{r}

10: I ← {i ∈ S | r ∈ Ji}
11: end for
12: return S
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Algorithm 1 describes a greedy descent procedure: we start
from the complete set of contracts S, and iteratively remove
the less important contract exploiting a fast local update of
the importance metric. Compared with [14], the importance
metric is computed exactly, i.e., without discretization of the
space X . Moreover, we take advantage of the linearity of the
basis functions ûi to exploit the optimal dual variables λij

in the linear program (PS
i ):

Proposition 3.2 (Local update): Let λij be the optimal
dual variables in (PS

i ) for a contract i ∈ S. Then, the
importance metric of i stays unchanged when we remove
a contract j ∈ S s.t. λij = 0, i.e., ν(S\{j}, i) = ν(S, i).

Proposition 3.2 ensures the correctness of Algorithm 1,
where we only re-compute at each iteration the values νi
for a very small subset of Σ. This leads to a huge gain in
computation time, see Section V.

C. L1 and J-based approximation error

Contrary to the L∞ case, the computation exploits the ge-
ometric structure. Indeed, the representation of the function
ûS as a maximum of basis functions’ ûj , j ∈ S induces a
polyhedral complex, in which every function ûi determines
a polyhedral cell Ci, consisting of the types x ∈ X such
that ûS(x) = ûi(x). Removing a basis function ûi from the
supremum ûS = supj∈S ûj yields a local modification of
the latter supremum, concentrated on a neighborhood of the
cell Ci. Hence, we will need to compute at each iteration
the neighbors of each contract cell Ci with i ∈ S. This idea
may be compared with the notion of Delaunay triangulation
associated to a Voronoı̈ diagram [23]. During the algorithm,
we keep in memory two sets: Ji represents the neighboring
cells of cell i, and Vi is the vertex representation of cell i.
Two routines are used for both the L1 and J-based criterion:
⋄ VREP(S, i) returns the V-representation (representation

by vertices) of the polyhedral cell Ci induced by contract
i for a given set S, taking as input the H-representation
(representation by half-spaces) {x ∈ X | ûi(x) ≥
ûj(x), ∀j ∈ S} of the cell i. This is done using the
revised reverse search algorithm implemented in the
library lrs, see [24].
⋄ UPDATENEIGHBORS((VS)i∈I) updates the neighbors of

each cell i ∈ I knowing the vertex representation.
Proposition 3.3 (Local update): The importance metric

of a contract i ∈ S stays unchanged when we remove
a contract j which is not in the neighborhood of i, i.e.,
ν(S\{j}, i) = ν(S, i) for j ∈ S\Ji.

Proposition 3.3 ensures the correctness of Algo. 2, where
we only re-compute vertex representations for a small subset
of contracts (corresponding to the neighboring cells of the
lastly removed contract, see line 8 of the algorithm). This
local update is illustrated in Figure 1. The update of the
importance metric in line 11 differs between the L1 and J-
based cases, and is described in Algos. 3a–3b. In Algo. 3a,
the integral that appears in the computation of νi can be
evaluated analytically using Green’s formula, as it integrates
a linear form over a polytope, see Appendix VII-B. In
Algo. 3b, δL can be computed in the same way. For M0 and

δM , this generally involves the integration of the function
x 7→ M(x, q̂i). In the present application, this function is
linear, and so the direct integration is possible, see (14)–(15).

Algorithm 2 Pruning with local update (for L1 and J-based)
Require: n ▷ Desired number of contracts

1: for i ∈ Σ do
2: Vi ← VREP(Σ, i) ▷ Vertex representation
3: end for
4: S ← Σ ▷ Indices of kept contracts
5: I ← Σ ▷ Indices of problems to re-compute
6: for t = 1 : |Σ| − n do
7: (Ji)i∈I ← UPDATENEIGHBORS((Vi)i∈I)
8: for i ∈ I , j ∈ Ji do
9: Fj,−i ← VREP(S\{i}, j) ▷ Future cells

10: end for
11: ν ← UPDATEIMPMETRIC(I, (Vi)i∈S , (Fj,−i)j∈Ji,i∈S)
12: r ← argmini∈S νi ▷ Contract to remove
13: S ← S\{r}
14: for j ∈ Jr do
15: Vj ← Fj,−r ▷ Update vertex representation
16: end for
17: I ← Jr

18: end for
19: return S
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Fig. 1: Evaluation of contract by dividing into subregions (d = 2)
The green polyhedron corresponds to F4,−10 ∩ V10.

Algorithm 3a UPDATEIMPMETRIC (L1 error)
Require: I , (Vi)i∈S , (Fj,−i)i∈I,j∈Ji

1: for i ∈ I do ▷ Update metric on cells
2: νi ←

∑
j∈Ji

∫∫
Fj,−i∩Vi

(ûi(x)− ûj(x))dx
3: end for
4: return ν

Algorithm 3b UPDATEIMPMETRIC (J-based error)
Require: I , (Vi)i∈S , (Fj,−i)i∈I,j∈Ji

1: M0 ←
∑

i∈S

∫∫
Vi

M(x, q̂i)dx
2: for i ∈ S do ▷ Update metric on cells

3: δL ←
∑
j∈Ji

∫∫
Fj,−i∩Vi

L(x, ûi(x), q̂i)− L(x, ûj(x), q̂j)dx

4: δM ←
∑

j∈Ji

∫∫
Fj,−i∩Vi

M(x, q̂j)−M(x, q̂i)dx
5: νi ← δL − C(M0) + C(M0 + δM )
6: end for
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Proposition 3.4 (Critical steps): Let m be the maximum
number of neighbors of a polyhedral cell during the execu-
tion of the algorithm (for all t and i, |Ji| ≤ m). Then,

⋄ The number of linear programs (PS
i ) solved in Algo. 1

is in O(m|Σ|),
⋄ The number of computations of a vertex representation

of a polyhedral cell (calls to VREP(S, i) in Algo. 2 /
reverse search) is in O(m2|Σ|).

By comparison with Proposition 3.4, a naı̈ve implementation
(full recomputation of the importance metric at each step) of
the two algorithms would respectively lead to a number of
critical steps in O(|Σ|2) and O(m|Σ|2). Indeed, each linear
program PS

i can be solved in polynomial time (by an interior
point method), and reverse search has an incremental running
time of O(|Σ|d) per vertex if the input is nondegenerate,
see [24].

IV. APPLICATION TO ELECTRICITY MARKETS

A. Price elasticity

Let us consider a provider holding several contracts, each
of them defined by a fixed price component p ∈ R (in C), and
d variable price components z ∈ Rd (in C/kWh). In France,
the contracts often take into account d = 2 time periods, with
different prices for Peak / Off-peak consumptions. Moreover,
the price coefficients (p, z) of each contract are supposed to
belong to a non-empty polytope P × Z ⊂ Rd+1:

Assumption 4.1: Let p−, p+ be in R>0 and z−, z+ be in
Rd

>0. Then, P = [p−, p+], and the polytope Z is of the
following form:

Z :=
{
z− ≤ z ≤ z+ | zi1 ≤ κi1,i2zi2 for i1 ≤P i2

}
,

where P is a partially ordered set (poset) of {1, . . . , d}, and
≤P the ordering relation, and κi1,i2 > 0. When κ ≡ 1,
z− ≡ 0 and z+ ≡ 1, Z is known as an order polytope [25].
Assumption 4.1 is natural for the electricity pricing problem:
the price can be freely determined within a box (bounds), as
long as some inequalities between peak price coefficients and
off-peak price coefficients are fulfilled.

We suppose that each individual in the (infinite-size) pop-
ulation is characterized by a reference consumption vector
x̌ ∈ X ⊂ Rd

>0. Here, supposing a continuum of agents
is justified since we consider in the application case the
population of a whole country. We suppose that the con-
sumption is elastic to prices, i.e., a consumer can deviate
from its reference consumption x̌. In addition, we suppose
that electricity elasticity can be captured into a utility-based
framework, see e.g. [26] for the properties that the utility
must satisfy. Here, we focus on isoelastic utilities:

Assumption 4.2 (Isoelastic utility function): For a refer-
ence consumption x̌, the utility of consuming an amount
of energy x ∈ Rd

≥0 is depicted through a Constant Relative
Risk Aversion (CRRA,[27, 28]) or isoelastic utility:

Ux̌ : x ∈ Rd
≥0 7→

1

η

d∑
i=1

βx̌i(xi)
η, η ∈ (−∞, 0)∪(0, 1] , (8)

where βx̌ ∈ Rd
≥0 expresses the intensity of energy needs.

The coefficient η is called the risk aversion coefficient.
In this context, this elasticity measure depicts the easiness

of a customer to adopt another energy source to fulfill his
needs. In [28], the authors model the electric elasticity by
this kind of utility function, and separate the case η < 0 and
η ∈ (0, 1]. The first regime (η < 0) will model a household
consumption: the satisfaction coming from consuming en-
ergy saturates to a maximum utility, and a zero consumption
is prohibited. In contrast, the second regime (η ∈ (0, 1]) will
represent the high flexibility of the industrial sector, which
can adapt more easily its consumption according to price.
We refer to [29] and references therein for empirical studies
on the intensity of the elasticity coefficient η.

For a contract defined by price coefficients (p, z) ∈
R×Rd, a consumer x̌ will optimize his consumption in order
to maximize the welfare function, obtained by subtracting the
electricity cost to (8):

U∗
x̌ : (p, z) ∈ R×Rd 7→ max

x∈R≥0
d
{U x̌(x)− ⟨x, z⟩}−p . (9)

We denote by U∗
x̌ the welfare function as the maximization

term in (9) corresponds to a Fenchel-Legendre transform up
to a change of sign. As a consequence, U∗

x̌ is convex and
nonincreasing. We now make the following assumption to
fix the value of β:

Assumption 4.3: The reference consumption x̌ ∈ Rd is
obtained for reference prices p̌ ∈ R and ž ∈ Rd.

Under Assumption 4.3, the optimal consumption of cus-
tomer x̌ on period i ∈ {1, . . . , d}, denoted E x̌i, is given by

E x̌i(z) = x̌i (zi/ži)
−1
1−η ≥ 0 , (10)

and the welfare function is given by

U∗
x̌(p, z) =

(
1
η − 1

) d∑
i=1

x̌iži (zi/ži)
−η
1−η − p . (11)

Equations (10) and (11) are obtained from the first order opti-
mality condition (zero derivative) for (9) (βx̌i = ži (x̌i)

1−η).

B. Infinite-size menu of offers
In this section, we relax the assumption of a finite number

of contracts, by supposing that the provider is able to define
as many offers as consumers. Therefore, the infinite-size
menu of offers can be represented by two functions p : X →
R and z : X → Rd, representing respectively the fixed price
component and the variable price components. Let us define
the (weighted) invoice of a consumer as

Lx̌ : (p, z) ∈ R×Rd 7→ (p+ ⟨E x̌(z), z⟩)ρ(x̌) , (12)

where ρ(x̌) ≥ 0 represents the density of customers with ref-
erence consumption x̌. The provider’s revenue maximization
problem is then

max
p,z
J 1(p, z)− J 2(z) (13a)

s.t. U∗
x(p(x), z(x)) ≥ U

∗
x(p(y), z(y)), ∀x, y ∈ X (13b)

U∗
x(p(x), z(x)) ≥ R(x), ∀x ∈ X (13c)

p(x) ∈ P, z(x) ∈ Z (13d)
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where J 1(p, z) =
∫
X
Lx(p(x), z(x))dx and J 2(z) =

C
(∫

X

∑d
i=1 Exi(z(x))ρ(x)dx

)
.

Equations (13b) and (13c) are respectively the incentive-
compatibility condition and participation constraint. Taking
C as a strictly convex increasing function of the global
consumption is often considered in the literature. In par-
ticular, this cost function is often modeled as a piecewise
linear function, see e.g. [18], or as a quadratic function, see
e.g. [17]. In fact, the marginal cost to supply electricity is not
constant and increases with the consumption. The convexity
of the reservation utility is also a classical assumption, as this
reservation utility should be a supremum over the utilities of
alternative offers (each of them being linear function of the
reference consumption).

Let us make the following change of variables:

qi := (zi/ži)
−η
1−η .

Then, the consumption on period i ∈ {1, . . . , d} is a convex
function of qi, expressed as Ex̌i(qi) = x̌i[qi]

1
η , and both the

utility and the weighted invoice now read as linear functions
of p and q: defining α = (η−1 − 1)ž,

u(x) := ⟨x, α⊙ q(x)⟩ − p(x) ,

L(x, u(x), q(x)) :=
(

1
η ⟨x, ž ⊙ q(x)⟩ − u(x)

)
ρ(x) ,

(14)

Theorem 4.1: Under Assumption 4.1, the provider’s rev-
enue maximization problem (13) is equivalent to a monopo-
list problem of the form (4) with

M(x, q(x)) := ρ(x)

d∑
i=1

xi[qi(x)]
1
η (15)

and, if η < 0,

Q =

q ∈ Rd

∣∣∣∣∣∣∣
(
z−/ž

) −η
1−η ≤ q ≤

(
z+/ž

) −η
1−η

qi1≤
(
κi1,i2

ži2
ži1

) −η
1−η

qi2 for i1 ≤P i2

 ,

otherwise,

Q =

q ∈ Rd

∣∣∣∣∣∣∣
(
z+/ž

) −η
1−η ≤ q ≤

(
z−/ž

) −η
1−η

qi1 ≥
(
κi1,i2

ži2
ži1

) −η
1−η

qi2 for i1 ≤P i2


Proof: Owing to assumption on the set Q and the

strict monotonicity of z 7→ z
−η
1−η (increasing for η < 0 and

decreasing for η > 0), one can explicitly derive the form of
Q. The rest of the formulation is immediate.

V. NUMERICAL RESULTS

A. Instance

The numerical results were obtained on a laptop i7-
1065G7 CPU@1.30GHz. We provide in Table I the values
of the parameters used in the application. In particular, we
consider reference prices (p̂, ẑ) corresponding to French reg-
ulated prices, and reference consumption spread around the
average annual French consumption per household (Emoy =
4MWh). The cost function is taken as a quadratic function,
scaled so that the marginal cost C ′(Emoy) = 0.08C/kWh.

In comparison, the production cost is estimated in France
around 0.05C/kWh for nuclear plants1 and up to 0.09C/kWh
for wind energy2.

η -0.1
p̌ 140C
ž (0.174,0.19)C/kWh

C(·) 0.01(·)2
(p−, p+) (0, 500)C
(q−1 , q+1 ) (0.05, 0.5)C/kWh
(q−2 , q+2 ) (0.05, 0.5)C/kWh

ρ Uniform([0.6, 1.8]× [1.4, 4.2])
R(·) linear function (one regulated contract)

TABLE I: Instance used in the numerical results.

We display in Figure 2 the infinite-size menu and the quan-
tized solution for two different sizes of menu (25 contracts
and 10 contracts). In each cell Ci, the contract i brings to
customers of reference consumption x ∈ Ci the maximal
utility given the quantized menu, i.e., ûS(x) = ûi(x) for x ∈
Ci. We observe that there is a region/cell (light gray region)
where the monopolist reproduces the alternative option (of
utility R). On the other side, for high consumption (peak or
off-peak), the monopolist manages to design contracts that
provide strictly higher utility than the regulated offer, and at
the same time, procure to the monopolist a higher revenue.

B. Comparison of pruning objectives

In the upper graph of Figure 3, the three pruning objectives
studied in the paper (L∞, L1 and J-based) are compared
with the 1-step approach of [13, 14]. The approach consists
in sorting the importance metrics for all i ∈ Σ, and directly
taking the n contracts with highest importance metric (here
we consider the J-based importance metric). We display the
relative objective loss, defined as 1 - Jt/Jref, where Jt is the
objective for a menu of size t and Jref the objective obtained
with the infinite-size menu. Note that removing a contract
can induce a violation of the full-participation constraint
(u ≥ R). Therefore, in order to recover a feasible solution
at each iteration, we lift up the solution with the simple rule
u← u+max{maxx∈X{R(x)− u(x)}, 0}.

On this example, the pruning procedure of Algo. 2 (greedy
descent) leads to a significant loss reduction, whatever the
criterion, compared with the 1-step approach. As expected,
we observe that the J-based pruning has the smallest relative
loss in the objective, as we minimize the error at each
iteration of the process. In contrast, the L∞-norm does
not capture sufficiently well the behavior of the objective
function J , and has larger objective loss, even for a large
number of contracts.

We also depicted the cumulated time along the iterations
in the lower graph of Figure 3 (we do not display the
time for the 1-step procedure, as it is very fast, in less
than 0.5s). For comparison, we add the cumulative time of
a “naı̈ve” J-based pruning, recomputing at each iteration
the importance metric of each cell (global update). On this

1CRE (2022), Délibération n° 2022-45
2ADEME (2016), Coûts des énergies renouvelables en France

2275



0.6 0.8 1.0 1.2 1.4 1.6 1.8
Off-Peak(MWh)

1.5

2.0

2.5

3.0

3.5

4.0
Pe

ak
(M

W
h)

Infinite-size menu

(a) Approximated infinite-size menu
(100 contracts)

0.6 0.8 1.0 1.2 1.4 1.6 1.8
Off-Peak(MWh)

1.5

2.0

2.5

3.0

3.5

4.0

Pe
ak

(M
W

h)

12

13

14

15

16

17

18

1

19

2
3

20

4

5
6

7

21
8

22

9

23 24

25

10

11

Menu of 25 contracts

(b) Menu of 25 contracts

0.6 0.8 1.0 1.2 1.4 1.6 1.8
Off-Peak(MWh)

1.5

2.0

2.5

3.0

3.5

4.0

Pe
ak

(M
W

h)

3

4
5

1

2

6

7
8 9

10

Menu of 10 contracts

(c) Menu of 10 contracts

Fig. 2: L1-norm pruning for the electricity market case.
The normalized utility u−R is depicted with colormap (light gray corresponds to the zero value and blue to high value).

example, we observe that the computational time is already
reduced by a factor almost 3 (this factor would be greater in
higher dimension, as the neighborhood would be larger). As
expected, the L∞ criterion is the fastest, owing to the fast
local update rule exploiting the sparsity of optimal Lagrange
multipliers (Algorithm 1), and the J-based and L1-norm
criteria have similar computational time, as they use the
same algorithmic architecture, see Algo. 2. In terms of loss
minimization, the J-based pruning shows a loss of revenue
reduced by a factor of around 2 by comparison with other
methods. This approach allows us to determine the minimum
number of contracts given an admissible revenue loss: e.g.,
Figure 3 shows that, with a J-based quantization, a menu of
10 contracts suffices to limit the revenue loss to 4%.
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Fig. 3: Comparison of error bounds for the three types of pruning
objective. The upper graph shows the loss of optimality induced

by a reduced number of contracts. The lower graph depicts
cumulative time along the iterations. (g) stands for global update

while (l) stands for local update.

VI. CONCLUSION
We have addressed a nonlinear pricing problem incorporat-

ing coupling costs. This arises in electricity markets, where

supply costs depend on the global consumption. We have
developed a quantization procedure, allowing to maximize
the revenue of a provider, given a cardinality constraint on
the set of contracts. This relies on refined pruning procedures,
inspired by the max-plus basis methods in numerical optimal
control. In particular, we exploited the local nature of the
pruning process, in order to reduce the computational time.
Thus, this leads to a new class of applications for methods
originally developed in optimal control, and this also im-
proves the complexity of a key ingredient of these methods.

A strong parallel with vector quantization can be made, see
e.g. [30]. In this context, a different quantization problem is
addressed by Lloyd’s procedures, ibid.. Whether these ideas
can be adapted to the quantization of the maximum of affine
functions with revenue criterion is left for further work.
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VII. APPENDIX
A. Proof of Proposition 2.2

Using Proposition 2.1, for any solution, ∇u(x) = α⊙q(x)
for a.e. x ∈ X . We then directly study the existence and
uniqueness in (u,∇u).

Existence. Let H1(X) be the Sobolev space associated
with X . We define

K =

{
u

∣∣∣∣∣u convex and u ≥ R

u(x) ∈ Ux, α
−1 ⊙∇u(x) ∈ Q , ∀x ∈ X

}
.

The set K is a closed, convex and bounded subset of H1(X)
(it is bounded since X is bounded and ∥u∥L∞ and ∥∇u∥L∞

are bounded too; it is convex since R is convex).
Besides, J is concave (Assumption 2.1). Moreover, as Q ⊂

Rd
>0, there exist a, b > 0 such that for any x ∈ X , a ≤
∥∇u(x)∥ ≤ b. Therefore, there exists c ∈ R+ such that
|J(u,∇u)| ≤ c, and as a consequence, J is continuous on
K, see [31, Chapter 1, Proposition 2.5].

Using the fact that H1(X) is reflexive and [31, Chapter
2, Proposition 1.2], Problem (4) admits at least one solution.

Uniqueness. (Same arguments as in [4]) Let now consider
two distinct solutions u1 and u2. Then, if ∇u1 ̸= ∇u2 on a
measurable subset, any function tu1+(1− t)u2 is valid and
gives a strictly better solution than u1 and u2 (due to strict
convexity of the cost function u 7→ C(

∫
X
M(x,∇u(x))dx)

and linearity of L). Therefore, u1−u2 is a constant function.
By linearity of L, the objective value obtained with u1 and u2

differ by the same constant. This contradicts the optimality
of the two solutions u1 and u2.

B. Fast metric updates using Green’s formula
The next proposition allows us to implement efficiently the

local updates of the importance metric performed in 3a–3b.
Proposition 7.1: Let P a 2D-polytope describes by its

vertices (xi, yi) ∈ R2 (counter-clockwise ordered). Then for
any a, b, c ∈ R,∫∫

P

(ax+by+c)dxdy =

N∑
i=1


∮ yi+1

yi

b(qi +
1
τi
y)ydy

−
∮ xi+1

xi

(ax+ c)(pi + τix)dx

 ,

with τi =
yi+1−yi

xi+1−xi
, pi := yi − τixi and qi := xi − 1

τ yi.
Proof: The application of the Green formula gives :∫∫
P

(ax+ by + c)dxdy =

∮
CP

(bxy)dy − (ax+ c)ydx ,

where CP is the contour of the polytope P . We then
decompose on each edges, and use the change of variable
x = q + y/τ in the first integral and y = x + τx in the
second one.
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