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Abstract

Consider an open quantum system governed
by a Gorini–Kossakowski–Sudarshan–Lindblad master
equation with two times-scales: a fast one, exponen-
tially converging towards a linear subspace of quasi-
equilibria; a slow one resulting from small decoherence
and Hamiltonian dynamics. Usually adiabatic elimina-
tion is performed in the Schrödinger picture. We pro-
pose here a Heisenberg formulation where the invariant
operators attached to the fast decay dynamics towards
the quasi-equilibria subspace play a key role. Based
on geometric singular perturbations, asymptotic expan-
sions of the Heisenberg slow dynamics and of the fast
invariant linear subspaces are proposed. They exploit
Carr’s approximation lemma from center-manifold and
bifurcation theory. Second-order expansions are de-
tailed and shown to ensure preservation, up to second-
order terms, of the complete positivity for the slow prop-
agator on a slow timescale. Such expansions can be ex-
ploited numerically to derive reduced-order dynamical
models.

1. Introduction

In the quantum physics community, adiabatic elim-
ination is widely used to analyze the dynamics of open
and dissipative quantum systems (see e.g. [1, 2, 3, 4, 5].
It corresponds in fact to a perturbation technique known
in dynamical and control system theory as singular per-
turbations for slow/fast systems. It is related to the
Tikhonov approximation theorem (see, e.g., [6, 7]) and
its coordinate-free formulation due to Fenichel [8]. The
notion of invariant slow manifolds plays a crucial role
for dynamical systems with two timescales dynamics:
the fast and exponentially converging ones and the slow
ones of reduced dimension. In this context, adiabatic
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elimination produces low dimensional dynamical mod-
els via the derivation from the original slow/fast differ-
ential equations of the slow differential equations gov-
erning the evolution on the invariant slow manifold.
For open quantum system governed by the determinis-
tic Gorini–Kossakowski–Sudarshan–Lindblad (GKSL)
master equation, adiabatic elimination is usually per-
formed in the Schrödinger picture.

We perform here adiabatic elimination in the
Heisenberg picture where the invariant operators asso-
ciated to the fast dynamics play a crucial role: they
are used to describe the slow dynamics but also to de-
fine the equations characterizing the fast invariant linear
subspace. As far as we know, such Heisenberg point
of view has not been considered in such a systematic
and general way, despite the fact that, for stochastic
quantum systems, the Heisenberg stochastic evolutions
play a central role (see, e.g., [9, 10]). In particular,
our derivation relies on very general two timescale as-
sumptions: we only assume an exponentially fast con-
vergence towards a linear subspace of quasi-equilibria
those structure does not necessarily correspond to a de-
coherence free subspace; the slow dynamics can re-
sult from arbitrary perturbations either Hamiltonian or
Lindbladian; we do not assume a tensor-product struc-
ture where the fast decay is due to local decoherence
fast dynamics of some sub-systems.

Combining two asymptotic expansions, a first one
for the slow dynamics and a complementary one pro-
viding the set of linear equations characterizing the ex-
ponentially fast decaying subspace, we show how to
approximate up to exponentially small corrections the
propagator over a slow timescale (see lemma 3). We
explain how to compute the order n corrections know-
ing the correction of order r < n. The second-order ap-
proximation of the slow dynamics is shown to preserve
complete positivity in the following sense: its second-
order propagator over a slow timescale corresponds, up
to second-order correction, to a Trace Preserving and
Completely Positive (TPCP) map (see lemma 4). Such
preservation has been shown in specific cases for the
second-order as in [3, 4] or for first-order as in [11, 12].
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In section 2, the slow/fast structure of the GKLS
differential equations is detailed either in Schrödinger
picture with an orthonormal basis (Ŝd)1≤d≤d̄ for quasi-
equilibria quantum states but also in the Heisenberg pic-
ture with the associated basis of quasi-invariant oper-
ators (Ĵd)1≤d≤d̄ . In section 3, we detail the asymp-
totic expansion of the slow dynamics with a Heisen-
berg point of view. In section 4, the set of indepen-
dent linear equations describing the fast invariant sub-
space is constructed and its approximation at any order
is given. Section 5 combines lemma 1 of section 3 and
lemma 2 of section 4 to prove lemmas 3 and 4, the ap-
proximate TPCP character of slow propagators over a
slow timescale.

Throughout this paper, the underlying Hilbert
space H is assumed to be of finite dimension. This
ensures uniqueness, existence and convergence of these
asymptotic expansions versus the small parameter ε .
The calculations below use the language of operators.
Thus, they can be used, at least formally, even for
an infinite dimensional Hilbert space despite the fact
that precise mathematical justifications relying on func-
tional analysis methods are not straightforward.

2. Slow/fast dynamics

2.1. Singular perturbations for finite dimen-
sional, linear and time-invariant systems

Take a linear time-invariant system of finite dimen-
sion

d
dt

ξ = (A0 + εA1)ξ

where ξ is a real vector of finite dimension D̄, A0 and
A1 are D̄× D̄ matrices with real entries and ε is a small
parameter. Assuming a slow/fast structure means that
A0 can be block diagonalized in two blocks:

A0 = P0

(
0 0
0 Γ0

)
P−1

0

where P0 is invertible and Γ0 is a Hurwitz (stable) ma-
trix of dimension D̄− d̄ > 0, the dimension of the fast
dynamics and where d̄ > 0 is the dimension of the slow
dynamics. Standard perturbation theory (see [14]) en-
sures that, for ε small enough, one has a similar block
decomposition:

A0 + εA1 = P(ε)
(

∆(ε) 0
0 Γ(ε)

)
P−1(ε)

where the matrices P(ε), ∆(ε) and Γ(ε) are analytic
versus ε with P(0) = P0, ∆(0) = 0 and Γ(0) = Γ0. Ge-
ometrically, exists, for ε small enough, two invariant
linear subspaces:

• the slow one, of dimension d̄, corresponding to the
slow evolution governed by the propagator et∆(ε)

• the fast one, of dimension D̄ − d̄, corresponding
to the fast and exponentially stable evolution gov-
erned by the propagator etΓ(ε).

2.2. Slow/fast GKSL quantum dynamics

All the developments below combine the above dy-
namics structure with non-commutative computations
with operators used to describe the decoherence dynam-
ics of open-quantum systems.

Consider the time-varying density operator ρt on
underlying Hilbert space H of finite dimension obey-
ing to the following dynamics

d
dt

ρt = L0(ρt)+ εL1(ρt) (1)

where ε is a small positive parameter and where the
GKSL linear super-operators L0 and L1 read (σ = 0,1)

Lσ (ρ) =−i[Ĥσ ,ρ] . . .

+∑
ν

L̂σ ,ν ρL̂†
σ ,ν − 1

2

(
L̂†

σ ,ν L̂σ ,ν ρ +ρL̂†
σ ,ν L̂σ ,ν

)
with Ĥσ Hermitian operator and L̂σ ,ν any operator not
necessarily Hermitian.

Assume that for ε = 0 and any initial condition ρ0,
ρt converges exponentially towards a steady state de-
pending a priori on ρ0. This means that we have a TPCP
map K 0 such that for any ρ0:

lim
t 7→+∞

etL0(ρ0)≜ K 0(ρ0) (2)

The range of K 0 is denoted by D0, the linear space of
equilibria for L0 corresponding to its kernel. Denote by
d̄ the dimension of D0 and consider an orthonormal ba-
sis of D0 made of d̄ Hermitian operators Ŝ1, . . . , Ŝd̄ such

that Tr
(

ŜdŜd′
)
= δd,d′ . To each Ŝd is associated an in-

variant operator Ĵd = limt 7→+∞ etL ∗
0 (Ŝd) being a steady-

state of the adjoint dynamics (according to the Frobe-
nius Hermitian product) d

dt Ĵ = L ∗
0 (Ĵ) where L ∗

0 is the
adjoint of L0 (see, e.g., [13]). For any solution ρt of (1)
with ε = 0, Tr

(
Ĵdρt

)
is constant since L ∗

0 (Ĵd) = 0 im-
plies that

d
dt

Tr
(

Ĵdρt

)
= Tr

(
ĴdL0(ρt)

)
= Tr

(
L ∗

0 (̂Jd)ρt

)
= 0.

Thus, one has:

lim
t 7→+∞

ρt =
d̄

∑
d=1

Tr
(

Ĵdρ0

)
Ŝd ≜ K 0(ρ0). (3)
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Moreover Tr
(

ĴdŜd′
)
= δd,d′ since for any t > 0

Tr
(

etL ∗
0 (Ŝd) Ŝd′

)
= Tr

(
Ŝd etL0(Ŝd′)

)
and etL0(Ŝd′) = Ŝd′ . Notice that the operator subspace
of co-dimension d̄ defined by{

ρ
∣∣ ∀d ∈ {1, . . . , d̄}, Tr

(
Ĵdρ

)
= 0
}

corresponds to the set of trajectories exponentially con-
verging to 0, i.e. the fast invariant subspace when ε = 0.

3. Asymptotic expansion of the slow dy-
namics

For ε > 0 and small, (1) admits also a d̄ dimen-
sional linear invariant subspace denoted by Dε and
close to D0 (see [14] for a mathematical justification).
This means that the set of real variables x1 = Tr

(
Ĵ1ρ

)
,

. . . , xd̄ = Tr
(

Ĵd̄ρ

)
can be chosen as local coordinates

on Dε with the perturbed operator basis Ŝ1(ε), . . . Ŝd̄(ε).
If at some time t, the solution ρt of the perturbed sys-
tem (1), belongs to Dε , it remains on Dε at any time:
d
dt ρt = (L0 + εL1)(ρt) where ρt = ∑

d̄
d=1 xd(t)Ŝd(ε).

Thus, for any (x1(t), . . . ,xd̄(t)) ∈ Rd̄ , this invariance
property reads

d̄

∑
d=1

dxd

dt
Ŝd(ε) = (L0 + εL1)

(
d̄

∑
d=1

xd Ŝd(ε)

)
. (4)

Thus, for any d ∈ {1, . . . , d̄}, dxd
dt depends linearly on

x = (x1, . . . ,xd̄), i.e.

d
dt

xd = ∑
d′

Fd,d′(ε)xd′

where Fd,d′(ε) are real coefficients to be chosen in order
to satisfy the invariance conditions:

d̄

∑
d′=1

Fd′,d(ε)Ŝd′(ε) = (L0 + εL1)(Ŝd(ε))

for all d ∈ {1, . . . , d̄}. With the asymptotic expansion

Fd,d′(ε) = ∑
n≥0

ε
nF(n)

d,d′ , Ŝd(ε) = ∑
n≥0

ε
nŜ(n)d

one can compute recursively F(n)
d,d′ and Ŝ(n)d from F(m)

d,d′

and Ŝ(m)
d with m < n. The recurrence relationship is

based on the identification of terms with same orders
versus ε in the following equations: ∀d ∈ {1, . . . , d̄}

d̄

∑
d′=1

(
∑
n≥0

ε
nF(n)

d′,d

)(
∑

n′≥0
ε

n′ Ŝ(n
′)

d′

)
. . .

= (L0 + εL1)

(
∑
n≥0

ε
nŜ(n)d

)
.

The zero-order term is satisfied with

F(0)
d,d′ = 0, Ŝ(0)d = Ŝd .

First-order conditions read: ∀d ∈ {1, . . . , d̄}

d̄

∑
d′′=1

F(1)
d′′,d Ŝ(0)d′′ = L0(Ŝ

(1)
d )+L1(Ŝ

(0)
d ).

Left multiplication by operator Ĵd′ and taking the trace
yields

F(1)
d′,d = Tr

(
Ĵd′L1(Ŝd

(0))
)

(5)

since Tr
(

Ĵd′ Ŝ
(0)
d′′

)
= δd′,d′′ and Tr

(
Ĵd′L0(Ŵ)

)
= 0 for

any operator Ŵ because L ∗
0 (Ĵd′) = 0. Thus, Ŝ(1)d is a

solution X̂ of the following equation:

L0(X̂) = ∑
d′

Tr
(

Ĵd′L1(Ŝ
(0)
d )
)

Ŝd′ −L1(Ŝ
(0)
d ) . . .

= K 0
(
L1(Ŝ

(0)
d )
)
−L1(Ŝ

(0)
d )

where the quantum channel K 0 is defined in (2). Fol-
lowing [4], the general solution X̂ is given by the abso-
lutely converging integral,∫ +∞

0
esL0

(
L1(Ŝ

(0)
d )−K 0

(
L1(Ŝ

(0)
d )
))

ds+Ŵ

where Ŵ belongs to D0 the kernel of L0. We consider
here the solution with Ŵ = 0 and thus

Ŝ(1)d =
∫ +∞

0
esL0

(
L1(Ŝ

(0)
d )−K 0

(
L1(Ŝ

(0)
d )
))

ds

where for all d′, Tr
(

Ĵd′ Ŝ
(1)
d

)
= 0. The super-operator

R0 defined for any operator Ŵ by

R0(Ŵ ) =
∫ +∞

0
esL0

(
Ŵ −K 0

(
Ŵ
))

ds (6)

provides thus the unique solution X̂ = R0(Ŵ ) of
L0(X̂)=K 0(Ŵ )−Ŵ such that for all d, Tr

(
ĴdX̂
)
= 0.

To summarize the above calculation:

Ŝ(1)d = R0
(
L1(Ŝd)

)
. (7)
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Take n ≥ 2 and assume that we have computed
all the terms F(r)

d′,d and Ŝ(r)d′ of order r < n with

Tr
(

Ĵd′ Ŝ
(r)
d

)
= 0 for all d and d′. Invariance conditions

of order n read: ∀d ∈ {1, . . . , d̄}

d̄

∑
d′′=1

n

∑
r=1

F(r)
d′′,d Ŝ(n−r)

d′′ = L0(Ŝ
(n)
d )+L1(Ŝ

(n−1)
d ).

Left multiplication by operator Ĵd′ and taking the trace
yields

F(n)
d′,d = Tr

(
Ĵd′L1(Ŝ

(n−1)
d )

)
. (8)

Then Ŝ(n)d is as follows

Ŝ(n)d = R0

(
L1(Ŝ

(n−1)
d )−

d̄

∑
d′′=1

n

∑
r=1

F(r)
d′′,d Ŝ(n−r)

d′′

)
(9)

and satisfies for all d′, Tr
(

Ĵd′ Ŝ
(n)
d

)
= 0.

With such asymptotic expansion, we get an order
n approximation of the dynamics on the invariant slow-
manifold Dε .

Lemma 1. Take the slow-fast dynamics (1). For ε small
enough, it admits a unique invariant slow manifold of
dimension d̄ with local real coordinates (x1, . . . ,xd̄) and
analytic versus ε

ρ =
d̄

∑
d=1

xd

(
+∞

∑
n=0

ε
nŜ(n)d

)
Moreover, the evolution on this invariant slow linear
subspace is governed by the following linear system,
analytic versus ε

d
dt

x(t) =

(
∞

∑
n=1

ε
nF(n)

)
x(t) (10)

where F(n) is the matrix of real entries F(n)
d,d′ . Here Ŝ(n)d

and F(n)
d,d′ are given recursively by (8) and (9) starting

with Ŝ(0)d = Ŝd and F(0)
d,d′ = 0.

The precise proof of this lemma is based on the
above calculations and on the approximation theorem
5, page 32 of [15]. Uniqueness and analyticity versus
ε is automatically guaranteed since (1) is linear, time-
invariant and of finite dimension.

4. Asymptotic expansion of invariant fast
manifold

Section 3 was devoted to the invariant slow sub-
space of (1). To compute the equation of the invariant

fast subspace, it is in fact enough to search for its in-
variant operators equations, i.e., d̄ independent linear
scalar equations on ρ . For ε = 0, the fast subspace cor-
responds to the solutions ρt of d

dt ρ =L0(ρt) converging
to 0. They are characterized by the following d̄ linearly
independent equations:

∀d ∈ {1, . . . , d̄}, Tr
(

Ĵdρ

)
= 0.

Thus, for ε > 0, we are looking for the following set of
d̄ equations,

∀d ∈ {1, . . . , d̄}, Tr
(

Ĵd(ε)ρ
)
= 0

where Ĵd(ε) = ∑n≥0 εnĴ(n)d with Ĵ(0)d = Ĵd . Invariance

conditions mean that for all ρ such that Tr
(

Ĵd′(ε)ρ
)
=

0 for all d′, we have,

∀d ∈{1, . . . , d̄}, d
dt

Tr
(

Ĵd(ε)(L0(ρ)+ εL1(ρ)
)
= 0.

Thus, exists a square matrix of entries Gd,d′(ε) depend-
ing analytically on ε such that, ∀d ∈ {1, . . . , d̄},(

L ∗
0 + εL ∗

1
)
(Ĵd(ε)) = ∑

d′
Gd,d′(ε)Ĵd′(ε)

Setting Gd,d′(ε) = ∑n≥0 εnG(n)
d,d′ and identifying terms

of the same power n versus ε give:

• for n = 0, G(0)
d,d′ = 0 since L ∗

0 (Ĵd) = 0.

• for n = 1:

L ∗
0 (Ĵ

(1)
d )+L ∗

1 (Ĵd) = ∑
d′

G(1)
d,d′ Ĵd′

Taking the trace with Ŝd′ gives G(1)
d,d′ =

Tr
(

Ŝd′L
∗

1 (̂Jd)
)

and

Ĵ(1)d = R
∗
0

(
L ∗

1 (Ĵd)−∑
d′

G(1)
d,d′ Ĵd′

)
where

R
∗
0(Ŵ ) =

∫ +∞

0
esL ∗

0

(
Ŵ −K

∗
0
(
Ŵ
))

ds (11)

and K
∗
0 = lims 7→+∞ esL ∗

0 .

• for n ≥ 2, we have

G(n)
d′,d = Tr

(
Ŝd′L

∗
1 (̂J

(n−1)
d )

)
. (12)

and

Ĵ(n)d =R
∗
0

(
L ∗

1 (Ĵ
(n−1)
d )−

d̄

∑
d′′=1

n

∑
r=1

G(r)
d′′,d Ĵ(n−r)

d′′

)
.

(13)

7205



We have thus proved the following lemma

Lemma 2. For the slow/fast system (1) and ε small
enough, exists d̄ linearly independent Hermitian opera-
tors Ĵd(ε), analytic versus ε such that the linear subset
of Hermitian operators{

ρ
∣∣ ∀d ∈ {1, . . . , d̄},Tr

(
Ĵd(ε)ρ

)
= 0
}

is invariant. Any trajectory of (1) starting in this sub-
set converges exponentially to zero with a strictly pos-
itive rate independent of ε . Moreover, by construction,
∀d,d′ ∈ {1, . . . , d̄}, Tr

(
Ĵd(ε)Ŝd′

)
= δd,d′ .

5. Slow propagator and TPCP maps

Take T > 0. Then the linear map Kε,T on D0:

D0 ∋ ρ0 7→ Kε,T (ρ0)≜ K 0

(
eT (L0+εL1)(ρ0)

)
∈ D0

is TPCP. Take ε small enough and consider the d̄ × d̄
matrix E(ε) of entries

Ed,d′(ε) = Tr
(

Ĵd(ε)Ŝd′(ε)
)

where Ŝd′(ε) = ∑n≥0 εnŜ(n)d′ with Ŝd′ = Ŝ(0)d′ and Ĵd(ε) =

∑n≥0 εnĴ(n)d with Ĵd = Ĵ(0)d are defined in lemma 1
and lemma 2 respectively. Set ρ0 = ∑d xd(0)Ŝd with
x(0) = (x1(0), . . . ,xd̄(0)) ∈ Rd̄ and consider the solu-
tion zε(0) ∈ Rd̄ of the linear system

E(ε)zε(0) = x(0).

From Tr
(

ĴdŜd′(ε)
)
= Tr

(
Ĵd(ε)Ŝd′

)
= δd,d′ one has

E(ε) = Id̄ + ε
2C(ε)

where Id̄ is the identity matrix of size d̄ and the matrix
C(ε) is analytic versus ε . Thus, E(ε) is invertible for
ε small with E−1(ε) = Id̄ +O(ε2). Then we have the
following lemma

Lemma 3. For ε small enough, exist γ > 0 and M > 0
such that for any T > 0 and any x(0) ∈ Rd̄ we have

∑
d

∣∣∣Tr
(

ŜdKε,T(ρ0)
)
− zε,d(T)

∣∣∣≤ Me−γT
√

Tr
(
ρ2

0

)
where zε(T ) = eT F(ε)E−1(ε)x(0) and ρ0 = ∑d xd(0)Ŝd .

Proof. It is based on the following arguments inspired
by [15, theorem 2, point b, page 4] and by the notion of

shadow trajectories around hyperbolic invariant mani-
fold (see, e.g.,[16] and 1). Since K

∗
0(Ŝd) = Ĵd one has

Tr
(

ŜdKε,T(ρ0)
)
= Tr

(
ĴdeT(L0+εL1)(ρ0)

)
The initial state on the invariant manifold ρε,0 =

∑d zε,d(0)Ŝd(ε) and ρ0 are such that ρ0 −ρε,0 belongs
to the invariant fast manifold. Thus, exist γ > 0 and
M > 0 such that∥∥∥eT (L0+εL1)(ρ0 −ρε,0)

∥∥∥≤ Me−γT ∥ρ0 −ρε,0∥ .

We conclude with eT (L0+εL1)(ρε,0) = ∑d zε,d(T )Ŝd(ε)

and Tr
(

ĴdŜd′(ε)
)
= δd,d′ .

Take T̄ > 0. This lemma implies that for T =
T̄/ε corresponding to a slow timescale, the approxima-
tion of K

ε, T̄
ε

(ρ0) by ∑d zε,d(
T̄
ε
)Ŝd is exponentially pre-

cise. Thus, if we restrict the asymptotic expansion to
second-order terms and consider evolution over a slow
timescale T̄

ε
, we are close up to order 2 terms to a TPCP

map as stated in the following lemma.

Lemma 4. Consider the slow/fast system (1), the
second-order approximation of the slow dynamics

d
dt

x =
(
εF(1)+ ε

2F(2))x
and its propagator matrix G

(2)
T̄
ε

= e
T̄
ε
(εF(1)+ε2F(2)) over

the slow timescale T̄/ε . For any T̄ > 0, exists MT̄ > 0
such that for any x(0) ∈ Rd̄ we have∥∥∥∥K

ε,
T̄
ε

(ρ0)−ρ( T̄
ε
)

∥∥∥∥≤ MT̄ ε
2∥x(0)∥

where ρ0 = ∑d xd(0)Ŝd and ρ( T̄
ε
) = ∑d xd(

T̄
ε
)Ŝd with

x( T̄
ε
) = G

(2)
T̄
ε

x(0).

Notice that

F(1)
d′,d = Tr

(
Ĵd′L1(Ŝd)

)
and ( R0 defined in (6))

F(2)
d′,d = Tr

(
L ∗

1 (̂Jd′) R0

(
L1(Ŝd)

))
can be computed from the nominal operators Ŝd and Ĵd′

defined in section 2.

Proof. It combines lemma 3, the fact that G
(2)
T̄
ε

=

e
T̄
ε

F(ε)+O(ε2) since T̄
ε

F(ε) = T̄ (F(1)+εF(2))+O(ε2)

and that E−1(ε)x(0) = x(0) + O(ε2) since E−1(ε) =
Id̄ +O(ε2).

1https://spartacus-idh.com/liseuse/116/#page/142
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6. Concluding remarks

For infinite dimensional systems, mathematical
justifications of such asymptotic expansions are not
straightforward (existence, uniqueness and convergence
of the series). For infinite dimensional systems con-
structed with mainly bounded operators, precise math-
ematical guaranties are available (see, e.g., [17, 18]).
One cannot use these available results when the dy-
namics rely on unbounded operators parameterizing the
GKSL dynamical model (1). The mathematical justi-
fication of such infinite dimensional extension requires
precise functional analysis investigations and assump-
tions. They will be addressed in future developments.

These asymptotic expansion can be exploited nu-
merically to simulate on a classical computer, compos-
ite open quantum systems encountered in quantum error
correction (see, e.g., [19] for preliminary results with
cat-qubit systems).
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