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Abstract— This research offers a neural network adaptive
observer (NNAO) architecture for nonlinear lateral vehicle
dynamics with variable sampled delayed output. A radial basis
function (RBF) neural network is used to approximate the
system’s unknown part, and a new weight updating mechanism
is provided. A closed-loop output predictor is used to offer inter-
sample output estimate while dealing with variable samples, and
a closed-loop integral compensation is used to deal with variable
delay. The convergence of the proposed observer is proved
using Lyapunov function and small gain arguments. Simulation
tests confirm the NNAO’s estimate algorithm’s accuracy in
estimating yaw rate, longitudinal speed, and particularly the
excellent performance of the estimation of lateral speed.

I. INTRODUCTION

Active safety vehicle systems have gained prominence due
to concerns about accidents resulting from loss of vehicle
control, fostering a decade-long focus on automotive research
[1]. These systems enhance driving comfort and safety,
incorporating features like electronic yaw stability control
and anti-lock braking. Despite their wide use, challenges
persist due to nonlinear system behavior, unobservable states,
discrete and delayed measurements, and external distur-
bances. Intelligent systems research has addressed these
issues, yielding diverse state observer structures.

Lateral vehicle dynamics significantly impact active safety
systems, yet onboard sensors can be limited [2]. Estimating
vehicle dynamics through cost-effective sensors has gar-
nered attention, leading to two categories of techniques:
kinematics-based ([3],[4]) and dynamic model-based ([5]-
[7]). While kinematics-based methods suffer drift, dynamic
model-based techniques demand accurate vehicle parameter
knowledge. Kalman filters ([6],[9]) and robust observers
([8],[11]) attempt to mitigate these challenges, but discrep-
ancies with real parameters and nonlinearities persist [4].

Observers often rely on known dynamics, yet real sys-
tems may contain hard-to-model parts [12]. To address
this, model-free observers like neural networks ([13],[14])
have emerged. Neural networks map complex functions,
with early versions designed for SISO systems [15]. Recent
works extend them to MIMO systems [14], sidestepping
strict SPR requirements. The authors of [14] developed
a two-layer Neural Network Observer (NNO) architecture
based on improved back-propagation (BP) algorithms that
eliminates the SPR assumption. Chen et al. explored how
uncertainty impacts lithium-ion battery system output in
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[16] and created a neural network adaptive observer using
RBF neural network (RBFNN). Also, the NN observer was
applied to vehicles, where novel estimator based on sensor
fusion that includes a neural network and a linear kalman
filter to estimate the vehicle roll angle was presented in [17].
In [18], the same authors created a novel observer based on
H∞ filtering in combination with a neural network (NN) for
the same application.

The key problem with the preceding observers, notwith-
standing their success in a variety of areas, is that they
assume that the variables being measured are continuous.
In real systems, this measured value, which is given by
accessible sensors, is sampled. When it comes to the im-
plementation of the mentioned observers on digital signal
processors, this sensor’s sampling rate may have an impact
on the convergence of the proposed observers. A difficult
task is determining how to create a continuous state observer
based on discrete system output. There is already research on
sampled data observers in the literature ([19],[20]). However,
there are limited investigations on the NNO ([21],[28]).
In [21], Avelar et al. suggested a differential NNO with
sampling and quantization, the fundamental concept being to
process sampling as a delay. Hu et al. created a deterministic
learning high-gain observer under sampling conditions, how-
ever their approach is based on discrete system modeling and
cannot achieve continuous state estimation [22]. In addition
to the issue with sampled measurements, certain systems
clearly suffer from the influence of delayed data. In the study
of lateral vehicular motion, time delays have not drawn much
attention. Delay, however, is a common occurrence in many
processes and most natural systems. Delays, for instance,
may happen as a result of information transfer between
system components and insufficient information processing
capabilities. Furthermore, delays must not be ignored be-
cause they may result in instability and a decrease in system
performance. There have been a number of reported works
that address a time-varying delay system; for comparison, see
([24],[25]). In this study, we propose a NNAO for partially
unknown nonlinear systems with variable sampled delayed
output. The observer’s weight update rule is driven by the
coordinate transformation technique reported in the literature
[23], and the design of this study does not need common SPR
assumptions, allowing the design to be applied in a broad
range of scenarios. Inspired from [19] and [20], this paper
uses a closed-loop output predictor to process the sampled
output, and the Newton-Leibniz’s integral method to perform
integral compensation for the output of variable delay.

The rest of this paper is organized as follows: In Section
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II, the lateral bicycle model is described and the problem
statement is formulated. The proposed NNAO is given in
Section III. Section IV illustrates the efficiency of the pro-
posed method through simulation results.

II. PROBLEM STATEMENT

Fig. 1. 2-DOF bicycle model of the vehicle

A. DYNAMIC BICYCLE MODEL
Figure 1 depicts a two-degree-of-freedom vehicle proto-

type. This model is extensively used in the literature to exam-
ine lateral vehicle dynamic behavior, and it is developed by
applying Newton’s second law to the vehicle’s longitudinal
and lateral motions [1]:

v̇x = −Fyf sin δ+Fa

m

v̇y =
Fyf cos δ+Fyr

m − rvx

ṙ =
Fyf lf cos δ−Fyrlr

Iz

(1)

where in the vehicle’s frame, vx, vy , and r represent the
longitudinal, lateral, and rotational velocities respectively.
The lateral forces on the front and rear tires are represented
as Fyf and Fyr respectively. The force Fa is the traction
force that is caused by the vehicle’s motors for acceleration
or brakes for deceleration, and can be calculated using the
equation Fa = max, where ax is the inertial acceleration of
the vehicle at the center of gravity in the x-axis direction. The
control input, or steering angle of the front tire, is represented
as δ.
Experimental evidence [26] shows that the lateral force of
a tire is a non-linear function of the slip angle, and for
small slip angles, it is directly proportional to the slip angle.
Based on these findings, a linear tire force model and an
unidentified non-linear tire force model are combined to
represent the front and rear tire forces as:

Fyf = 2Cfαf + fyf (αf );Fyr = 2Crαr + fyr(αr) (2)

In this equation, αf and αr represent the slip angles of the
front and rear wheels, respectively. fyf (αf ) and fyr(αr)
are the unknown non-linear tire force models for the front
and rear wheels. For small slip angles, αf , αr can be
approximated as:

αf = δ − vy
vx

− lfr

vx
;αr = −vy

vx
+

lrr

vx
(3)

Under the assumption that the steering wheel angles are
small, sin δ = δ, equation (1) is represented in state space
form, with vx, vy , and r being the states and the steering
angle δ and the longitudinal acceleration ax being the control
inputs:

ẋ = A(u(t), y(t))x+ φ(u(t), x(t)) + g(u(t), x(t))

y = Cx
(4)

where x ∈ R3 is the state vector, y ∈ R2 is the output matrix.
A(u, y) ∈ R3×3 and φ(u, x) ∈ R3 are nonlinear terms, and
g(u, x) ∈ R3 is an unknown nonlinear term:

A =


0

0

0

2lrCr−2lfCf

Izvx

− 2Cf+2Cr

mvx

0

0

0

2Cf lfδ
mvx

 , C =


0

1

0

0

1

0
 ,

φ =


− 2l2fCf+2l2rCr

Izvx
r +

2Cf lf
Iz

δ

(−vx +
2lrCr−2lfCf

mvx
)r +

2Cf

m δ

2Cf δ
mvx

vy + ax
 ,

g =


lf
Iz fyf (αf )− lr

Iz
fyr(αr)

1
mfyf (αf ) +

1
mfyr(αr)

1
mfyf (αf )

 .

(5)

B. Problem Statement and Preliminaries

In this work, we will consider that the measurements of the
system are available only at sampling instant tk, moreover,
the system’s inputs and output measurements also exhibit a
certain amount of delay. Therefore, the system’s dynamic can
be described as:
ẋ(t) = A(u(t), y(t))x(t) + φ(u(t), x(t)) + g(u(t), x(t))

y(tk) = Cx(tk)

yd(t) = y(t− d(t))
(6)

The sampling interval δk = tk+1 − tk with δM =
max{δk, k ∈ N}. d(t) ∈ R is the variable delayed output.
Using the RBFNN’s ability to approximate functions, we
can estimate the nonlinear term g(u(t), x(t)), which is not
known, in the following manner:

g(u, x) = Φ(ω)ξ + ϵ (7)

where ω = [u, x]T is the input of the neural network, ξ ∈
Rm is the weight of the neural network, Φ(ω) ∈ R3×m is
the matrix of the activation functions, and ϵ ∈ R3 is the
approximation error. Each entry Φi,j(ω) ∈ R in Φ(ω) is a
Gaussian function defined as follows:

Φi,j(ω) = exp(−||ω − cj ||2

b2j
) (8)

where i = 1, 2, ..., n and j = 1, 2, ...,m. The centers and
widths of the Gaussian functions are represented by ci and
bi respectively. By adjusting the weight ξ appropriately, the
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approximation error ϵ can be kept small. This allows the
RBFNN to approximate the unknown function g(u(t), x(t))
with a small error. It can be easily shown that the Gaussian
function used as the activation function in the RBFNN is both
Lipschitz and bounded. Equation (7) is frequently expressed
in the literature as WTΦ [26], with W (the weights) as a
matrix and Φ as a vector. However, in the design of this
work, ξ is selected to be a vector. This is due to the fact that
it simplifies the design of a new adaptive weight update law,
which will be addressed later.

Before discussing the main findings of this article, some
technical assumptions will be presented.

Assumption 1: The state x and the input u are defined in
compacts sets.

Assumption 2: The functions A(u, x) and φ(u, x) are
Lipschitz with respect to x uniformly in u ∀u ∈ U , where
U is a compact set.

Assumption 3: The approximation error ϵ is bounded as
follows: ϵ ≤ ϵM , where ϵM is a positive constant. Addi-
tionally, the weight vector ξ is restricted to a compact set,
such that ξ ≤ ξM , where ξM is a positive constant. This
assumption is a common assumption in the design of neural
network observers ([14]).

With the assumptions stated, we can now proceed to
present the main results of the paper.

III. NEURAL NETWORK ADAPTIVE OBSERVER

A. Observer Design

The proposed observer for the class of systems defined in
equation (6) has the following structure:

˙̂x = A(u, ŷ)x̂+φ(u, x̂)+Φ(u, x̂)ξ̂− (L+χPΞT )(Cx̂−w)
(9)

ẇd(t) = C

(
A(u(δt), ŷ(δt))x̂(δt) + φ(u(δt), x̂(δt))+

Φ(u(δt), x̂(δt))ξ̂(δt)

)
−K1(Cx̂(δt)− wd(t))

for t ∈ [tk, tk+1)

w(tk − d(t)) = y(tk − d(t))
(10)

with

w = wd+

t∫
δt

[
C

(
A(u(s), ŷ(s))x̂(s) + φ(u(s), x̂(s))

+ Φ(u(s), x̂(s), ξ̂(s))

)
−K2(Cx̂(s)− w(s))

]
ds

(11)

where x̂ ∈ R3 is the estimated state, w ∈ R2 is the predicted
output, ξ̂ ∈ Rm is the estimated weight. ŷ = Cx̂ and δt =
t− d(t). P ∈ Rm×m is a symmetric positive definite (SPD)
matrix . L ∈ R3×2 is the observer gain that will be designed
to ensure A(u, ŷ) − LC is Hurwitz. K1 ∈ R2×2 and K2 ∈
R2×2 are predictor gains. Ξ = Cχ, where χ ∈ R3×m is an
auxiliary variable that fulfills:

χ̇ = (A(u, ˆy)− LC)χ+Φ(u, x̂) (12)

Clearly, the observer structure is made up of three parts.
Equation (9) is an observer for state estimation of system
(6). Equation (10) is the output predictor, which provide a
piecewise continuous estimation of y(t). K1(Cx̂(δt)−wd(t))
is a corrective term used to improve the output predictor’s
performance. Equation (11) allows the observer to compen-
sate for the delay affecting the system output.

Remark 1: Because A(u, ŷ) − LC is Hurwitz and Φ is
bounded, it is easy to derive that χ is bounded as well.

Remark 2: The weighting update law (13) does not re-
quire the persistent excitation assumption due to the Gaussian
function’s constant positive character.

B. Stability Analysis

The stability of the proposed observer (9-11) is given by
the following Theorem.

Theorem 1: Under Assumption 1-3, system (9-11) is a
NNAO for system (6), with the following neural network
adaptive weight update law:

˙̂
ξ = −PΞT (Cx̂− w)− θξ̂ (13)

where θ is a positive constant that needs to be designed. If
the maximum of the sampling interval δM and the maximum
delay dM satisfy the following conditions:

0 < ||K1||δMeαδM < 1

0 < ||K2||dMeαdM < 1

0 < r1(d, δM ) < 1

with

α0 = θm − k − c

2
, θm = min

(
λm(Q)

λM (S)
, 2θ

)
,

∋ constant α such that 0 < α < α0/2 ,

r1(d, δM ) =
2c5w1dMeαdM

α0(1− ||K2||dMeαdM )
+

2c5w1δMeαδM

α0(1− ||K1||δMeαδM )(1− ||K2||dMeαdM )
,

k = k0 + k1 + k2, c = c0 + c1 + c2 + c3,

k0 = 2αγLAxM ||C||, c0 = 2αβLAxM ||C||χM ,

k1 = 2αγLΦξM , c1 = 2αβLΦξMχM ,

k2 = 2αβLΦχM , c3 = 2αβΦM , αγ =
√
λM (S)/λm(S)

c5 = max

(
2||L||

√
λm(S),

2ΞM√
λM (P )

)
,

w1 = max

(
Θ+ LA||C||2xM + ||C||Lϕ + ||C||LΦξM√

λm(S)
,

(Θ + LA||C||2xM + ||C||Lϕ + ||C||LΦξM )χM√
λM (P )

)
,

Θ = sup
t≥0

||CA(u, ŷ)−KC||, χM = sup
t≥0

||χ||,Ξ = sup
t≥0

||Ξ||,

αβ =
√

λM (S)/λM (P )

then the state and weight estimation are uniformly ultimately
bounded (UUB).
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Proof: Define the system state error x̃ = x̂− x and weight
error ξ̃ = ξ̂ − ξ, then:

˙̃x = Acx̃+ Ã(u, y, ŷ)x+ φ̃(u, x̂, x) + Φ̃(u, x̂, x)ξ+

Φ(u, x̂)ξ̃ − ϵ+ χ
˙̃
ξ + θχξ̃ + θχξ + Lew

˙̃
ξ = −PΞTCx̃− θξ̃ + θξ + PΞT ew

(14)
where Ac = A(u, ŷ)− LC, Ã(u, y, ŷ) = A(u, ŷ)−A(u, y),
Φ̃(u, x̂, x) = Φ(u, x̂) − Φ(u, x) and φ̃(u, x̂, x) = φ(u, x̂) −
φ(u, x).
Let’s now introduce the coordinate transformation suggested
in [23]:

ζ(t) = x̃(t)− χξ̃(t) (15)

Differentiating ζ(t) with respect to time:

ζ̇(t) = Acζ + Ã(u, y, ŷ)x+ φ̃(u, x̂, x)− ϵ+ Φ̃(u, x̂, x)ξ

+ θχξ̃ + θχξ + Lew
(16)

Taking into account the following Lyapunov function:

V (ζ, ξ̃) = V1(ζ) + V2(ξ̃) (17)

with
V1(ζ) = ζTSζ (18)

V2(ξ̃) = ξ̃TP−1ξ̃ (19)

where S satisfies AcT + SAc ≤ −Q− CTC.
Then differentiating V1(ζ) with respect to time , one gets:

V̇1(ζ) = 2ζTSAcζ + 2ζTSÃ(u, y, ŷ)x+ 2ζTSφ̃(u, x̂, x)

+ 2ζTSΦ̃(u, x̂, x)ξ − 2ζTSϵ+ 2θζTSχξ̃

+ 2θζTSχξ + 2ζTSLew
(20)

According to (16), we get:

||x̃|| ≤ ||ζ||+ ||χ||||ξ̃|| ≤ ||ζ||+ χM ||ξ̃|| (21)

Taking the nonlinear terms of (20), we have:

2ζTSÃ(u, y, ŷ)x ≤ 2
√
λM (S)

√
V1(ζ)LAxM ||C||||x̃||

≤ k0V1 + c0
√
V1

√
V2

2ζTSΦ̃(u, x, x̂)ξ ≤ 2
√
λM (S)

√
V1(ζ)LΦξM ||x̃||

≤ k1V1 + c1
√
V1

√
V2

2ζTSφ̃(u, x, x̂) ≤ 2
√
λM (S)

√
V1(ζ)Lφ||x̃||

≤ k2V1 + c2
√
V1

√
V2

2θζTSχξ̃ ≤ 2
√
λM (S)

√
V1(ζ)χM ||ξ̃||

≤ +c3
√
V1

√
V2

(22)

By combing (20) and (22), we have:

V̇1(ζ̃) ≤ −ζTQζ − ζTCTCζ + kV1 + c
√
V1

√
V2

+ 2
√
λM (S)V1ϵM + 2

√
λM (S)V1χMξM

+ 2||L||
√

λM (S)V1||ew||

(23)

By taking V2(ζ) and differentiating is w.r.t. time, one gets:

V̇2(ξ̃) = −2θV2 − ξ̃TΞTΞξ̃ − 2ξ̃TΞTCζ + 2ξ̃TΞT ew

≤ −2θV2 − ξ̃TΞTΞξ̃ − 2ξ̃TΞTCζ

+ 2ΞM

√
V2

λM (P )
||ew||

(24)

By introducing a change of coordinates W =
√
V1 +

√
V2,

following (23-24), we have:

Ẇ = −α0W + c5||ew||+ c4 (25)

Integrating and then multiplying both sides of (25) by eαt,
knowing that e−(α0−α) ≤ 1, we have:

eαtW ≤ w0 + e(−α0−α)tc4

∫ t

tk

e(α0−α)teα0sds

+ e(−α0−α)tc5

∫ t

tk

e(α0−α)teα0s||ew||ds

≤ w0 + e(−α0−α)tc4

∫ t

tk

e(α0−α)tds sup
t0≤s≤t

(eαs)

+ e(−α0−α)tc5

∫ t

tk

e(α0−α)tds(eα0s sup
t0≤s≤t

(eαs||ew||)

(26)

where w0 = eα0t0W (t0). Taking 0 < α < α0/2, then:

eαtW ≤ w0 +
2c4
α0

eαt +
2c5
α0

sup
t0≤s≤t

(eαs||ew||) (27)

On the other hand, lets define the system’ output error as
ew = w − y, then we have:

||ew|| = ||w − y|| ≤ ewd + w1

∫ t

t−dM

e−αseαsW (s)ds

+ ||K2||
∫ t

t−dM

e−αseαs||ew(s)||ds+ v1

∫ t

t−dM

e−αseαsds

||ew|| ≤ ewd + w1

∫ t

t−dM

e−αs sup
t−dM≤s≤t

(eαsW (s))ds

+ ||K2||
∫ t

t−dM

e−αs sup
t−dM≤s≤t

(eαs||ew(s)||)ds

+ v1

∫ t

t−dM

e−αs sup
t−dM≤s≤t

(eαs)ds

(28)

Using the mean-value theorem, ∃ ρ ∈ [t− dM , t], then:∫ t

t−dM

e−αsds ≤ dMe−ρα ≤ dMe−αtk (29)

Combining (29) and (30), and multiplying both sides by eαt,
we get:

sup
t0≤s≤t

(||ew||eαt) ≤ sup
t0≤s≤t

(||ewd||eαt)

+ w1dMeαdM sup
t0≤s≤t

(eαsW ) + v1dMeαdM sup
t0≤s≤t

(eαs)

+ ||K2||dMeαdM sup
t0≤s≤t

(eαs||ew(s)||)

(30)
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If dM satisfy 0 < ||K2||dMeαdM < 1, then:

sup
t0≤s≤t

(eαs||ew||) ≤
(

sup
t0≤s≤t

(eαs||ewd||) + v1dMeαdM eαt

+ w1dMeαdM sup
t0≤s≤t

(eαsW )

)
/(1− ||K2||dMeαdM )

(31)

Similar as (29-30), if δM satisfy 0 < ||K1||δMeαδM < 1,
then:

sup
t0≤s≤t

(eαs||ewd||) ≤ (w1δMeαδM sup(eα(s−d(t))W (s− d(t)))

+ v1δMeαdM eαt)/(1− ||K1||δMeαδM )
(32)

Combing the last two equations, we get:

sup
t0≤s≤t

(eαs||ew||) ≤

w1dMeαdM sup
t0≤s≤t

(eαsW ) + v1dMeαdM eαt

1− ||K2||dMeαdM
+

w1δMeαδM sup
t0≤s≤t

(eα(s−d(t))W (s− d(t))) + v1δMeαδM eαt

(1− ||K1||δMeαδM )(1− ||K2||dMeαdM )
(33)

Taking (30) and (27), then:

eαtW (t) ≤ w0 +
2c4
α0

eαt +
2c5
α0

sup
t0≤s≤t

(eαs||ew||)

≤ w2 + r1(d, δM ) sup
t0≤s≤t

(eαsW ) + r2(d, δM , ϵ)eαt

(34)

with

w2 = w0 +

2c5w1δMeαδM sup
−dM≤s≤t0

(eα(s)W (s))

α0(1− ||K1||δMeαδM )(1− ||K2||dMeαdM )

r1(d, δM ) =
2c5w1dMeαdM

α0(1− ||K2||dMeαdM )

+
2c5w1δMeαδM

α0(1− ||K1||δMeαδM )(1− ||K2||dMeαdM )

r2(d, δM , ϵ) =
2c5v1dMeαdM

α0(1− ||K2||dMeαdM )

+
2c5v1δMeαδM

α0(1− ||K1||δMeαδM )(1− ||K2||dMeαdM )
(35)

Let dM and δM satisfy:

r1(d, δM ) < 1 (36)

we will have:

W (t) ≤ w2e
−αt + r2(d, δM , ϵ)

1− r1(d, δM
(37)

(37) indicates that ζ and ξ exhibit UUB characteristics. It can
be deduced from (15), then, that x̃ exhibits the properties of
UUB. End of proof

IV. SIMULATION RESULTS

In this section, we gathered relevant data and performed
simulations for validation. The data collection involved using
the experimental Citroen AMI at the IRSEEM facility in
Rouen, France. We subsequently performed simulations and
comparisons, demonstrating the effectiveness of our pro-
posed observer. The car’s parameters are shown in Table 1.
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Fig. 2. RTMaps simulation results: desired vehicle path, and steering input.

TABLE I
PARAMETER VALUES OF VEHICLE MODEL

Parameter Description Value
m Vehicle Mass 600 [kg]
Iz Vehicle yaw moment of inertia 1100 [kgm2]
lf Distance from CoG to front axle 0.86 [m]
lr Distance from CoG to rear axle 0.9 [m]
Cf Front cornering stiffness 27500 [N/rad]
Cr Rear cornering stiffness 27500 [N/rad]

For the simulation, the vehicle was maneuvered via the
parking lot, as shown in Fig. 2, and the steering input
required to keep the planned vehicle route is also depicted.
Fig. 3 show the considered variable delay in the simu-
lation. A random sample time is selected, ranging from
Ts = 0.05 to Ts = 0.3. 15 neurons were selected in the
hidden layer. In the simulation, the following parameters
are chosen: χ(0) = 03×15,K1 = 30I2,K2 = 20I2, P =
20diag(0.1I15, 7I15, I15), θ = 0.4, L = [50 10; 15 −
5;−30 20]. As depicted in Fig 4, in the context of es-
timating the system states with variable sampled delayed
output, a comparative analysis between Observer 1 (proposed
observer) and Observer 2 (same observer without delay com-
pensation) was conducted to assess the impact of delay on
the system. Remarkably, Observer 1 exhibited significantly
superior performance in accurately estimating the vehicle
state.
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Fig. 4. RTMaps simulation results : estimation of vehicle state variables.
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