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Abstract— In this work, we consider the problem of designing
a distributed, output synchronization protocol, for heteroge-
neous, high-order, uncertain, multi-agent systems in Brunovsky
canonical form, operated in a leader-follower scenario. The
underlying communication graph is directed and switching.
The proposed controller, which is of low-complexity, enforces
prescribed performance bounds on the convergence time and
the output synchronization accuracy. The leader dynamics
are unknown. Each following agent requires relative output
information from its neighbors, as well as, measuring its own
state. The theoretical findings are highlighted via simulation
studies.

I. INTRODUCTION

Output synchronization of heterogeneous multi-agent sys-
tems (MASs), has received significant attention. Its main
objective is to reach an agreement between the outputs
of the agents, under constrained information exchange and
despite the presence of possible uncertain nonlinearities in
the dynamics that govern their motion [1].

In the literature, the majority of works consider the case
where the underlying communication network that inter-
connects all agents in the MAS is fixed. However, many
operational scenarios exist that violate this unchanged graph
hypothesis. The paradigm of sudden (unexpected) commu-
nication failures between neighboring agents, falls into this
category. A recent survey on this topic can be found in [2].
For linear MASs under time-varying graph topologies, [3]
considers the finite-time rendezvous problem, while [4] ad-
dresses the event-triggered synchronization, utilizing state
estimation. Exponential synchronization in the presence of
delays for a randomly switching graph and for a class of
nonlinear MASs was discussed in [5]. Despite the switching
graphs, all the aforementioned works consider MASs with
known dynamics. To alleviate this restriction, [6] incorpo-
rated 3rd-order MASs in Brunovsky canonical form con-
nected over an undirected switching graph. It was assumed
that all graph nodes that were cut off were replaced by
new ones. To estimate the uncertain dynamics, adaptive laws
were utilized and combined with a sliding-mode controller.
As a consequence, chattering was inevitably introduced
around the sliding surface. However, the latter phenomenon
is undesirable, as it typically leads to high control activity
and may further excite unmodelled high-frequency dynamics.
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Additionally, the considered nonlinearities were limited, as
the control input matrix was taken unitary. Furthermore,
in [7] asymptotic synchronization for nonlinear MASs was
achieved under the assumption that graph changes were
based on average dwell time.

Up to this point, all stated works focus on establish-
ing stability, while performance-related control objectives
were typically overlooked. In this direction, the prescribed
performance control (PPC) framework was proposed to
successfully enforce prescribed and user-defined transient
and steady-state performance bounds on the synchronization
error, for various classes of high-order, uncertain, nonlinear
MASs [8], [9]. However, the underlying communication
network was considered fixed. In [10], PPC was utilized
in conjunction with an adaptive fuzzy controller, to handle
the uncertain nonlinearities of the MAS, while achieving
performance attributes on the output synchronization error.
The agent dynamics belonged to the strict-feedback class,
having though constants to multiply the control input. The
communication graph was directed and switching. However,
the incorporation of adaptive controllers and of approxima-
tion structures (i.e., fuzzy systems), increases the dynamic
order of the closed-loop, leading to additional differential
equations that have to be solved to produce the control
signal. Moreover, hard calculations, analytic and numerical,
are also required. The aforementioned questions directly the
applicability, as the computational power on-board of typical
MAS platforms is limited. Therefore, in this type of research,
developing low-complexity control solutions constitutes an
inelastic design constraint.

Motivated by the above discussion, we propose in this
paper a distributed, output synchronization protocol, for
heterogeneous, high-order, uncertain MASs in Brunovsky
canonical form, operated in a leader-follower scenario. The
underlying communication graph is directed and switch-
ing. However, the exact switching time instants and the
corresponding graph changes are a priori unknown. The
proposed control solution is of low-complexity and achieves
preselected and user-defined performance bounds on the con-
vergence time and the synchronization accuracy. The leader
dynamics are unknown. Each agent requires measuring its
own state, as well as its relative output with its neighbors.
Simulation studies clarify and verify the theoretical findings.
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II. PROBLEM FORMULATION

Consider a multi-agent, possibly heterogeneous, system
consisting of a leader and N > 1 followers. The dynamics of
each follower, for i = 1, . . . , N , are described by a nonlinear
m-th order model of the form:

ẋi,q = xi,q+1, q = 1, . . . ,m− 1

ẋi,m = fi(xi) + gi(xi)ui

yi = xi,1 (1)

where xi,q ∈ R, q = 1, . . . ,m, are the states of each
follower, ui ∈ R is the control input and yi ∈ R repre-
sents the i-th agent output. Moreover fi : Rm → R and
gi : Rm → R, are defined as nonlinear, locally Lipschitz
functions with unknown analytical expressions. We further
define xi = [xi,1 . . . xi,m]T ∈ Rm the state vector of the i-th
agent and y = [yi . . . yN ]T ∈ RN the output vector.

Remark 1: Even though the results can be generalized for
different orders mi, for each agent, for the sake of clarity it
has been preferred that the results be presented for the case
mi = m.

Assumption 1: The sign of the nonlinear functions gi is
either strictly positive or strictly negative. Without loss of
generality, we assume it is positive and it is considered
known with gi(xi) ≥ g.

Assumption 2: Let x0 = [x0,1 . . . x0,m]T ∈ Rm denote
the state of the leader and y0 = x0,1 ∈ R is its output. The
leader’s dynamics are such that x0 and its first derivative
ẋ0, are bounded, continuous, and unknown in advance.
Moreover, only the leader’s output is available for control
design.

The communication between the agents can be modeled
by a digraph G = (V, E), where the set of nodes V =
{v1, . . . , vN} represents the agents and the set of edges
E ∈ V × V , the exchange of information between them. By
virtue of the definition of the adjacency matrix A = [αi,j ] ∈
RN×N , if agent i receives information from agent j, (i.e
(vi, vj) ∈ E), αi,j = 1, else αi,j = 0. It is presumed that no
self loops exist, thus αi,i = 0, (vi, vi) /∈ E . Let us also denote
the neighborhood of node i as Ni = {vj : (vi, vj) ∈ E}
and the indegree matrix as D = diag(d1, . . . , dN ), where
di =

∑
N
j=1αi,j , i = 1, . . . , N . The graph Laplacian

matrix can be defined as L = D − A. Symbolizing the
augmented graph containing the leader as G = (V, E), with
V = {v0, v1, . . . , vN} and E ∈ V × V , we can represent
the leaders state information, provided to a subgroup of N ,
as a diagonal matrix B = diag(b1, . . . , bN ), where bi = 1,
when the follower i is directly connected to the leader node
and bi = 0 otherwise. Additionally, a digraph has a directed
spanning tree, if there exists a node, that has no parent, called
the root, such that there is a directed path from it to every
other node in the graph.

For every follower, the output disagreement error is de-
fined as: δi,1 = xi,1 − y0 ∈ R, i = 1, . . . , N and thus

δ1 = [δ1,1 . . . δN,1]
T = y − 1

⊗
y0 ∈ RN , (2)

where
⊗

is the Kronecker product and 1 = [1, . . . , 1]T ∈
RN .

In this work, we consider that the graph is not constant;
instead, it is discontinuously varied. Let J = {tk : k ∈
N+} constitutes the set of time instants, where agent i loses
or regain communication with its neighboring agent j. This
results to a change in the graph topology, from Gk−1 to Gk

Assumption 3: Every augmented graph Gk contains a di-
rected spanning tree for all k ∈ N , with the leader as its root
0.

Remark 2: The aforementioned assumption can be boiled
down to i) Gk contains a directed spanning tree and at least
one node is connected to the root or ii) Gk has a hierarchical
structure, meaning that every node except for the root has
indegree di equal to 1 [11].

Consequently, for all t ∈ [tk, tk+1), k ∈ N+, the neigh-
borhood synchronization error is defined as:

ei,1(t) =
∑
j∈Ni

αk
i,j(xi,1(t)− xj,1(t)) + bki (xi,1(t)− y0(t)),

where αk
i,j and bki are elements of the adjacency matrix A

and the B-matrix that correspond to the augmented graph
Gk. Denoting e1 = [e1,1 . . . eN,1]

T ∈ RN , and owing to (2),
the neighborhood synchronization error can be rewritten in
the compact form for all t ∈ [tk, tk+1):

e1(t) = (Lk +Bk)(x1(t)− 1
⊗

y0(t)) = Hkδ1(t), (3)

where Hk = Lk +Bk.
Owing to Assumption 3, Hk is a nonsingular M -Matrix.

The main results of the work will utilize the subsequent
technical lemma concerning M -matrices.

Lemma 1: [12, p. 168] Consider a nonsingular M -Matrix
S ∈ RN×N . There exists a diagonal positive matrix P =
diag(1/v1, . . . , 1/vN ), where v = [v1...vN ]T = (S)−11,
such that PS + STP is also positive definite.

Utilizing the nonsingularity of Hk, owing to Assump-
tion 3, we deduce |δ1| ≤ |e1|

σ(Hk)
, where σ(Hk) represents

the minimum singular value of Hk.
Therefore, transient and state-state bounds on e1 can be

directly translated into performance bounds on δ1; thus, ren-
dering e1 an effective synchronization metric. Nevertheless,
knowledge of σ(Hk), requires knowledge of the global graph
topology, and as a result it is not available for the design of a
distributed control protocol. This problem can be alleviated
by employing the estimate ( N−1

N3+N2−N )
N−1

2 ≤ σ(Hk) [9],
that depends only on the number of agents, which remains
invariant despite the change in graph topology and as a result
we obtain:

|δ1(t)| ≤
(
N3 +N2 −N

N − 1

)(N−1
2 )

|e1(t)|,∀t ≥ t0 ≥ 0.

(4)

To continue, notice that for any tk ∈ J, a graph switch has no
effect on δ1 (i.e., δ1(t−k ) = δ1(tk)). However, it results in an
instantaneous variation of the neighborhood synchronization
error from e1(t

−
k ) = Hk−1δ1(t

−
k ) to e1(tk) = Hkδ1(tk).
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Hence, e1(tk) = Hk−1δ1(tk) +∆Hkδ1(tk), where ∆Hk :=
Hk −Hk−1; or in compact form,

e1(t) = e1(t
−) + ∆e1(t), ∀t ∈ J, (5)

with ∆e1(tk) := ∆Hkδ1(tk).
Assumption 4: For the time instants of any two consec-

utive graph changes, it holds tk+1 − tk ≥ τ > 0, where τ
is a known constant. However, the actual time instants tk,
k ∈ N+ are unknown in advance.

Remark 3: When modeling the removal of some edges in
the graph, ||∆Hk|| is bounded by the maximal eigenvalue
of Hk, as long as the directed spanning tree property is
preserved. Correspondingly, when modeling the addition of
edges in the graph, ||∆Hk|| is bounded by the maximal
eigenvalue of the complete graph consisting of N nodes.
Therefore, in any case, ||∆Hk|| is bounded.

Remark 4: It should be noted that while no impulsive
behavior appears in the output disagreement error, δ1 is not
available for use by the controller, as in the opposite it
would require knowledge of the global graph topology. The
neighborhood synchronization error e1 is available for use.
However, it is affected by impulsive behavior. The proposed
controller should therefore compensate for the appearance of
impulsive phenomena.

Control Objective: Design a distributed control protocol, of
low computational complexity, for the heterogeneous multi-
agent system (1) satisfying Assumption 1, having a leader
that satisfies Assumption 2, under a directed switching graph,
obeying Assumptions 3 and 4, utilizing state and relative
output-feedback, such that the output disagreement error
δ1(t) is driven to an arbitrarily small neighborhood of zero,
whose size is predetermined by the user-defined positive
constants w1 = [w1,1, . . . , wN,1]

T , for all t ∈ [tk + τ, tk+1],
with τ > 0 being a prespecified fixed-time satisfying τ >
τ . Moreover, all signals in the closed-loop should remain
bounded.

Remark 5: The term low complexity is attributed to i) not
incorporating prior knowledge regarding the agent nonlinear-
ities; ii) not employing approximating structures (i.e. fuzzy
systems or neural networks) to acquire such knowledge;
iii) not requiring hard calculations analytic or numerical to
produce the control protocol; iv) the controller being static,
thus avoiding the expansion of the dynamic order of the
closed-loop.

III. MAIN RESULTS

The main results of this work are summarized in the
following theorem:

Theorem 1: Consider the heterogeneous multi-agent sys-
tem (1) satisfying Assumption 1, having a leader that satisfies
Assumption 2. Consider, also, a directed switching graph
obeying Assumptions 3 and 4. Given the constants wi,1 > 0
and τ > 0 with τ > τ and any initial conditions xi(0) ∈ Rm,

i = 1, . . . , N , the impulsive distributed control protocol:

ξi,1 =
ei,1
pi,1

, (6a)

ai,1 = −2Ki,1

ln
(

1+ξi,1
1−ξi,1

)
pi,1(1− (ξi,1)2)

− 4K ′
i,1

ln
(

1+ξi,1
1−ξi,1

)3
pi,1(1− (ξi,1)2)

,

(6b)

ξi,q =
xi,q − ai,q−1

pi,q
, q = 2, . . . ,m, (6c)

ai,q = −2Ki,q

ln
(

1+ξi,q
1−ξi,q

)
pi,q(1− (ξi,q)2)

− 4K ′
i,q

ln
(

1+ξi,q
1−ξi,q

)3
pi,q(1− (ξi,q)2)

,

(6d)
ui = ai,m (6e)

where Ki,q > 0, K ′
i,q > 0, q = 1, . . . ,m and

pi,q(t) =(pki,q − p∞i,q)e
−lki,q(t−tk) + p∞i,q, t /∈ J, (6f)

pi,q(t) =pi,q(t
−) + ∆pi,q(t), t ∈ J, (6g)

∆ai,q(t) =ai,q(t)− ai,q(t
−), t ∈ J, (6h)

∆pi,1(t) =γi,1|∆ei,1(t)|, t ∈ J, (6i)
∆pi,q(t) =γi,q|∆ai,q−1(t)|, q = 2, . . . ,m, t ∈ J, (6j)

where γi,1, γi,q > 1 and for k ∈ N

pi,1(0) ≡ p0i,1 > |ei,1(0)|, wi,q > p∞i,q > 0, (6k)

pi,q(0) ≡ p0i,q > |xi,q(0)− ai,q−1(0)|, (6l)

pki,q ≥ p∞i,q > 0, lki,q > ln

(
pki,q − p∞i,q
wi,q − p∞i,q

)
/τ. (6m)

guarantees that:
i) all the closed-loop signals remain bounded,

ii) |δi,1(t)| ≤ (N
3+N2−N
N−1 )

N−1
2 |wi,1|, ∀t ∈ [tk + τ, tk+1].

Remark 6: The impulsive dynamics (6g)-(6h) define an
event-like triggering mechanism. The time instants tk are
unknown in advance, however, they become available for
use as soon as an impulse appears. Thus, the discontinuities
indicated in (6g)-(6h) and the calculation of the lower bound
of lki,q in (6m) take place simultaneously at the time instant
tk, k ∈ N+.

Remark 7: The proposed controller guarantees that prior
to any graph switching, the output disagreement error will
enter a neighborhood of the origin of predetermined size wi,1

within a prescribed fixed-time τ . Notice that both wi,1 and
τ are not only prespecified but they are also user-defined.

Remark 8: Regarding the choice of design parameters,
the following conclusions have been reached through ex-
perimenting with simulation and in accordance with similar
studies. While pi,1 is the only function responsible for
imposing the prescribed characteristics on δi,1, the choice
of pi,q , ki,q and k′i,q directly influence the actual state
evolution inside the performance envelopes. Selecting larger
values for li,q and smaller wi,q brings satisfactory steady-
state performance, but leads to larger control effort during the
transient. Alternatively, the transient response is improved,
but heavier oscillations are observed during steady-state. In
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the same manner, larger ki,q , k′i,q introduce desirable behav-
ior at steady state, at the cost of larger control signals during
the transient. When it comes to choosing γi,q , values closer
to 1 encourage stricter bounds at the moment of switching,
whereas a more relaxed choice results in a significantly larger
control effort after the appearance of the impulse.

IV. PROOF OF THEOREM 1

For q = 1, . . . ,m, we define: xq = [x1,q . . . xN,q]
T ∈ RN ,

u = [u1 . . . uN ]T ∈ RN , F (x) = [f1(x1) . . . fN (xN )]T ∈
RN , G(x) = diag(g1(x1) . . . gN (xN )) ∈ RN×N , x =
[xT

1 . . . xT
m]T ∈ RNm, Rq = diag(p1,q, . . . , pN,q) ∈

RN×N , Kq = diag(K1,q, . . . ,KN,q) ∈ RN×N ,K ′
q =

diag(K ′
1,q, . . . ,K

′
N,q) ∈ RN×N , aq = [a1,q . . . aN,q]

T ∈
RN . Then

ξ1 = (R1)
−1e1,

ξq = (Rq)
−1(xq − aq−1), q = 2, . . . ,m (7)

and (1) becomes:

ẋq = xq+1,

ẋm = F (x) +G(x)u (8)

Owing to Assumption 1 and G(x) being a diagonal matrix,
there exists a constant g such that:

G(x) ≥ gIn > 0. (9)

Further defining the generalized state vector as ϕ =
[ξT1 . . . ξTm]T and utilizing the property ẋi,q = ξ̇i,qpi,q +
ξi,qṗi,q we obtain for all t ∈ [tk, tk+1):

ϕ̇(t) =


(R1)

−1(Hk(x2 − 1
⊗

ẋ0,1)− Ṙ1ξ1)

(R2)
−1((x3 +−ȧ1)− Ṙ2ξ2)

...
(Rm)−1((F (x) +G(x)u− ȧm−1)− Ṙmξm)


(10)

The proof of Theorem 1 is decomposed into two lemmas,
where Lemma 2 is responsible for enforcing the performance
characteristics, while Lemma 3 ascertains the boundedness
of all closed-loop signals.

Lemma 2: Consider the multi-agent system (1), the pro-
posed control protocol, (6), guarantees that |δi,1| ≤
(N

3+N2−N
N−1 )

N−1
2 |wi,1|, for all t ∈ [tk + τ, tk+1).

Proof: The proof consists of three phases. In Phase A the
existence and uniqueness of a maximal solution for ϕ(t) in
[t0, τmax), τmax ∈ [t0, t1) is addressed. In Phase B τmax is
extended up to t1 and in Phase C the methodology presented
in Phase B is generalized for all intervals [tk, tk+1), k ≥ 2.

Phase A: Initially let us define an open non-empty set
Ωϕ = (−1, 1)mN ⊂ RmN . Owing to (6k), (6l), (6m) it holds
that |ξi,q(t0)| < 1, which guarantees ϕ(t0) ∈ Ωϕ. Moreover
the right-hand side of (10) is continuously differentiable with
respect to t and locally Lipschitz with respect to ϕ in Ωϕ.
As a result following standard arguments [13], there exists a
unique maximal solution ϕ : [t0, τmax) → Ωϕ, in [t0, τmax),
with τmax ∈ [t0, t1), thus ϕ(t) ∈ Ωϕ, for all t ∈ [t0, τmax).

Phase B: To proceed we define the continuous, monoton-
ically increasing, auxiliary function T : (−1, 1) → R of the
form T (z) = 1+z

1−z . Obviously, it holds that limx→1 T (x) →
∞ and limx→−1 T (x) → −∞. Hence, setting ξi,j as its
argument and exploiting this property, the initial control
problem is transformed into a bounding problem concerning
ei,j . To implement the aforementioned methodology let us
define:

ϵi,q = T (ξi,q), ϵq = [ϵ1,q . . . ϵN,q]
T (11)

Noticing that ∂ϵi,q
∂ξi,q

= 2
1−(ξ,q)2

, we set ri,q = 2
pi,q(1−(ξi,q)2)

,

rq = diag(r1,q, . . . , rN,q). Further defining si,q = T 3(ξi,q),
sq = [s1,q . . . sN,q]

T , the control signals can be rewritten in
the compact form:

aq = −Kqrqϵq −K ′′
q rqsq, q = 1, . . . ,m− 1

u = am = −Kmrmϵm −K ′′
mrmsm, (12)

where K ′′
i,q = 2K ′

i,q and thus K ′′
q = 2K ′

q .
Note that, owing to Phase A, ϵi,q(t) are well defined in
[t0, tmax). Therefore, differentiating we obtain the error
dynamics:

ϵ̇1 = r1(Hk(x2 − 1
⊗

ẋ0,1)− Ṙ1ξ1)

ϵ̇q = rq((ẋq − ȧq−1)− Ṙqξq), q = 2, . . . ,m. (13)

To show that τmax can be extended to t1 we follow a
recursive design procedure.

Step 1 (q = 1, t ∈ [t0, τmax)): H0 is a nonsingular M -
matrix., and employing Lemma 1, there exist a diagonal
positive matrix P . It is now possible to define the Lyapunov
candidate function:

V1 =
1

2
ϵT1 Pϵ1, (14)

and differentiating with respect to time for all t ∈ [t0, τmax)
it yields : V̇1 = 2ϵT1 Pr1ξ̇1 or equivalently

V̇1 = ϵT1 Pr1(H0(x2 − 1
⊗

ẋ0,1)− Ṙ1ξ1). (15)

Solving (7) for x2, invoking (12) and because r1, P , K1, and
K ′′

1 are diagonal, expressing PH0 as a sum of its symmetric
and skew-symmetric parts, it can be shown that:

V̇1 = −1

2
ϵT1 r1K1(PH0 +HT

0 P )K1r1ϵ1

−1

2
ϵT1 r1K

′′
1 (PH0 +HT

0 P )K ′′
1 r1s1

+ϵT1 r1P (H0(R2ξ2 − 1
⊗

ẋ0,1)− Ṙ1ξ1).

(16)

Furthermore, defining Q1 = K1(PH0 +HT
0 P )K1, as well

as Q′′
1 = K ′′

1 (PH0+HT
0 P )K ′′

1 , both being positive definite,
due to lemma 1, (16) becomes:

V̇1 = −1

2
ϵT1 r1Q1r1ϵ1 −

1

2
ϵT1 r1Q

′′
1r1s1

+ϵT1 r1P (H0(R2ξ2 − 1
⊗

ẋ0,1)− Ṙ1ξ1)
(17)

Owing to ϕ ∈ Ωϕ, ξ1, ξ2 remain bounded for t ∈ [t0, τmax).
Moreover Ṙ1,R2, are bounded by construction and ẋ0,1

is bounded owing to Assumpiton 2. Hence, utilizing the
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extreme value theorem, we conclude, that for some unknown
constant C1, it holds |P (H0(R2ξ2 − 1

⊗
ẋ0,1) − Ṙ1ξ1)| ≤

C1. Moreover, the definition of r1 implies λmin(r1) ≥ λr1 =
2/p1, where p1 = max

i
pi,1(0). Employing the inequality

ϵT1 s1 < ||ϵ41||/N and after some straightforward algebraic
manipulations, yields:

V̇1 ≤ C2
1

2λmin(Q)
−

λmin(Q
′′)λ2

r1

2N
||ϵ1||4, (18)

with λmin(∗) denoting the minimum eigenvalue of the ma-

trix. Therefore, V̇1 < 0, when |ϵ1| > 4

√
NC2

1

λmin(Q)λmin(Q′′)λ2
r1

,

resulting in:

||ϵ1|| ≤ ϵ1 = max

{
||ϵ1(0)||, 4

√
NC2

1

λmin(Q)λmin(Q′′)λ2
r1

}
,

(19)

for all t ∈ [t0, τmax) and taking the inverse logarithmic
function from the definition of ϵ1 we get for i = 1, . . . , N :

−1 < T−1(−ϵ1) ≤ ξi,1 ≤ T−1(ϵ1) < 1. (20)

Additionally (12) guarantees that a1 is bounded, and owing
to x2 = R2ξ2 + a1, we conclude the boundedness of x2 as
well. Taking advantage of ė1 = H0(x2 − 1

⊗
ẋ0,1) we also

deduce that ė1 remains bounded. Finally, owing to (6b), ȧi,1
is bounded.

Step q (2 < q ≤ m− 1, t ∈ [t0, τmax)): By choosing the
Lyapunov candidate function Vq = 1

2ϵ
T
q ϵq and following the

same line of argument as Step 1, it can easily be verified,
that −1 < T−1(−ϵq) ≤ ξi,q ≤ T−1(ϵq) < 1 confirming the
boundedness of aq and ȧi,q for all i = 1, . . . , N .

Step m (q = m, t ∈ [t0, τmax)): Consider the Lyapunov
candidate function Vm = 1

2ϵ
T
mϵm. Differentiating with re-

spect to time and utilizing (12), we derive:

Vm =− ϵTmrmG(x)Kmrmϵm − ϵTmrmG(x)K ′′
mrmsm+

ϵTmrm(F (x)− ȧm−1 − Ṙmξm). (21)

where Ṙm is bounded by construction and ξm is bounded
owing to ϕ ∈ Ωϕ. Moreover ȧm−1 has been proven bounded
for all t ∈ [t0, τmax) in Step m − 1. Utilizing the extreme
value theorem, for F , leads to |F (x) − ȧm−1 − Ṙmξm| ≤
Cm, where Cm is an unknown constant. Utilizing the user-
selected diagonal matrices Km, K ′′

m, and (9), we can derive
the existence of positive constants gk = λmin(Km)g and
gk′′ = λmin(K

′′
m)g such that G(x)Km ≥ gkIn, and

G(x)K ′′
m ≥ gk′′In. Furthermore, by definition of rm, it holds

that λmin(rm) ≥ λrm = 2/pm, where pm = max
i

pi,m(0).

Subsequently, utilizing ϵTmsm < ||ϵ4m||/N , (21) yields:

V̇m ≤ −gk′′λ2
rm ||ϵm||4/N + C2

m/4gk. (22)

Therefore V̇m < 0, when ||ϵm|| ≤ 4

√
NC2

m

4gkgk′′λ2
rm

and so:

||ϵm|| ≤ ϵm = max

{
||ϵm(0)||, 4

√
NC2

m

4gkgk′′λ2
rm

}
. (23)

Employing the inverse logarithmic function, it can be
straightforwardly shown that:

−1 < T−1(−ϵm) ≤ ξi,m ≤ T−1(ϵm) < 1, i = 1, . . . , N.
(24)

Thus, owing to (12), (20), and (24), it is now clear that all
control signals remain bounded in [t0, τmax).

Finally, let us define Ω′
ϕk

=
∏m

q=1(−ϵq, ϵq). Then, ϕ(t)
evolves strictly within this compact subset of Ωϕ, meaning
that ϕ(t) ∈ Ω′

ϕk
⊂ Ωϕ and using standard arguments [13],

τmax can be extended up to t1.
Phase C: To conclude to proof, it remains to be shown

that ϕ(t−1 ) ∈ Ωϕ, implies ϕ(t1) ∈ Ωϕ. The latter can be
easily proven following a recursive procedure and therefore
the proof is omitted owing to space limitations.

The line of analysis, that was presented, consisting of
phases A, B, and C can be recursively repeated, for all
intervals [tk, tk+1), k ∈ N+, concluding the proof of Lemma
2. Lastly, combing (4), (7) and (6m) achieves ||δi,1|| ≤(

N3+N2−N
N−1

)(N−1
2 )

||wi,1||, for all t ∈ [tk + τ, tk+1].
Up to this point, we have proven that ϕ(t) evolves strictly

within Ω′
ϕk
, ∀t ∈ [tk, tk+1), k ∈ N+. Nevertheless, this

compact subset can vary between each time interval, due to
its dependency on Cq , which in turn depends on the bounds
of ξq and Rq at tk. To ensure the boundedness of all closed
loop signals, it remains to be shown that, these bounds are
non-increasing with respect to k. In this direction, exploiting
Assumption 4 and Remark 3, the energy injected in the
system at tk, as a result of the impulsive behavior stays
bounded. Thus it suffices to prove that Vq(tk), are upper
bounded by constants independent of Vq(tk−1). To achieve
this, the following lemma is introduced:

Lemma 3: Given a system subject to (1), satisfying As-
sumption 1, having a leader that satisfies Assumption 2,
with graph satisfying Assumptions 3, and 4, the formerly
presented control protocol, (6), assures that, xi,j , ai,j , i =
1, . . . , N , j = 1, . . . ,m, are bounded, while simultaneously
guaranteeing ξi,j ∈ (−1, 1).

Proof: The proof follows similar argumentation to [14] and
therefore it is omitted, bringing Theorem 1 to a close.

V. SIMULATIONS

To demonstrate the performance of our proposed con-
troller, we assume a multi-agent system consisting of a
leader and N = 6 followers. For simulation purposes, we
assume that the leader dynamics satisfy ẋ0 = sin(5t). While
the followers are assumed to be inverted pendulums with
different masses and lengths:

ẋi,1 = xi,2

ẋi,2 = g sin(xi,1)/hi + ui/(Mih
2
i )

}
i = 1, . . . , 6 (25)

where for i = 1, . . . , 6, xi,1[rad] and xi,2[rad/s] denotes
the pendulums position and velocity respectively. The con-
trol input is presented by ui. The system parameters are
assumed to be: g = 9.81 [m/s2],M = [M1, . . . ,M6] =
[0.5, 0.2, 1.0, 0.7, 0.4, 0.6] [Kg] and h = [h1, . . . , h6] =
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Fig. 1. Evolution of the outputs yi, i = 0, . . . , 6.

[1.0, 0.8, 1.6, 1.5, 1.2, 1.8] [m]. The initial communication
topology is described by the following augmented neigh-
boring sets N1 = {0}, N2 = {0, 1}, N3 = {1}, N4 =
{1, 3}, N5 = {2} and N6 = {2, 4}, where the leader is
indicated with 0. The graph is subject to switching satisfying
tk+1 − tk ≥ 4. We assume the first change occurs at
t1 = 4s affecting agents 2 and 4 with their new augmented
neighboring sets be N ′

2 = {1} and N ′
4 = {1}. The second

change occurs at t2 = 10s affecting agents 2 and 6 with
their new augmented neighboring sets be N ′′

2 = {0} and
N ′′

6 = {2}. The requirement for the neighborhood synchro-
nization errors ei,1, i = 1, . . . , 6 is to converge to the set
of {ei,1 ∈ R : |ei,1(t)| ≤ π/45} no later that the fixed time
τ = 2.5s. Therefore, we set wi,1 = π/45, i = 1, . . . , 6
and we implement the proposed controller as presented in
Theorem 1.
In addition, to achieve reasonable control effort with smooth
state evolution we chose for all i = 1, . . . , 6 the following
parameters Ki,1 = Ki,2 = 1, K ′

i,1 = K ′
i,2 = 0.05, γi,1 =

γi,2 = 1.1, and wi,2 = π/18. The prescribed performance
functions are selected to satisfy (6k), (6l) and (6m) with
p∞i,1 = π/60 and p∞i,2 = π/36.
The simulation results are depicted in Figs. 1-2. In Fig. 1,
we illustrate the output of all agents and the leader, verify-
ing the achievement of output consensus. The intermediate
errors xi,2 − ai,1 are presented alongside their performance
envelopes in Fig. 2. Clearly, all disagreement errors converge
to a neighborhood of zero after every change in the commu-
nication topology.

VI. CONCLUSIONS

A low-complexity, distributed, output synchronization pro-
tocol was designed in this paper to confront the het-
erogeneous, high-order, uncertain, multi-agent systems in
Brunovsky canonical form, operated in a leader-follower sce-
nario. The underlying communication graph was considered
directed and switching. Receiving only relative output infor-
mation from its neighbors and measuring its own state, the
proposed controller achieved prescribed performance bounds
on the convergence time and the output synchronization
accuracy. The leader dynamics were considered unknown.
Simulation studies clarified and verified the theoretical find-
ings

Fig. 2. Evolution of the intermediate error xi,2 − ai,1, i = 1, . . . , 6.
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