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Abstract— This paper addresses stabilization of switched
affine systems relying on polytopic Lyapunov functions. Several
methods have been developed for this family of systems, most
of them based on quadratic Lyapunov functions for an average
system. An immediate conjecture is that replacing such a
function with one of polytopic type should also achieve stable
behavior. We disprove this conjecture on a strategy that employs
the hybrid systems formalism, by means of examples. Specifi-
cally, we show that for a given switching strategy based on a
quadratic Lyapunov function, naı̈vely replacing this function by
its polytopic counterpart does not guarantee the same stability
properties, and that this happens even in the case of dwell-
time switching. We deeply investigate such a problem, identify
the conditions that prevent asymptotic stability, and give some
directions on how to avoid them to ensure stability. These results
are finally illustrated in simulation.

Index Terms— Switched affine systems, polytopic Lyapunov
functions, hybrid dynamical systems.

I. INTRODUCTION

An effective way to capture the behavior of processes
including continuous and discontinuous dynamics is repre-
sented by switched systems [1]. Such systems are indeed
characterized by a certain number of subsystems selected
at each time instant by a properly designed switching sig-
nal, therefore capable of capturing the different operating
modes exhibited by the plants. Concerning the design of the
switching rule, two main design choices can be found in the
literature, i.e., arbitrarily fast switching [2], which allows the
selection of the next active subsystem regardless of when the
last switching occurred, and dwell-time switching [3], which
requires the existence of a minimum amount of time between
any two consecutive switching instants.

In this context, stabilization of switched linear systems
(SLS), where the objective is to stabilize an equilibrium
point common to all subsystems (usually the origin), has
been deeply studied [4]–[7]. A system class more general
than SLS is that of switched affine systems (SAS), for
which different equilibrium points for each subsystem may
exist. While the stabilization problem of the origin for SLS
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has been successfully addressed in many works exploiting
different methodologies, the problem of stabilizing a generic
(not common) equilibrium point for SAS is still an open and
more challenging objective. In fact, in this case, asymptotic
stability of a desired equilibrium point can be achieved, under
appropriate assumptions, only in the case of arbitrarily fast
switching. In the case of dwell-time switching, instead, the
existence of different equilibrium points for each subsystem
prevents achieving asymptotic stability of the desired point
unless it corresponds to the equilibrium of one of the
subsystems. Therefore, designing a dwell-time constrained
switching law that practically stabilizes the system requires
the investigation of advanced control solutions.

Among many significant contributions in the literature,
in [8] SASs are represented as nonlinear systems with
input constraints in order to design switching laws derived
by emulating locally classical controllers. An extension to
sampled-data robust switching law is proposed in [9] by
taking into account sampling variations or uncertainty. In
[10] a state-dependent switching law satisfying dwell-time
constraints is proposed. This strategy relies on Lyapunov-
Metzler inequalities and takes into account the forward
evolution during the dwell time of the value of quadratic
Lyapunov functions for each subsystem. Periodic time- and
event-triggered control laws are proposed in [11], where the
class of SAS is represented via a hybrid dynamic system.
By contrast, [12] introduces optimal control strategies to
minimize a specific performance index. With reference to
discrete-time SAS, instead, a solution based on the minimiza-
tion of the size of the ultimate invariant set of attraction is
proposed in [13]. A hybrid system framework is adopted also
in [14]. The latter proposes a space regularization method
and one based on time, ensuring a minimum dwell time and
admissible chattering around the operating point.

A common feature of the aforementioned works is that
they rely on the existence of a quadratic Lyapunov function.
The current paper diverges from that trend, aiming to explore
the circumstances under which a family of real-valued poly-
topic functions [15], rather than complex-valued ones (e.g,
as in [16]–[18]), can serve as suitable Lyapunov functions
for SAS. By employing the hybrid system formalism to
model such systems, we introduce an extension of the
approach presented in [14], wherein the switching conditions
relying on a quadratic Lyapunov function are replaced by
conditions based on a polytopic Lyapunov function. We
show that such a naı̈ve extension does not straightforwardly
lead to the same stability guarantees presented in [14]. The
latter reference shows that, in the case of the quadratic
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Lyapunov function framework, a switching law guaranteeing
the asymptotic stability of the SAS can be constructed from
a Lyapunov function for the average or convex combination
system. By contrast, we here provide examples that show
that constructing the switching law based solely on the
decrease of the polytopic Lyapunov function for the average
or convex combination system may not produce the desired
stable behavior, and that this happens for both arbitrarily fast
and dwell-time switching. Specifically, our examples show
that unstable or eventually discrete solutions may appear
(the latter being solutions of the hybrid system for which
continuous time does not advance). Hence, in this work
we identify the conditions that prevent eventually discrete
solutions and divergence.

The reasons underlying the choice of a switching law
based on polytopic Lyapunov function lies in the dwell-time
switching design. In fact, keeping in mind that stability can
be only practical when a dwell-time constraint is required,
the adoption of polytopic functions looks appropriate to
define the set of attraction, whose features could be related to
the system performance on the application side. Differently
from quadratic Lyapunov functions, such an attraction set
can be indeed simply described by linear inequalities when
polytopic functions are adopted, which enhance the inter-
pretability of the region in terms of bounds on every separate
state variable.

Notation. R, R≥0, R>0, N denote the real, non-negative
real, positive and natural numbers, respectively. For N ∈ N,
we define the set NN := {n ∈ N : n ≤ N}. 1̄ denotes a
vector all of whose components are equal to 1. The (i, j)-th
entry of R ∈ Rr×n is denoted by Ri,j and its i-th row by
Ri,:. If X,Y ∈ Rr×n, the expression ‘X ⪯ Y ’ denotes the
set of componentwise inequalities Xi,j ≤ Yi,j , i = 1, ..., r,
j = 1, ..., n. The absolute value, euclidian norm and infinity
norm are denoted as | · |, ∥ · ∥, and ∥ · ∥∞, respectively. For
x ∈ Rn, x′ denotes its transpose.

II. PRELIMINARIES

A. Problem statement

Consider switched affine systems of the form

ẋ(t) = Aσ(t)x(t) + bσ(t), (1)

where x ∈ Rn is the system state, σ : R≥0 → NN is the
switching signal, and Ai ∈ Rn×n, bi ∈ Rn for all i ∈ NN .
We aim to establish a switching control strategy based on a
polytopic Lyapunov function to achieve stabilization of an
arbitrary operating point xe ∈ Rn. Note that given xe, we
can shift (1) through the change of variables x̃ := x − xe

to obtain an equivalent problem of stabilizing the origin in
the variable x̃. Thus, in order to simplify the analysis, we
will consider xe = 0 without any loss of generality. Let
us introduce the following assumption, which is standard
for achieving this goal using quadratic Lyapunov functions
(refer to [14] and the references therein). Define the set
Λ :=

{
λ ∈ [0, 1]N : λ′1̄ = 1

}
, and for each λ ∈ Λ, the

matrices

Aλ :=

N∑
i=1

λiAi, bλ :=

N∑
i=1

λibi. (2)

Assumption 1: There exists λ ∈ Λ such that Aλ is
Hurwitz and bλ = 0.

Under Assumption 1, the existence of a quadratic Lya-
punov function for the average system

ẋ(t) = Aλx(t) + bλ = Aλx(t) (3)

is guaranteed. In [14], a switching strategy based on the value
of an arbitrary quadratic Lyapunov function for the average
system (3) is proven to ensure Uniform Global Asymptotic
Stability (UGAS) [19] under arbitrarily fast switching, and
practical UGAS in the case of uniform dwell-time switching.
The strategy consists of flowing on the current subsystem
whenever the derivative of the Lyapunov function along
the trajectories is sufficiently negative, and when it is not,
switching to a subsystem that minimizes the derivative. The
success of this strategy lies in the fact that for any state,
there always exists a subsystem for which the derivative of
the Lyapunov function is sufficiently negative.

Assumption 1 additionally ensures the existence of a
polytopic Lyapunov function for the average system (3) [15].
The problem addressed in this paper is the following: will
the strategy in [14] be successful if the quadratic Lyapunov
function is replaced by an arbitrary polytopic Lyapunov
function for the average dynamics?

B. Formulation with polytopic Lyapunov functions

To address this question, we first establish a necessary
and sufficient condition for a symmetric polytopic function
to be a Lyapunov function. Given Γ ∈ Rr×r, we define
the associated Metzler1 matrix M(Γ) ∈ Rr×r as the matrix
whose entries satisfy

M(Γ)i,k =

{
Γi,k if i = k,

|Γi,k| if i ̸= k.
(4)

The following lemma provides a characterization for sym-
metric polytopic Lyapunov functions. The proof is omitted
due to space limitations.

Lemma 1: Let A ∈ Rn×n and let R ∈ Rr×n be full
column rank. The following statements are equivalent:

i) Ψ(x) := ∥Rx∥∞ is a Lyapunov function for ẋ = Ax;
ii) there exist Γ ∈ Rr×r and β > 0 such that

ΓR = RA, M(Γ)1̄ ⪯ −β1̄. (5)
Unlike quadratic functions, polytopic functions are not

differentiable everywhere. Therefore, we will employ the
upper-right Dini derivative instead of the classical derivative.

Remark 2.1: From the definition of beta-contractiveness
in [20], condition (5) ensures that D+Ψ(x) ≤ −βΨ(x) for
all x ∈ Rn, where D+Ψ(x) is the upper-right Dini derivative
of Ψ(x) = ∥Rx∥∞ along the solutions of ẋ = Ax.

1A matrix M ∈ Rr×r is Metzler if its off-diagonal entries are nonneg-
ative, i.e. if Mi,j ≥ 0 whenever i ̸= j.
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With these results in mind, let us extend the approach
presented in [14]. Consider λ ∈ Λ such that Assumption 1
holds and let Ψ(x) := ∥Rx∥∞ be a polytopic Lyapunov
function for the average system (3). Let D+

k Ψ(x) denote the
upper-right Dini derivative of Ψ(x) along solutions to (1) at
a time instant t when σ(t) = k. Then, we have

D+
k Ψ(x)=


max

i∈IR(x)
sign(Ri,:x)Ri,:(Akx+ bk), x ̸=0

max
i∈Nr

|Ri,:(Akx+ bk)|, x=0
(6)

where Ri,: is the i-th row of R and

IR(x) := {i ∈ Nr : |Ri,:x| = ∥Rx∥∞}. (7)

Replacing the quadratic Lyapunov function of [14] by the
polytopic one Ψ(x), we define the hybrid system H :=
(C, f,D, g), as follows:

H :


[
ẋ′ σ̇

]′
= f(x, σ), (x, σ) ∈ C[

x+′ σ+
]′
∈ g(x, σ), (x, σ) ∈ D

(8)

where the flow and jump maps f and g are

f(x, σ) :=

[
Aσx+ bσ

0

]
(9a)

g(x, σ) :=

[
x

argmink∈NN
D+

k Ψ(x)

]
(9b)

and the flow and jump sets C and D are defined by

C :=
{
(x, σ) : D+

σ Ψ(x) ≤ −ηβΨ(x)
}

(10a)

D :=
{
(x, σ) : D+

σ Ψ(x) ≥ −ηβΨ(x)
}

(10b)

with η ∈ (0, 1) being a design parameter. In [14], the
expressions on the right-hand side of the inequalities in (10)
are equal to η times an upper bound on the derivative of
the quadratic Lyapunov function along solutions of the av-
erage system. In the present case, the upper bound becomes
−βΨ(x), as mentioned in Remark 2.1.

Note that by definition of C in (10a), the value of the
Lyapunov function Ψ decreases whenever the solution of
H flows. Additionally, as per (9b), the state x remains un-
changed during jumps, as does the value of Ψ(x). Therefore,
the value of the Lyapunov function cannot increase while the
solution exists, and consequently, divergence of solutions is
not possible for system H. However, in the following, we
will show that this straightforward approach fails to provide
the same stability guarantees presented in [14].

III. CHALLENGES USING POLYTOPIC FUNCTIONS

In this section, we will show that requiring Ψ to be a
polytopic Lyapunov function for the average dynamics is not
sufficient to ensure UGAS of system (8). First, we will show
that there might exist states x ̸= 0 for which there is no
subsystem to which the solution can jump and subsequently
flow. This may result in solutions that keep switching be-
tween subsystems infinitely, causing continuous time to stop
flowing. This kind of solutions are usually referred to as

eventually discrete [19]. The following numerical example
illustrates this case.

Example 3.1 (Eventually discrete solutions): Consider a
SAS (1) characterized by the matrices

A1 :=

[
−1 2
−2 −1

]
, A2 :=

[
−1 −2
2 −1

]
, (11)

and vectors b1 := b2 := 0. Note that both A1 and A2 are
Hurwitz and that the origin is a common equilibrium point.
Therefore, no switching is actually required to stabilize this
system and it could be expected that any Lyapunov-function-
based switching strategy should be successful. However, we
next show that this is not so straightforward when polytopic
Lyapunov functions are employed. Choose λ := [0.5, 0.5]′

so that bλ = 0, the origin is an equilibrium point of the
average system (3), and Aλ = −I is Hurwitz. Therefore,
Assumption 1 is satisfied. Given that A := Aλ = −I , we
can select R := I for which (5) holds with Γ = −I and
β = 1. Therefore, by Lemma 1, Ψ(x) := ∥Rx∥∞ = ∥x∥∞
is a Lyapunov function for the average system. Define the set
S := {x ∈ R2\{0} : |x1| = |x2|}. Then, for all x ∈ S we
have |R1,:x| = |R2,:x|, so that IR(x) = {1, 2} for all x ∈
S. From (6) and (11), the Dini derivative of the Lyapunov
function along the trajectories of subsystem 1 for all x ∈ S
results

D+
1 Ψ(x) = max

i∈{1, 2}
sign(Ri,:x)Ri,:

[
−x1 + 2x2

−2x1 − x2

]
= max {sign(x1)(−x1 + 2x2), sign(x2)(−2x1 − x2)}
= max {−|x1|+ 2 sign(x1)x2, −|x2| − 2 sign(x2)x1}

= − 1√
2
∥x∥+ 2max {sign(x1)x2, − sign(x2)x1}

= − 1√
2
∥x∥+ 2√

2
∥x∥ = 1√

2
∥x∥. (12)

The fourth equality follows from the fact that, for all x ∈
S, we have ∥x∥ =

√
x2
1 + x2

2 =
√
2|x1| =

√
2|x2|. The

fifth equality is derived from analyzing the cases sign(x1) ̸=
sign(x2) and sign(x1) = sign(x2), and taking into account
that x ∈ S. Following an analogous procedure for subsystem
2, for all x ∈ S then

D+
2 Ψ(x) = max

i∈{1,2}
sign(Ri,:x)Ri,:A2x =

1√
2
∥x∥. (13)

Then, mink∈N2
D+

k Ψ(x) = 1√
2
∥x∥ > 0 for all x ∈ S.

Hence, by the definition of C in (10a), (S ×{1, 2})∩C = ∅.
Consequently, if x ∈ S there is no subsystem to which the
solution can jump in order to continue flowing. Moreover,
by the definition of D in (10b), we have (S × {1, 2}) ⊆ D.
Thus, any solution of H that reaches the set S will jump
infinitely, whether or not σ changes, without advancement
of continuous time, indicating the existence of eventually
discrete solutions. ◦

The issue illustrated in the previous example also arises
when the system given by matrices (11) is affine with b1 ̸= 0
and b2 ̸= 0. Indeed, it is easy to prove that in such a case
D+

1 Ψ(x) > 0 and D+
2 Ψ(x) > 0 for all x ∈ R2 such that

∥x∥ >
√
2maxk∈N2 ∥bk∥∞. To formalize the occurrence of
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this issue for a general case, let us define the flow sets for
each subsystem k as

Ck := {x ∈ Rn : (x, k) ∈ C} . (14)

Then, the eventually discrete solutions appear whenever the
union ∪k∈NN

Ck fails to cover Rn\{0}.
One possible approach to avoid an infinite number of

jumps at the same time instant is to impose a minimum
dwell time T [5], [11], [14]. To do this, a new hybrid control
strategy will be defined. In this new scheme, the jumps that
would have occurred according to the previous logic are
omitted if a dwell-time period has not elapsed since the last
jump. Therefore, after a jump, the solution flows within the
same subsystem for at least T units of time. However, in the
following example we will show that this strategy can also
fail, leading to unstable solutions.

Example 3.2 (Instability): Consider the SAS of Exam-
ple 3.1 and add a third subsystem defined by A3 := 1

2I
and b3 := 0. Selecting λ := [0.5, 0.5, 0]′ we obtain the
same average system as in Example 3.1 and Assumption 1 is
satisfied. Further, condition (5) holds with the same matrices
R = I , Γ = −I and β = 1 as in Example 3.1, and
Ψ(x) := ∥x∥∞ is a Lyapunov function for the average
system. Consider the set S from Example 3.1. Thus, from
(12) and (13), we have

D+
1 Ψ(x) = D+

2 Ψ(x) =
1√
2
∥x∥ (15)

for all x ∈ S. For the third subsystem, for all x ∈ S then

D+
3 Ψ(x) = max

i∈{1, 2}
sign(Ri,:x)Ri,:

1

2
x

=
1

2
max {|x1|, |x2|} =

1

2
√
2
∥x∥. (16)

In the last equality we used the fact that ∥x∥ =
√
2|x1| =√

2|x2| for all x ∈ S . Hence, we have mink∈N3
D+

k Ψ(x) =
1

2
√
2
∥x∥ > 0 for all x ∈ S. Then, as in Example 3.1,

any solution of H that reaches the set S will be eventually
discrete. In an attempt to overcome this, let us consider the
time regularized hybrid system HT defined as

HT :


[
ẋ′ σ̇ τ̇

]′
=

[
f(x, σ)

1

]
, (x, σ, τ) ∈ CT

[
x+′ σ+ τ+

]′
∈

[
g(x, σ)

0

]
, (x, σ, τ) ∈ DT

(17)

where the maps f and g are as defined in (9), and the flow
and jump sets CT and DT are defined by the regions

CT := {(x, σ, τ) : (x, σ) ∈ C ∨ τ ∈ [0, T ]} (18a)
DT := {(x, σ, τ) : (x, σ) ∈ D ∧ τ ∈ [T,∞)} (18b)

with C and D as in (10), and T > 0 the predefined dwell
time. According to this new approach, after a jump, the
timer τ must reach the minimum dwell-time T before the
solution can jump again. From (15) and (16), we have
argmink∈N3

D+
k Ψ(x) = 3 for all x ∈ S , indicating that

from any state x ∈ S, if the dwell time has expired, we

will jump to the third subsystem. Further, the solution to the
third subsystem starting from x0 ∈ Rn is x(t) = x0e

t/2.
Hence, if x0 ∈ S, then x(t) ∈ S for all t ≥ 0, implying that
S is invariant under the dynamics of the third subsystem.
Consequently, any solution to HT that reaches the set S
with τ ≥ T will jump to the third subsystem and will flow
according to its dynamics. Due to the invariance of S, the
solution will remain in S. After T units of time, the solution
will jump, remaining in the third subsystem but restarting
the timer, which leads to an analogous situation as the initial
condition. This behaviour repeats itself, ultimately resulting
in the divergence of the solution. ◦
Note that imposing a dwell time as in HT , while eliminating
eventually discrete solutions, may introduce divergent solu-
tions which cannot occur in H.

IV. SUITABLE POLYTOPIC LYAPUNOV FUNCTIONS

In this section, we present conditions under which even-
tually discrete solutions are avoided for the system H. To
introduce these conditions, we first present an example where
an ad hoc selection of the matrix R, defining the polytopic
Lyapunov function, satisfies the mentioned conditions.

Example 4.1 (Suitable Lyapunov function): Consider a
SAS (1) with matrices A1 and A2 defined as in (11), and
vectors b1 := [2.5, 0]′ =: −b2. Select the same λ as in
Example 3.1, then we have the same average system, and
Assumption 1 holds. Now, instead of choosing R as the
identity matrix, select

R :=

[
1 0 1/

√
2 −1/

√
2

0 1 1/
√
2 1/

√
2

]′

. (19)

Since A := Aλ = −I , condition (5) holds with Γ = −I and
β = 1. Then, Ψ(x) := ∥Rx∥∞ is a Lyapunov function for
the average system.

We aim to ensure that the union of the flow sets ∪k∈N2Ck
covers R2\{0}, with Ck as in (14), to avoid the eventually
discrete solutions that arise in Example 3.1. To achieve this,
we will show that

min
k∈N2

D+
k Ψ(x) ≤ −βΨ(x) (20)

for all x ̸= 0. In other words, this means that for all x ̸= 0
there exists a subsystem k ∈ N2 such that D+

k Ψ(x) ≤
−βΨ(x) < −ηβΨ(x) for every η ∈ (0, 1), implying that
x ∈ Ck. First, let us show that the aforementioned holds true
for all x ̸= 0 such that IR(x) contains only one element.
Let x ∈ R2 \ {0} and let IR(x) = {i}. From (6), we obtain

min
k∈N2

D+
k Ψ(x) = min

k∈N2

sign(Ri,:x)Ri,:(Akx+ bk)

= min
λ∈Λ

sign(Ri,:x)Ri,:(Aλx+ bλ) ≤ −βΨ(x) (21)

The second equality follows from the fact that for all
x ∈ R2 results mink∈N2

xk = minλ∈Λ

∑2
k=1 λkxk. The last

inequality is derived from Remark 2.1 and the fact that
the selected λ belongs to Λ. Therefore, (20) is satisfied
for all x ̸= 0 such that IR(x) contains only one element.
Now, let us examine whether that condition holds true for
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the set of states x ̸= 0 where IR(x) has more than one
element, denoted as Ŝ. In a two-dimensional SAS, Ŝ is
one-dimensional. Consequently, it can be parameterized by
a single real variable, α, simplifying the verification of the
fulfillment of (20) over Ŝ. Based on this, we express Ŝ as

Ŝ := {x = αv : α > 0, v ∈ V}, where (22)
V := {v : |Ri,:v| = |Rj,:v| = ∥Rv∥∞ = 1, i ̸= j} (23)

is the set of vertices v ∈ R2 of the Lyapunov function’s level
curve given by Ψ(x) = 1. Additionally, define the set

A := {α > 0 : min
k∈N2

D+
k Ψ(αv) ≤ −βΨ(αv)∀v ∈ V}. (24)

Note that (20) holds for all x ∈ Ŝ if and only if A = R>0.
Then, we can verify the condition over x ∈ Ŝ by computing
A. To simplify the computation, define

dk,i(v, α) := sign(Ri,:v)Ri,:(Akvα+ bk). (25)

Then, from (24) we can express

A =
⋂
v∈V

⋃
k∈N2

{α > 0 : D+
k Ψ(αv) ≤ −βΨ(αv)}

=
⋂
v∈V

⋃
k∈N2

⋂
i∈IR(v)

{α > 0 : dk,i(v, α) ≤ −βα}. (26)

The first equality follows from the facts that requiring the
inequality in (24) to be met for all v ∈ V is equivalent
to its fulfillment at the intersection, and ensuring that the
minimum over k ∈ N2 satisfies the inequality is equivalent
to its fulfillment at the union. The second equality arises from
(6) and (25), with the substitution of the maximum in (6) by
the intersection, and considering that IR(αv) = IR(v) and
Ψ(αv) = α for all α > 0 and v ∈ V . Then, we can compute
A from (26) by solving linear inequalities and operating on
their solutions. It can be checked through symbolic calculus
that A = R>0, which implies (20) holds for all x ∈ Ŝ.
Combining this with the previous result, we have that (20)
holds for all x ∈ R2\{0}. Then, the union of flow sets covers
R2\{0}, and consequently, from any (x, σ) ∈ D with x ̸= 0
we jump to (x, σ+) ∈ C. Thus, from (9b) and (20), after the
jump we have D+

σ+Ψ(x) ≤ −βΨ(x). Moreover, it can be
proved that there exists a neighborhood N of x such that

D+
σ+Ψ(y) < −ηβΨ(y) (27)

for all y ∈ N and η ∈ (0, 1). The proof of this assertion
uses the fact that for all x ̸= 0 there exists N such that
IR(y) ⊆ IR(x) for all y ∈ N , and is omitted for the sake
of brevity. Thus, from (27) and the definition of D in (10b),
it follows that the solution must flow for some time before
jumping again. Therefore, there are no eventually discrete
solutions outside the origin for H. Note that to prove UGAS,
Zeno solutions still have to be ruled out, which could be
verified by means of the persistent flow property [19]. ◦

The condition (20) can be generalized for any SAS as

min
k∈NN

D+
k Ψ(x) ≤ −βΨ(x) (28)

for all x ∈ Rn\{0}. Then, following the same reasoning as in
the example, (28) leads to the absence of eventually discrete
solutions outside the origin for the system H. Furthermore,
the conclusion derived from (21), asserting that the bound
in (28) holds for all x ̸= 0 such that IR(x) contains only
one element, can be easily extended to any SAS. Therefore,
in order to avoid eventually discrete solutions, our focus
should be on checking the fulfillment of the bound in (28)
for the states x where the cardinality of IR(x) is greater
than one. As illustrated in Example 4.1, in the case of two-
dimensional SAS, this can be checked via the computation
of A. Algorithm 1 summarizes the procedure of computing
A for any two-dimensional SAS and any matrix R defining
the Lyapunov function, allowing us to verify the fulfillment
of (28), and consequently the absence of eventually discrete
solutions outside the origin for those SAS.

Algorithm 1: Computation of A (for n = 2)
Input: R, β, and Ak, bk for k ∈ NN

Compute V from R
A ← R>0

forall v ∈ V do
Av ← ∅
forall k ∈ NN do
Av,k ← R>0

forall i ∈ IR(v) do
Av,k ← Av,k ∩ {α > 0 : dk,i(v, α) ≤ −βα}
Av ← Av ∪ Av,k

A ← A∩Av

return A

V. SIMULATION RESULTS

In this section, the assessment of the examples previously
presented is shown in simulation.

In Examples 3.1 and 4.1, the initial conditions are set equal
to x(0) = [0, −2.25]′ with σ(0) = 2, while for Example 3.2
the initial conditions are x(0) = [0, −2.25]′ with σ(0) = 2
and τ(0) = 0. Parameter η = 0.99 has been chosen for the
three examples.

In Example 3.1, we have shown that choosing matrix R as
the identity matrix yields an eventually discrete solution. In-
deed, in Fig. 1, it is shown that the state stops flowing (dashed
blue line) as soon as the set S is reached due to the discrete
behavior defined in (9). Fig. 2 shows that as soon as the state
reaches S, the switching variable σ(t) randomly switches
between indices 1 and 2 due to D+

1 Ψ(x) = D+
2 Ψ(x), while

the continuous time variable t stops flowing. Note that when
x ∈ S, infinite solutions are possible since both σ+ = 1 and
σ+ = 2 are acceptable. Hence, the solution shown in Fig. 2
is only one of the possible solutions.

Regarding Example 3.2, selecting the dwell time T = 0.1
and matrix R again as the identity matrix, generates an
unstable behavior. Specifically, as proved in Section III, the
set S is an invariant set for the solution. Indeed, as illustrated
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again in Fig. 1, once the state trajectory (red) enters the set
S, it remains on it and diverges along the direction of the set
S itself. As detailed in Example 3.2, the third subsystem is
always selected due to its lower value of the Dini derivative
(red plot in Fig. 2).

Finally, as for Example 4.1, choosing R as in (19), the state
trajectory converges towards the origin switching among
the modes with increasing frequency, thus avoiding the ill
behavior from the previous examples. This behavior can also
be appreciated from the solution of the switching variable
(yellow in Fig. 2).

Fig. 1. Solution of the state for Example 3.1 (blue dashed line), Example
3.2 (red line) and Example 4.1 (yellow line). The represented level sets are
∥Rx∥∞ = 1 for R = I (black square) and ∥Rx∥∞ = 1 for R as in
(19) (grey octagon), with the set S (black dotted lines) and the set Ŝ (grey
dotted lines).

Fig. 2. Solution of the switching variable σ(t, j) for Example 3.1 (blue
line), Example 3.2 (red line) and Example 4.1 (yellow line), where t is
continuous time and j the number of switches or hybrid jumps.

VI. CONCLUSIONS

This paper contributes to the literature of switched affine
systems relying on switching strategies based on polytopic
Lyapunov functions. Making reference to the proposed ap-
proaches in [14], where quadratic Lyapunov functions are

adopted, in this paper we have shown that the extension to
polytopic functions is not straightforward. To this end, we
have theoretically discussed three examples. We have also
provided sufficient conditions that guarantee the absence of
eventually discrete or divergent solutions.

Future research will be devoted to finding more gen-
eral conditions to ensure stability in the case of higher-
dimensional systems.
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