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Abstract— The tracking accuracy in motion control systems
like the moving stages in lithography machines, e.g., wafer scan-
ners or metrology inspection tools, is partly determined by how
the frequency content of its reference trajectories is transferred
to the closed-loop tracking error. In this regard, fourth-order
reference trajectories for point-to-point motion will be studied
from a frequency-domain perspective. By appropriately pairing
the maximum snap and maximum jerk values, weakly-damped
modes in the closed-loop response can be robustly dealt with
without introducing a penalty on throughput.

I. INTRODUCTION

In the semiconductor industry, stage systems, like the
reticle and wafer stages in wafer scanners, perform nano-
positioning tasks under aggressive tracking motions [1]. To
meet the ever-tightening specifications in stage error budgets,
stage design relies on control. First, feedback control of the
multivariable stage system in the presence of disturbances
like shown in Butler [2]. Second, feedforward control to
deal with tracking of the rigid- as well as the non-rigid
body stage dynamics; illustrative is the initial work on snap
feedforward control by Boerlage et al. [3], with data-based
parameter tuning by Van der Meulen et al. [4], brought into
the instrumental variables framework by Boeren et al. [5],
and often replaced by linear parameter varying methods as
described in Kontaras et al. [6]. Third, design and shaping
of its reference trajectories, which is the topic of this paper.

Input shaping has a long history in motion control systems.
Dating back to 1957, posicast control [7], [8] by Smith
reflected the idea of convolving a 2-pulse sequence with a
step input as a means for a dynamic system to move forward
without vibration. The idea was further developed by Seering
and co-workers [9] in the 1980’s who considered general
finite impulse response filters, essentially notch filters, for
the convolution, and introduced robustness to modelling error
during the late 1980’s and early 1990’s by the zero vibration
and derivative (ZVD) shaper and the extra-insensitive (EI)
shaper, as in Singhose, Seering & Singer [10] and the
references therein, but also the work of Pao [11], as well
as the overview by Singhose [12] that covers a broader
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historical perspective. Recent analysis using impulse vectors
can be found in the work of Kang et al. [13].

Though proven effective as a technique for motion control
by numerous applications, input shapers do come with a
penalty on the move time [14]. For point-to-point motions
in wafer scanners, this translates directly into a penalty on
throughput. Shaping the input in wafer scanners is therefore
done by exploiting the freedom in designing the snap-over-
jerk and jerk-over-acceleration ratios instead, which still
comes close to the original idea of posicast control. Namely,
the jerk step input is convolved with a snap pulse sequence,
which connects to the work of Béarée [15] on damped-jerk
trajectory analysis. By adjusting the width and height of the
jerk and snap steps, the spectrum of the input can be designed
to have no spectral content at specific frequencies without
introducing a penalty on throughput. By matching these
frequencies (zeros) or multiples thereof with the frequencies
(poles) of weakly-damped modes of the stage system that
hamper tracking performance, vibrations in the tracking error
response can be mitigated. In this regard, the work of Al-
Rawashdeh at al. [16] on second- and third-order trajectories
is of interest. For higher-order motions, Sencer & Tajima
[17], Sencer et al. [18], and Dumanli & Sencer [19] show
attenuation of spectral energy in desired frequency bands.

This paper has two contributions. First, a formal
frequency-domain analysis is given of fourth-order reference
trajectories; see also Van den Biggelaar et al. [20] and Lam-
brechts et al. [21] for a time-domain design, the early work
by Singh & Vadali [22] for robust time-optimal control using
a frequency-domain approach, and the work of Bai et al. [23]
on time-optimal third-order trajectories. The main result will
be a parametric representation of the spectral content that
can be used for trajectory generation and design. Second, a
design criterion is presented for finding the maximum jerk
and snap values (under fixed maximum values of acceleration
and velocity) that minimize the closed-loop error signals in
the L∞ sense (and in the presence of weakly-damped stage
modes) in a throughput-invariant manner; the works of Miu
& Bhat [24] and Al-Masoud et al. [25] consider minimizing
the L2 norm, but without constraining the order.

The remainder of the paper is organized as follows. In
Section II, the motion control context is given and the stage
tracking problem is formulated. In Section III, a frequency-
domain analysis of fourth-order reference trajectories is
presented, whereas in Section IV the design criterion is pre-
sented as well as the results obtained from a simplified stage
model. In Section V, the main conclusions are summarized.
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II. TRACKING PROBLEM FORMULATION

Consider the motion control setting in Fig.1 with stage

Fig. 1. Motion control setting.

system P , feedback controller Cfb, feedforward controller
Cff , all being represented (for the sake of simplicity) by
single-input single-output (SISO) systems. Furthermore, let
reference r, input/output disturbances du, dy , and sensor
noise ny be the inputs, and the stage position y the single
output. The stage system P can be modelled as

P(ω) = − 1

mω2︸ ︷︷ ︸
Prb(ω)

+

∞∑
i=1

ci
ω2 − 2ζiωijω − ω2

i︸ ︷︷ ︸
Pnrb(ω)

, (1)

with m the mass of the rigid body mode and ζi, ωi, ci the
dimensionless damping, natural frequency, and scaling factor,
respectively, of the i-th non-rigid body mode. In achieving
appropriate tracking performance, i.e., y(ω) → r(ω), the
nominal feedforward controller is generally designed as

Cff (ω) = P−1
rb (ω) = −mω2. (2)

By assuming all the inputs to be the result of zero-mean
white-noise processes except for the reference signal r, the
transfer from reference trajectory r to tracking error e =
r− y with feedforward controller (2), and by neglecting the
remaining inputs, is given by

e(ω) =
(1− Cff (ω)P(ω))

1 + Cfb(ω)P(ω)
· r(ω) (3)

= −
P−1
rb (ω)Pnrb(ω)

1 + Cfb(ω)P(ω)
· r(ω).

Remark 2.1: Wafer scanning is done under constant ve-
locity during exposure [1]. As such, the tracking error e in
(3) should be minimized in the L2 or L∞-sense within the
exposure interval, for example by minimizing ∥e∥2 or ∥e∥∞.

Example 2.1: Consider a fourth-order stage model

P(ω) := − 1

mω2
+

c1(ω)

ω2 − 2ζ1ω1jω − w2
1

, and

c1(ω) =
b12/(m1m2) + jω/m

jω
, ζ1 =

b12
2k12

ω1,

ω1 =

√
k12m

m1m2
,

(4)

with moving mass m = m1 +m2, m1 = 15 kg and m2 = 5
kg, interconnected spring stiffness k12 = 2.61 × 107 N/m,
and damping coefficient of the single flexible mode b12 =

1.98× 102 Ns/m. The magnitude characteristics of the non-
collocated plant in (4) resulting from a force being applied
on mass m1 to a position of mass m2 are shown in Fig.2(a).
The magnitude characteristics show the minus 40 dB/dec

Fig. 2. Characteristics of (a) plant P(ω), (b) feedforward controller
Cff (ω), (c) feedback controller Cfb(ω), and openloop Cfb(ω)P(ω).

decline for the system moving as a rigid body as well as the
flexible mode with resonance frequency of 420 Hz beyond
which a minus 80 dB/dec decline occurs. The magnitude
characteristics of the ideal feedforward controller, obtained
from plant inversion, are shown in Fig.2(b). The feedback
controller is given by a PID controller with a second-order
low-pass filter, or

Cfb(ω) = kp

(
jω

ωd
+ 1 +

ωi

jω

)
︸ ︷︷ ︸

pid

·
ω2
lp

(jω)2 + 2βωlp(jω) + ω2
lp︸ ︷︷ ︸

2nd−order low−pass

,

(5)
with kp = 1.026 × 106 N/m, ωd = 2π × 27.5 rad/s,
ωi = 2π×12.5 rad/s, ωlp = 2π×319.5 rad/s, and β = 0.83.
The magnitude characteristics of the feedback controller
are shown in Fig.2(c), which, together with the plant in (4)
lead to a controller bandwidth of 50 Hz. Robust stability of
the feedback control design is shown by Nyquist evaluation
in Fig.2(d), which shows anti-clockwise encirclement of
the minus-one point with sufficient modulus, phase, and
gain-margins, i.e., sensitivity peaking of ≈ 3 dB.

Returning to the input sensitivity function in (3), sufficiently
below the controller bandwidth, it generally holds that for
ω → 0, |Cfb(ω)P(ω)| ≫ 1, whereas |P(ω)| ≈ |Prb(ω)| ≫
|Pnrb(ω)|; recall Example 2.1. As a result, (3) describes
appropriate tracking in the sense of

|e(ω)| ≤ |Pnrb(ω)|
|Prb(ω)|

·
∣∣∣∣ 1

1 + Cfb(ω)P(ω)

∣∣∣∣ · |r(ω)|
≪ |r(ω)| for ω → 0,

(6)
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Contrary, if |Cfb(ω)P(ω)| ≪ 1, it follows that

e(ω) ≈ −
n∑

i=1

ci
ω2 − 2ζiω̄ijω − ω̄2

i

· P−1
rb (ω) · r(ω), (7)

which shows that at the natural frequencies ω̄i of the weakly-
damped modes, the tracking error e(ω̄i) ̸= 0.

Observation 2.1: As the feedback controller Cfb plays no
role in (7), a loopshaping design with notch filters chosen
at the natural frequencies ω̄i does not prevent the natural
frequencies ω̄i from being excited by r.

Observation 2.2: The quasi-static contribution:
n∑

i=1

ci
ω̄2
i

, for ω → 0, (8)

can for example be taken care of by snap feedforward
control, recall Example 2.1. Contrarily, the weakly-damped
resonances are rarely compensated for in stage practice. This
is due to the lack of robustness a higher-order feedforward
controller has against machine-to-machine variation in reso-
nance frequencies ω̄i and damping coefficients ζi.

Observation 2.3: As r in (7) appears affine in e, any
reduction (or amplification) in frequency content of r(ω̄i)
will result in an equal reduction (or amplification) of e(ω̄i).
Given these observations, it makes sense to avoid excit-
ing weakly-damped resonances by appropriate design and
shaping of the reference trajectory r. This is regardless the
presence (or absence) of disturbances and noises in Fig.2.

III. FOURTH-ORDER TRAJECTORIES:
FREQUENCY-DOMAIN ANALYSIS

For design and shaping of the reference trajectory r, let’s
start by considering the following definition.

Definition 3.1: For point-to-point motion, the fourth-order
reference trajectory r = r(t) (unit in m) is defined as

r(t) =



r1, if t ≤ τ11

∫ t

τ1
1

{∫ t

τ1
1

{ = acceleration a(t) in m/s2︷ ︸︸ ︷∫ t

τ1
1

{ ∫ t

τ1
1

s(τ)dτ︸ ︷︷ ︸
= jerk j(t) in m/s3

}
dτ

}
dτ

︸ ︷︷ ︸
= velocity v(t) in m/s

}
dτ,

r2, if t ≥ τ82
(9)

for t ∈ (τ11 , τ
8
2 ), where snap signal s(t) in m/s4 is given by

s(τ) =

{
sgn(i) · smax, if τ ∈ [τ i1, τ

i
2], i ∈ {1, 2, . . . , 8},

0, elsewhere,
(10)

with initial condition v(τ11 ) = a(τ11 ) = j(τ11 ) = 0 at t = τ11
seconds and remaining time constants (in seconds)

τ i1 = τ i−1
1 + τ21 for i ∈ {4, 6, 8}, τ21 =

amax

jmax
,

τ31 =
vmax

amax
, τ51 = τ42 + τscan, τ

7
1 = τ51 + τ31 ,

τ i2 = τ i1 + τ12 for i ∈ {2, 3, 4, 5, 6, 7, 8}, τ12 =
jmax

smax
,

(11)

sgn(i) represents positive/negative unity scaling:

i 1 2 3 4 5 6 7 8
sgn(i) +1 −1 −1 +1 −1 +1 +1 −1

,

τscan = dscan/vmax represents the exposure time, i.e., the
ratio between scanning length dscan and the scanning veloc-
ity vmax, whereas τ82 = 2τ51 − τscan represents the end time
(or period if τ11 = 0) of the point-to-point motion.

Example 3.1: According to Definition 3.1, consider the
fourth-order reference trajectories as shown in Fig.3. For a

Fig. 3. Fourth-order point-to-point trajectories r(t) with identical period
τ82 − τ11 and vmax and amax, but with different jmax and smax.

maximum velocity of vmax = 0.5 m/s, acceleration amax =
20 m/s2, and three sets for jerk jmax and snap smax:

Set1:jmax = 4.0× 103 m/s3, smax = 8.0× 105 m/s4

Set2:jmax = 2.7812× 103 m/s3, smax = 9.9686× 105 m/s4

Set3:jmax = 2.368× 103 m/s3, smax = 1.6× 106 m/s4,

the figure shows that all trajectories are equally fast when
going from the initial position r1 = r(τ11 ) = 0 at t = τ11 = 0
to the final position r2 = r(τ82 ) = 0.0205 at t = τ82 = 0.076.
The differences are in the jerk and snap profiles. Set 1 has a
triangular jerk profile with an almost two times higher value
for jmax compared to the trapezoidal jerk profile of Set 2
and Set 3, whereas the latter has a two times higher value
for smax, but with the smallest duration. The time constants
in (11) from Definition 3.1 associated with the three sets are
given in Table I.

TABLE I
PARAMETER VALUES.

Set τ11 τ12 τ21 τ22 τ31
1 0 0.0050 0.0050 0.01 0.0250
2 0 0.0028 0.0072 0.01 0.0250
3 0 0.0015 0.0085 0.01 0.0250

τ32 τ41 τ42 τscan
1 - 0.0300 0.0300 0.0350 0.0060
2 - 0.0278 0.0322 0.0350 0.0060
3 - 0.0265 0.0335 0.0350 0.0060
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In frequency domain, s from (10) reads

F{s(t)} =

∫ ∞

−∞
s(t)e−2πjftdt

=

8∑
i=1

{∫ τ i
2

τ i
1

sgn(i) · smax · e−2πjftdt

}
,

(12)

with F{·} denoting the Fourier transform. This brings us to
the first contribution and main result.

Theorem 3.1: According to Definition 3.1 trajectory r =
r(t) admits the following frequency-domain description:

F{r(t)} =
1

2j
· smax

πf
· e−πjfτ8

2 ·
i=4∏
i=1

sin(πfτi)

πf
, (13)

i.e., the frequency-scaled product of four (normalized) car-
dinal sine functions of the form sin(πx)/πx.

Proof: For i = 1 in (12), Fourier analysis gives∫ τ1
2

0

smax · e−2πjftdt = − smax

2πjf
· e−2πjft

∣∣∣∣τ1
2

0

= 2j · smax

2πjf
· e−πjfτ1

2 · 1

2j
·
(
eπjfτ

1
2 − e−πjfτ1

2

)
=

smax

πf
· e−πjfτ1

2 · sin(πfτ12 ).

(14)

Similar for i = 2, which, when compared to (14), features a
time-shift τ21 as well as a sign change, it follows that

−
∫ τ2

1+τ1
2

τ2
1

smax · e−2πjftdt

= −e−2πjfτ2
1 ·

∫ τ1
2

0

smax · e−2πjftdt

= −smax

πf
· e−2πjfτ2

1 · e−πjfτ1
2 · sin(πfτ12 ).

(15)

Adding up both contributions gives
2∑

i=1

{∫ τ i
2

τ i
1

sgn(i) · smax · e−2πjftdt

}

= (1− e−2πjfτ2
1 ) ·

∫ τ1
2

0

smax · e−2πjftdt

= 2j · e−πjfτ2
1 · 1

2j
·
(
eπjfτ

2
1 − e−πjfτ2

1

)
· . . .

· · ·
∫ τ1

2

0

smax · e−2πjftdt

= 2j · smax

πf
· e−πjf(τ1

2+τ2
1 ) · sin(πfτ21 ) · sin(πfτ12 ).

(16)

Repeating the argument for the combined contributions of
i = 3 and i = 4, that is, using (16) and applying a time shift
of τ31 as well as a sign change, it follows that

4∑
i=3

{∫ τ i
2

τ i
1

sgn(i) · smax · e−2πjftdt

}

= −e−2πjfτ3
1 ·

2∑
i=1

{∫ τ i
2

τ i
1

sgn(i) · smax · e−2πjftdt

}
.

(17)

Combining (17) with (16) gives for the complete acceleration
phase t ∈ [τ11 , τ

4
2 ],

4∑
i=1

{∫ τ i
2

τ i
1

sgn(i) · smax · e−2πjftdt

}

= (1− e−2πjfτ3
1 ) ·

2∑
i=1

{∫ τ i
2

τ i
1

sgn(i) · smax · e−2πjftdt

}
= 2j · e−πjfτ3

1 · 1

2j
·
(
eπjfτ

3
1 − e−πjfτ3

1

)
· . . .

· · ·
2∑

i=1

{∫ τ i
2

τ i
1

sgn(i) · smax · e−2πjftdt

}
= (2j)2 · smax

πf
· e−πjf(τ1

2+τ2
1+τ3

1 ) · sin(πfτ31 ) · . . .

. . . sin(πfτ21 ) · sin(πfτ12 ).
(18)

Similarly for the deceleration phase t ∈ [τ51 , τ
8
2 ], so after

time shift τ51 = τ12 + τ21 + τ31 + τscan and opposite signs, it
holds that

8∑
i=5

{∫ τ i
2

τ i
1

sgn(i) · smax · e−2πjftdt

}

= −e−2πjfτ5
1 ·

4∑
i=1

{∫ τ i
2

τ i
1

sgn(i) · smax · e−2πjftdt

}
,

(19)

which for the last term in (12) and by using τ82 = 2τ51 −τscan
leads to

F{s(t)} =

8∑
i=1

{∫ τ i
2

τ i
1

sgn(i) · smax · e−2πjftdt

}

=
(
1− e−2πjfτ5

1

)
·

4∑
i=1

{∫ τ i
2

τ i
1

sgn(i) · smax · e−2πjftdt

}
= 2j · e−πjfτ5

1 · 1

2j
·
(
eπjfτ

5
1 − e−πjfτ5

1

)
· . . .

· · ·
4∑

i=1

{∫ τ i
2

τ i
1

sgn(i) · smax · e−2πjftdt

}
= (2j)3 · smax

πf
· e−πjfτ8

2 · sin(πfτ82 ) · sin(πfτ31 ) · . . .

. . . sin(πfτ21 ) · sin(πfτ12 ).
(20)

Four times integration of F{s(t)} gives in frequency domain

F{r(t)} =
F{s(t)}
(2πjf)4

, (21)

which together with (20) yields (13).
Observation 3.1: From (13), it is clear that F{r(t)}

has no spectral content at frequencies f ∈ {1/τ82 ,
1/τ31 , 1/τ

2
1 , 1/τ

1
2 }, or natural multiples thereof.

Observation 3.2: For f → 0, (13) shows a 20 dB/dec
decline in frequency content, which is identical to the at-
tenuation obtained for a point-to-point motion with either a
second- or third-order trajectory. For f → ∞, a 100 dB/dec
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attenuation results, which gives 20 dB/dec more attenuation
with respect to a third-order trajectory, and 40 dB/dec more
attenuation than with a second-order trajectory.

Observation 3.3: For fixed amax, vmax, τscan, it follows
from Definition 3.1 that a point-to-point motion with a
fourth-order trajectory takes 2τ12 seconds longer than a simi-
lar motion with a third-order trajectory, and 2τ22 = 2τ12 +2τ21
seconds longer than again a similar motion but with a second-
order trajectory. This shows a penalty on time needed to
conduct point-to-point motions for increased order.

IV. APPLICATION TO WAFER SCANNERS

For wafer scanners, increasing the order of the reference
trajectories may come with decreased wafer throughput,
but not necessarily at the expense of wafer yield, i.e., the
amount of effective chips being processed per time unit —
nowadays wafer scanners either use fourth- or third-order
trajectories. While throughput may drop from increasing
order, the accuracy of servo positioning generally improves.
This leads to reduced losses in terms of defective chips, and
as such a positive effect on wafer yield. The next result shows
how to influence yield in a throughput-invariant manner.

Corollary 4.1: Let τ82 , τscan, amax, and vmax be fixed
(specified) values. The frequencies 1/τ21 , 1/τ

1
2 (or natural

multiples thereof) at which r from Definition 3.1 has no
spectral content can be chosen freely for all pairs (τ21 , τ

1
2 )

under the following conditions:
(a) τ21 + τ12 = c1,
(b) 1

2c1 ≤ τ21 ≤ c2,
(c) c3 ≤ τ12 ≤ c4,

with time constants c1 = τ22 , c2 = c1 − jlower
max /suppermax ,

c3 = jlower
max /suppermax , c4 = juppermax /slower

max , and jmax ∈
[jlower
max , juppermax ], smax ∈ [slower

max , suppermax ].
Proof: The proof is graphically shown in Fig.4, but

Fig. 4. Snap-jerk free parameter space of fourth-order trajectory r.

also follows from
τ82 = 2τ51 − τscan (or with τ51 = τ42 + τscan)

= 2τ42 + τscan (or with τ42 = τ41 + τ12 = τ31 + τ21 + τ12 )

= 2τ31 + 2τ21 + 2τ12 + τscan.
(22)

With τ82 , τscan, amax, vmax being fixed values and τ31
constant, τ21 + τ12 = τ22 in (22) must be constant too. The
ranges jlower

max ≤ jmax ≤ juppermax , slower
max ≤ smax ≤ suppermax

shown in Fig.4 allow for freely choosing pairs (τ21 , τ
1
2 ) that

satisfy τ21 + τ12 = τ22 and by design keep τ82 , τscan, amax,
and vmax at specified values, which completes the proof.

Example 4.1: In line with Theorem 3.1, the motivation for
the three sets in Fig.3 of Section III stems from frequency-
domain evaluation as shown in Fig.5. Here, it can be seen

Fig. 5. Magnitude spectra of F{r(t)} for three fourth-order point-to-point
motions r(t) that have identical duration τ82 , and motion parameters vmax,
and amax, but different jmax and smax.

that Set 1 and Set 2 (as opposed to Set 3) are designed to
have significantly less spectral content around the weakly-
damped resonance frequency of 420 Hz, recall Example 2.1.
The result will be less excitation of the associated structural
mode under closed-loop control. This is shown in the bottom
part of the figure by time-series responses.
From Example 4.1, it becomes clear that (high-frequency)
tracking accuracy during exposure can be improved in a
throughput-invariant manner by appropriate pairing of jmax

and smax. This brings us to the second contribution.
Proposition 4.1: Consider r from Definition 3.1 which

satisfies the conditions from Corollary 4.1. The pair (τ21 , τ
1
2 )

that minimizes the closed-loop error signal e(t) for the time
interval t ∈ [τ11 , τ

8
2 ] in an L∞ sense is given by

minimize
(τ2

1 ,τ
1
2 )

∥e(t)∥∞

subject to τ21 + τ12 = c1
1

2
c1 ≤ τ21 ≤ c2

c3 ≤ τ12 ≤ c4.

(23)

Proposition 4.1 represents a semi-definite program that typi-
cally can be solved using interior point methods. In view of
Corollary 4.1 and Proposition 4.1, Fig.6 shows the optimal
Set 2 for the pair (jmax, smax) around jmax = 2823 m/s3

and smax = 9.7 × 105 m/s4. Set 2 induces an error of
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Fig. 6. ∥e(t)∥∞ for t ∈ [τ11 , τ
8
2 ] and various pairs (τ21 , τ

1
2 ) from fourth-

order point-to-point motions r(t) that have identical r(t), v(t), a(t) but
different pairs (j(t), s(t)).

∥e(t)∥∞ = 4.86 nm, which is slightly better than the
performance obtained with Set 1 of ∥e(t)∥∞ = 5.14 nm,
but significantly better than the performance obtained with
Set 3 of ∥e(t)∥∞ = 7.4 nm.

Remark 4.1: Different from the unfiltered L∞ context in
Proposition 4.1, one could argue that the use of filtered
signals like moving average or moving standard deviation
error signals as used in wafer scanner applications could be
useful. As the moving average filter operation in frequency
domain can be represented by a (normalized) cardinal sine
function, this does come at the risk of becoming insensitive
to specific resonance frequencies that could be relevant to
stage positioning. Alternatively, L2 or Lrms can be con-
sidered. However, as these reflect the summation of energy
contributions over all frequencies, they appear less sensitive
to (and suited for) shaping of reference trajectories dedicated
to individual frequency contributions.

Remark 4.2: Scanning multiple fields on a wafer is done
by constructing a sequence of point-to-point motions. In the
trajectory generation, the maximum values as well as the
ratios jerk-over-acceleration and snap-over-jerk are kept con-
stant, i.e., all generated trajectories essentially have identical
frequency-domain characteristics. As such, the computation
time needed to solve the semi-definite program in Proposition
4.1 does not play a role during wafer scanner operation.

V. CONCLUSIONS

Appropriately pairing snap and jerk values in fourth-
order reference trajectories is shown to be effective when
dealing with motion systems with weakly-damped modes.
This pairing offers improvements to stage reference tracking
that need not come at the expense of throughput, and may
contribute to the improvement of wafer yield instead.
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