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Abstract— This paper studies the learning-based model pre-
dictive control problem for nonlinear systems with model
uncertainties and control constraints. First, a prediction model
is constructed offline. The prediction model is composed of a
nominal model derived using the first principle with known
parameters, and a learning model constructed via the LSTM
network to account for model uncertainties and unknown
disturbances. Then control input increments are optimized
using an online model predictive controller with constraints.
Simulation results for trajectory tracking with a robotic arm
are presented to verify the robustness and feasibility of the
proposed approach.

I. INTRODUCTION

Robotic arms have been widely used to assist people with
high-intensity, repetitive tasks [1], [2]. In these applications,
high-precision autonomous trajectory tracking is one of the
fundamental tasks. However, designing the trajectory con-
troller for robotic arms is difficult due to the existence of
modeling errors, unknown parameters, and external distur-
bances. Moreover, in practice, there is a high demand for
the real-time response speed of the robotic system, and the
system is also subject to different constraints, which lead to
challenges in controller design.

A combination of learning-based algorithms and model
predictive control (MPC) has shown great potential in ad-
dressing these challenges, and has received a lot of attention
recently [3]. MPC can handle state and control constraints
and is simple to implement, while learning-based algorithms
can refine models of the system and improve system perfor-
mance [4].

MPC is an online control method that solves an open-
loop optimal control problem over a finite horizon and then
applies the first optimal control action to the plant [5].
By repeating the process recursively, MPC achieves online
control with hard state and control constraints, and hence, has
been widely used in industry process control [6], formation
flight [7], robotic motion planning [8], and so on.

For deterministic systems, MPC is equivalent to solving
the original Dynamic Programming (DP) problem online
recursively, and hence, the stability and optimality can be
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guaranteed [9]. However, it is difficult to use an open-
loop control strategy to optimize the performance of un-
certain systems. To deal with uncertainties, robust MPC
and stochastic MPC have been proposed. For example, a
robust model predictive controller is designed for a robot
manipulator to track the time-varying trajectory in [10]. The
robot manipulator is assumed to be affected by bounded
disturbances, and a feedback control law is designed with
the guarantee of robust constraint satisfaction. In [11], a
stochastic MPC method for trajectory tracking of wheeled
mobile robots is proposed. The probability distribution of
the stochastic disturbance is assumed to be known, and the
tracking error of the closed-loop system is asymptotically
average bounded. Robust MPC is over conservative when
handling uncertainties, while stochastic MPC may violate
the constraints with a small probability.

Another challenge of MPC is the lack of a reliable predic-
tion model. Traditional MPC relies on the dynamic model of
the system, which is difficult to know precisely. Prediction
using an inaccurate model would result in performance
degradation or even unsafety. Therefore, to better fit the
real system, data-driven approaches can be employed where
input-output data could be used to learn the system model or
control policy, resulting in the development of the data-driven
or learning-based MPC (LB-MPC) [12], [13] methods.

One major class of LB-MPC focuses on data-based adap-
tion of the prediction model. For example, in [14], the
Gaussian Process (GP) is used to learn the periodic error, and
prediction from the GP model is used to design the online
MPC controller. In [4], a GP is trained offline to estimate the
discrepancies between the actual and analytical model, and
the extended Kalman filter is used to estimate the residual
model mismatch online. The performance of the proposed
algorithm is validated for trajectory tracking using a 6 degree
of freedom robotic arm. Problems with the online updates
of GP model is that GP keeps tracking all measurement
data, which would be computationally infeasible over time.
Moreover, the mean and covariance function of a GP need
to be chosen a priori, which will also affect the performance
of the model. Koopman operator theory provides a data-
driven approach to construct a linear model of a nonlinear
controlled dynamical system based on the input and output
data. For example, a linear data-driven model is constructed
via the Koopman operator for the soft robots, and different
MPC controllers are developed in [15]. In [16], the Koop-
man operator-based MPC scheme is proposed for trajectory
tracking control of an omnidirectional mobile manipulators.
However, proper basis functions need to be chosen carefully,
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and training for an accurate model depends on trials and
errors, which limits applications of the Koopman operator
based-MPC.

Neural Networks have been extensively studied in the
Control Systems community as black-box models of the
plants. The performance and applicability of NNs to general
nonlinear systems have been demonstrated in many appli-
cations. Among current state-of-the-art NN architectures,
Long Short Term Memory (LSTM) network has gained
increasing attentions in control-related applications [17].
LSTM network has a unique memory cell, which makes it
better suited for learning dynamical systems. For example,
a LSTM-based MPC controller is designed to optimize the
energy consumption of a building in [18]. The LSTM model
is trained offline, and simulation results indicate that the
computational time using LSTM model is reduced when
compared to the reference detailed model, and the control
performance using LSTM model is improved. In [19], the
LSTM network is used as a predictive model for multimode
process, and theoretical analysis of the stability and feasibil-
ity of the proposed LSTM-MPC method has been presented.

In this paper, we propose a learning-based model predic-
tive control approach for nonlinear system with uncertainties
and control constraints. The prediction model is composed of
a nominal model and a learning model. The nominal model is
derived from the first principle with known parameters. The
learning model is constructed via training the LSTM network
offline, and is used to compensate the modeling errors and
external disturbances. The MPC controller is designed online
to optimize the input increments under constraints. The
primary contributions of the proposed approach are:

1) A novel LSTM-based MPC method is proposed for the
robotic trajectory tracking problem. Compared with existing
LSTM-based MPC approaches, the proposed LSTM model
is used to learn the discrepancies between the actual system
and the analytical model, such that the performance of the
proposed controller can be improved.

2) Implementation using the proposed approach is simple,
where a standard MPC scheme is used. The training of the
LSTM network is done offline, which reduces the online
computational time.

3) The online optimal control problem is reformulated
to optimize the control input increments, constraints on
both control input and control input increments need to be
satisfied, which makes the proposed approach more feasible
in practice.

The rest of the paper is organized as follows. In Section
II, a short introduction to LSTM network is provided. In
Section III, the LB-MPC algorithm is proposed. Computa-
tional results for trajectory tracking with a double link rigid-
flexible robotic arm are shown in Section IV. Finally, Section
V concludes the paper.

II. LONG SHORT-TERM MEMORY NETWORK

In this section, we briefly review the Long Short-Term
Memory (LSTM) Network. The LSTM network is a special

Recurrent Neural Network that has been widely used in
temporal modeling problems.

Assume that at each time tk = k∆t, we collect a sequence
of data X̃k = [x̃k−p+1, x̃k−p+2, · · · , x̃k], where ∆t is the
sampling time, x̃k ∈ RN represents the measurement data
at time tk, and p is the length of the moving horizon. The
LSTM network is used to predict x̃k+1 based on the past
p measurements X̃k, i.e., the output of the LSTM network
Yk = x̃k+1.

The LSTM network is composed of one input layer,
several hidden layers, and one fully connected output layer.
The structure of the LSTM network with two hidden layers
is shown in Fig. 1.

Each hidden layer contains several LSTM cells. Denote
the cell state and cell output at time step k as ck ∈ RN

and Hk ∈ RN , respectively. At each time step k, the cell
state ck−1, cell output Hk−1 and measurement data x̃k are
passed through the forget gate, and the outputs of the forget
gate is

fk = σ(Wxf x̃k +WhfHk−1 + bf ), (1)

where Wxf ∈ RN×N ,Whf ∈ RN×N are some weight
matrices, and bf ∈ RN is the bias. σ(.) represents the
element-wise sigmoid activation function.

The input gate filters the training sample x̃k and output
Hk−1 to be passed to the memory cell, and is implemented
as

ik = σ(Wxix̃k +WhiHk−1 + bi),

qk = tanh(Wxcx̃k +WhcHk−1 + bc),

gk = ik ∗ qk,
(2)

where ik is the output of the input gate, gk is the updated cell
state candidate, Wxi,Whi,Wxc,Whc are the corresponding
weight matrices, bi, bc are the corresponding bias. tanh(.) is
the hyperbolic tangent activation function, and ∗ represents
the element-wise product.

The current cell state ck is

ck = fk ∗ ck−1 + gk, (3)

and the output of the output gate ok is

ok = σ(Wxox̃k +WhoHk−1 + bo), (4)

where Wxo,Who, bo are the corresponding weight matrices
and bias, respectively.

Therefore, the output of the LSTM cell at time step k is

Hk = ok ∗ tanh(ck), (5)

and the output of the fully connected layer is

Yk = WhyHk + by, (6)

where Why and by are the weight matrix and bias, respec-
tively.

Fig. 1. Structure diagram of LSTM network
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The mean square error (MSE) is used as the loss function,
i.e.,

Loss =
1

S

S∑
k=1

(yk − Yk)2, (7)

where S is the number of samples, yk is the actual output
corresponding to the kth sample, and Yk is the predicted
output. During the training process, the gradient descent
method is used to reduce the loss function.

III. LEARNING-BASED MODEL PREDICTIVE
CONTROLLER DESIGN

Model Predictive Control (MPC) solves an online opti-
mization problem at each time step, implements the first
control action, and then repeats the process at the next time
step. A prediction model is needed to predict the system’s
behavior over a given horizon. However, in practice, the
exact model is unknown due to the existence of parameter
uncertainties and unknown disturbances. Therefore, in this
section, we first introduce the learning-based prediction
model, and then introduce the implementation details of the
proposed LB-MPC controller.

A. Prediction Model

It is well-known that the dynamics of a robotic arm with
multiple joints can be modeled as a second-order differential
equation

M(θ)θ̈ +H(θ, θ̇) +Kθ = u+ d, (8)

where θ ∈ Rn represents the joint angles, and θ̇, θ̈ represent
the joint angular velocities, and joint angular accelerations,
respectively. M(θ) ∈ Rn×n is the system inertial matrix,
H(θ, θ̇) ∈ Rn×n is the coriolis and centrifugal matrix of
the system, and K ∈ Rn×n is the system elastic stiffness
matrix. u ∈ Rn is the control input vector, and d ∈ Rn

denotes the unknown disturbance acting on the joints.
In practice, the exact model parameters are not known, so

the actual system matrices could be expressed as

M(θ) = M̄(θ) + ∆M(θ),

H(θ, θ̇) = H̄(θ, θ̇) + ∆H(θ, θ̇),

K = K̄ + ∆K,

(9)

where M̄, H̄, K̄ are matrices constructed using known pa-
rameters, ∆M,∆H,∆K represent the modeling errors in-
duced by parameter uncertainties. Therefore, substituting (9)
into (8) yields

M̄(θ)θ̈ + H̄(θ, θ̇) + K̄θ = u+ d̃(θ, θ̇), (10)

where d̃(θ, θ̇) = d−∆M(θ)−∆H(θ, θ̇)−∆K takes into
account the model uncertainties and unknown disturbances.
Denote x = [θ, θ̇]′, then from (10), we have

ẋ =

(
θ̇

M̄−1(θ)(u− H̄(θ, θ̇)− K̄θ)

)
+

(
0

M̄−1(θ)d̃(θ, θ̇)

)
.

(11)
The discrete-time state space model is

xk+1 = f̄(xk,uk) + fd(xk,uk), (12)

where xk = [θ(tk), θ̇(tk)]′ and uk = u(tk) are the state
vector and the control input vector at time tk = k∆t,
respectively. f̄(.) is a nonlinear function constructed using
known parameters, and is denoted as the nominal model.
fd(.) is an unknown nonlinear function which accounts for
model uncertainties and is denoted as the learning model.

In this paper, the prediction model (12) is composed
of a nominal model and a learning model. The nominal
model f̄(.) is derived using the first principle with known
parameters, and the learning model fd(.) is constructed via
training the LSTM network offline.

From (12), let

∆xk , xk − f̄(xk−1,uk−1), (13)

where ∆xk represents the differences between actual mea-
surements xk and predictions from the nominal model at
time step k. Let x̃k = [∆x′k,u

′
k]′, and the objective is to

train the LSTM network, such that

Yk = x̃k+1 = f̃d(X̃k), (14)

where X̃k = [x̃k−p+1, x̃k−p+2, · · · , x̃k] include the past p
information, p is the design parameter.

B. Cost Function

The objective is to control a robotic arm to track a refer-
ence trajectory under constraints and uncertainties. In order
to ensure smooth changes in control inputs, in this paper, we
design the learning-based model predictive controller using
the increments of control inputs, i.e., at each time step k,
given the current state xk and control input uk−1, MPC
solves the optimal control problem

min
{∆uk+l}H−1

l=0

J(xk, {∆uk}H−1
l=0 )

= min
{∆uk+l}H−1

l=0

cH(xk+H|k) +

H−1∑
l=0

cl(xk+l|k,∆uk+l),

(15)
where H is the length of the moving horizon, and c0, · · · , cH
represents the transient and terminal cost, respectively. Let

∆uk+l , uk+l − uk+l−1,∀l = 0, 1, · · · , H − 1, (16)

represents the input increment at time step k + l.
The predicted state is computed recursively as

uk+l = uk+l−1 + ∆uk+l,

xk+l+1|k = f̄(xk+l|k,uk+l) + ∆xk+l+1,
(17)

where xk|k = xk, and(
∆xk+l+1

uk+l+1

)
= f̃d(

(
∆xk+l−p+1 · · · ∆xk+l

uk−p+1 · · · uk+l

)
).

(18)
with 0 ≤ l ≤ H − 1.

Remark 1: Note that at time step k, the actual mea-
surements xk+1, · · · ,xk+H are unknown, and hence, are
approximated via (17). After the optimal control action uk is
implemented, then ∆xk+1 = xk+1 − f̄(xk,uk) is updated.
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C. Control Constraints

Both the control inputs uk and the increments of control
inputs ∆uk are constrained. The input incremental con-
straints are given as

∆umin ≤ ∆uk ≤ ∆umax, k = 1, 2, · · · , (19)

where ∆umin and ∆umax are lower and upper bounds of
control input increments, respectively.

The transformation between the input constraints and the
input incremental constraints is derived as follows. Given
uk−1, at time step k,

uk = uk−1 + ∆uk

uk+1 = uk−1 + ∆uk + ∆uk+1

...
uk+H−1 = uk−1 + ∆uk + · · ·+ ∆uk+H−1.

(20)

Rewrite the above equation in a matrix form as uk

...
uk+H−1


︸ ︷︷ ︸

Uk

= G

 ∆uk

...
∆uk+H−1


︸ ︷︷ ︸

∆Uk

+

uk−1

...
uk−1


︸ ︷︷ ︸

Ũk−1

, (21)

where

G =


I 0 · · · 0
I I · · · 0
...

...
...

...
I I · · · I

 (22)

and hence,

Umin ≤ Uk = G∆Uk + Ũk−1 ≤ Umax, (23)

where Umin and Umax are stacks of the lower and upper
bounds of the control inputs, respectively. Therefore,

G−1(Umin − Ũk−1) ≤ ∆Uk ≤ G−1(Umax − Ũk−1). (24)

Let ∆Ũmin = [∆u′min,∆u
′
min, · · · ,∆u′min]′, and

∆Ũmax = [∆u′max,∆u
′
max, · · · ,∆u′max]′, then at each

time step k, MPC solves the optimal control problem (15)
subject to input constraints

max{G−1(Umin − Ũk−1),∆Ũmin} ≤ ∆Uk

≤ min{G−1(Umax − Ũk−1),∆Ũmax}
(25)

D. LB-MPC Algorithm

The learning-based model predictive control algorithm
presented in this paper is summarized in Algorithm 1.

IV. COMPUTATIONAL RESULTS

In this section, we test the proposed learning-based model
predictive controller using a double link rigid-flexible ma-
nipulator. Define the root mean square error (RMSE) as

RMSE =

√√√√ 1

T

T∑
k=1

(ak − āk)2, (26)

where ak and āk represents the actual and predicted states
at time step k, respectively.

The rigid-flexible manipulator is shown in Fig. 2.
The dynamic model is given in [20]. We assume that the

actual model parameters are unknown, and parameters we
use to construct the nominal model are:

L1 = 0.3m,mL1 = 26.07kg, L2 = 1.7m,mL2 = 10kg,

JL1 = 20.86kg ·m2, Ih = 30kg ·m2, ρA = 54.98kg/m,

EI = 16.485N ·m2,Mj = 5kg, Ij = 15kg ·m2,

where L1,mL1, JL1 are the length, mass and moment of in-
ertia of the rigid link, respectively. L2,mL2, Ih, ρ, A,EI are
the length, mass, moment of inertia, density, cross-sectional
area and flexural rigidity of the flexible link, respectively.
Mj and Ij are the mass and moment of inertia of the second
joint, respectively. θ1, θ2 are the relative joint angle of the
rigid and flexible link, respectively.

The sampling time ∆t = 0.01s is used to discretize the
system in time, and the control inputs are the torques applied
to the joints. We consider the following input constraints
‖uk‖ ≤ 20, and input incremental constraints ‖∆uk‖ ≤ 1.0.
The control objective is to find the optimal control sequence
such that the end of the flexible link can track a given
reference trajectory in 20 seconds. The reference trajectory
is shown in Fig. 3.

First, we illustrate the training of the LSTM network.
Assume that the model parameters of the actual sys-
tems are perturbed from the nominal with 20% uncer-
tainties. The control input signal is chosen as uk =

Algorithm 1 LB-MPC Algorithm
1: Train the LSTM network (14) offline.
2: Set k = 0, given initial state x0, and set u−1 = 0.
3: while k ≤ T − 1 do
4: Set xk|k = xk, for l = 0, 1, · · · , H − 1, predict

states for H steps via (17) and (18);
5: Solves the optimal control problem (15) for optimal

control increments ∆u∗k+l, l = 0, · · · , H − 1 subject to
control constraints (25);

6: Apply the first optimal control action u∗k = uk−1 +
∆u∗k to the actual system (12) for xk+1;

7: Update ∆xk+1 = xk+1 − f̄(xk,u
∗
k);

8: k = k + 1.
9: end while

Fig. 2. Double link rigid-flexible manipulator
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[−6cos(0.1k∆t),−6cos(0.1k∆t)] with zero initial state.
Data from the actual model for a total of 150 seconds are
collected and normalized, where 80% of the data are used as
the training data and 20% are used as the testing data. The
length of the moving horizon p = 5, i.e., at each time step
k, the past 5 measurements [x̃k−4, x̃k−3, · · · , x̃k] are used
as the inputs, and the output of the LSTM is x̃k+1, where
x̃k = [∆x′k,u

′
k]′, and the schematic diagram is shown in

Fig. 4.
The LSTM network used in this paper has two hidden

layers. In order to prevent overfitting and improve the ro-
bustness of the model, some cells are randomly discarded
from the network with a probability of 0.3. The number of
neurons is 29 and the learning rate is 0.0005. The number
of MaxEpochs is 6, and the size of mini batch is 64.

To test the accuracy of the LSTM model, we perturb the
actual system with Gaussian white noise wk ∼ N(0, 0.2)
acting on the joints. The actual modeling errors are the
differences between the actual data and the one computed
using the nominal model. In Fig.5, we show comparisons of
the actual modeling errors with modeling errors predicted
using the LSTM model. It can be seen that the LSTM
learning model could estimate the modeling uncertainties
accurately.

In the following, we assume that parameters of the actual
robotic arm system are perturbed by 20% and 40% from
the nominal model, respectively, with Gaussian white noise
wk ∼ N(0, 0.2) acting on the joints. The prediction model
used in LB-MPC consists of the nominal model and a
learning model, where the learning model is trained from
the corresponding actual system. In Fig. 6, we compare
tracking errors of the flexible link between the proposed
method and the decoupled feedback control method proposed
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Fig. 3. Reference Trajectory

Fig. 4. Schematic diagram of time series construction

in [20]. The same nominal model is used to design the open
loop controller, and an LQR is designed for the close-loop
control in the decoupled feedback control method. To test
the performance of the proposed approach, we also compare
with the standard MPC approach without consideration of
modeling uncertainties, i.e., the controller in standard MPC
is designed using the nominal model as the prediction model.
Comparisons of input torques are shown in Fig. 7.

It can be seen that with model uncertainties and unknown
disturbances, LB-MPC outperforms the other two methods,
and tracking errors of the LB-MPC method is relatively
small. Further, we compare the proposed LB-MPC controller
with the decoupled feedback controller and standard MPC
controller for systems with different model uncertainties. The
average RMSE of the flexible link over the entire simulation
time is shown in Fig.8. It can be seen that with increasing
of model uncertainties, the proposed LB-MPC method still
outperforms the other two methods.

V. CONCLUSIONS

In this paper, we have proposed a learning-based model
predictive control strategy with application to robotic motion
planning problem. An online model predictive control frame-
work is used, where the prediction model is composed of a
nominal model and a learning model. The nominal model is
derived using the first principle with known parameters, the
learning model is constructed via training the LSTM network
offline, and is used to taken into account unknown modeling
errors and disturbances. MPC solves an online optimization
problem for the optimal control input increments, with both
constraints on the control inputs and control input incre-
ments. We have tested the proposed approach on a double
link rigid-flexible manipulator, and showed the performance
of the proposed approach. It can be seen that the proposed
approach can track the reference trajectory accurately and is
robust to the model uncertainties and random disturbances.
Future work will generalize the proposed approach to par-
tially observable systems.
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