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Abstract— Microgrids subjected to secondary cooperative
control encounter significant challenges, including operational
constraints and clock drifts, adversely affecting their stability
and efficiency. This paper provides conditions that assure
optimal microgrid performance in both transient and steady-
state scenarios, focusing on the effects of clock drifts and
fluctuations in load. Furthermore, we introduce a novel ap-
proach for designing secondary control parameters, specifically
engineered to minimize steady-state discrepancies attributable
to clock drifts while ensuring adherence to standards for
transient operations. Comprehensive experimental validations
corroborate the effectiveness of our proposed solutions.

I. INTRODUCTION

Control performance in transient states is vital for mi-
crogrid stability at all levels. Low-inertia microgrids, for
example, face significant frequency stability challenges due
to rapid rate of change of frequency (RoCoF) and frequency
deviations from power imbalances [4], [5]. Given micro-
grids’ dynamic nature, fluctuations in load, generation, or
transmission can push state variables beyond safe limits
[1], necessitating solutions for frequency constraint [2] to
maintain operation stability [3]. Innovations addressing these
issues include distributed secondary control for dynamic mi-
crogrids [6], frequency-constrained energy management [7],
scheduling with synthetic inertia for renewable uncertainties
[8], and optimizing DG output for economic and capacity
alignment [9].

The prevalence of crystal oscillator-based clocks in micro-
grid converters introduces clock drift risks, significantly im-
pacting frequency control and power sharing in the secondary
control layer [9]–[13]. Despite droop-controlled VSIs’ re-
silience, they still face steady-state power distribution issues
due to drifts [11]. Studies have explored the effects of
clock drifts on islanded microgrids [10], highlighting poten-
tial stability risks [14] and suggesting secondary controller
adjustments for enhanced stability [15]. A consensus-based
algorithm has also been proposed to improve synchronization
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in multi-inverter microgrids facing clock drift challenges
[16].

This paper addresses the challenges of dynamic opera-
tional constraints and the impact of clock drifts on stability
and performance in microgrids under secondary cooperative
control. It highlights the issues of secondary frequency regu-
lation and power-sharing controls affected by clock drifts and
proposes a unified modeling framework to tackle these prob-
lems. We focus on developing tuning and design strategies
for secondary cooperative control that adhere to operational
constraints and minimize errors due to clock drifts. The
key contributions of this paper include: 1) Establishment
of robust conditions for managing transient and steady-state
operations amidst clock drifts and load changes, incorpo-
rating a source-load coupling mechanism to enhance sys-
tem dynamics; 2) Development of a cooperative secondary
control parameter tuning algorithm that reduces steady-state
errors from clock drifts while maintaining compliance with
transient operational constraints.

The flow of this paper is as follows: Section II introduces
the modeling of microgrids considering clock drift, Section
III provides the parameter conditions for meeting relevant
performance metrics, and the final section presents simula-
tion experiments for validation.

II. PRELIMINARIES AND PROBLEM STATEMENT

This paper adopts the following notations for vectors and
matrices. |v| denotes the cardinality of set v. Matrices filled
with all ones and zeros are denoted as 1n×m and 0n×m

in Rn×m, respectively. The identity matrix is In in Rn×n.
The diagonal matrix formed from elements xi for i ∈ N
is diag

(
[xi]i∈N

)
. The infinite norm of vector x and matrix

A are ∥x∥∞ and ∥A∥∞, respectively. The vectorized sine
function over x is sin (x). Vector comparison x < y (or
x ≤ y) means element-wise comparison. For A ∈ Rm×n, AP

and AN are defined as AP
ij = max (Aij , 0) and AN

ij =

min (Aij , 0). For A ∈ Rm×m, A+has A+
ij = Aij for i ̸= j

and A+
ij = 0 for i = j, while A0 has A0

ij = Aij for i ̸= j
and A0

ij = 0 for i = j.
Denote the clock period of DGi’s processor as ∆ti, with

the nominal period as ∆t and relative drift as µi, where
∆ti = (1+µi)∆t. Assuming µi remains constant over time,
the integration step size in the cyber network, εi, and the
time signal, ti = kεi, are proportional to ∆t. If ε is the step
size in nominal clock time, then for all DGi, ti = (1+µi)t =
k(1+µi)ε with positive integer k. This leads to the derivative
relation d(·)

dti
= 1

1+µi

d(·)
dt . Therefore, at nominal time t, the

corrected state x∗
i (t) =

1
1+µi

xi(t) = γixi(t), where x∗
i and
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xi are the states in local and nominal times, respectively, and
γi is the clock drift coefficient. For simplicity, all derivative
discussions will refer to nominal time, i.e., d(·)/dt.

For the AC microgrid’s physical network, we define a
simple undirected graph Gp(V, E ,A), where V = {1, · · · , n}
represents nodes with m DGs and n−m loads, E ⊆ V × V
the physical links, and A ∈ Rn×n the adjacency matrix, with
aij > 0 for edges e = (i, j) ∈ E and aij = 0 otherwise. The
incidence matrix Bp and weighted Laplacian matrix Lp are
derived, with Ni = {j ∈ V : (i, j) ∈ E} indicating DGi ’s
physical neighbors. DGs and loads are denoted by VG and
VL, respectively. In the cyber network, DGs communicate via
a directed graph Gc(Ṽ, Ẽ , Ã), sharing the same DG node set
Ṽ = V , with cyber links Ẽ , adjacency matrix Ã, and leader
adjacency matrix Λ = diag([ãi0]i∈V). A DG accesses the
virtual leader DG0 ’s state if ãi0 > 0. The cyber neighbor set
is Ñi, and the Laplacian matrix Lc reflects the directed nature
of Gc. The network satisfies the detailed balance condition
with positive vectors ξ̃, ensuring ξ̃kãkℓ = ξ̃ℓãℓk for all k, ℓ ∈
Ṽ .

A. Dynamic of Isolated Cyber-physical Microgrids

We’ve implemented frequency-droop controllers in an iso-
lated AC microgrid, enabling DGs to supply power to loads
and contribute to the grid. This approach modifies traditional
frequency-droop control to account for clock drifts,

ω∗
i (t) = γiωi (t) = ωi

nom (t)−KP
i Pi (t)−KD

i dPi/dti, (1)

for i ∈ VG, where ωi
nom is the active power nominal

set-point of the internal inverter frequency, ω∗
i and ωi are

DGi’s frequencies concerning the local time and nominal
time, KP

i is the droop coefficient. The final term, −KD
i

dPi

dti
,

represents a negative feedback mechanism originating from
the variations in the inverter power angle. Pi represents the
measured active power that is injected into the microgrid at
bus i, and is obtained by

Pi(t) = GLPF,i(s)PE,i(t), (2)

where GLPF,i(s) = ωi
c

(
s+ ωi

c

)−1
is a low-pass filter

with cutoff frequency ωi
c for measuring power, and PE,i

is the instantaneous active power, calculated as PE,i =∑
i∈Ni

EiEj |Yij | sin (θi − θj), where Ei is the voltage mag-
nitude.

Under the effect of clock drifts the relationship between
Pi and PE,i as a differential equation can be expressed as

γiṖi(t) + ωi
cPi(t) = ωi

cPE,i(t) (3)

The dynamics of the loads can be modeled by the following
Kuramoto-like equations, for i ∈ VL,

0 = −PL,i −
∑

i∈Ni

EiEj |Yij | sin (θi − θj) , (4)

where Yij is the admittance of the physical link between
nodes i and j, for all the nodes. PL,i > 0 is the power
demand of load node i, for i ∈ VL. For simplicity, we denote
the dynamical coupling strength aij = ViVj |Yij | ∈ R for
different physical link e = (i, j) ∈ E . Suppose the system

solution (1-3) is frequency-synchronized. In that case, there
exists ωsyn which characterizes the steady-state frequency of
the system and is expected to be equal to the rated value,
ωra = 50 or 60Hz.

Let ωnom =
[
ωi
nom

]
i∈VG

, θ = [θi]i∈V , ω̂ =

θ̇ = [ωi]i∈V , ω = [ωi]i∈VG
, P = [Pi]i∈V , PE =

[PE,i]i∈VG
, PL = [PL,i]i∈VL

, KP = diag
([

KP
i

]
i∈VG

)
,

KD = diag
([

mD
i

]
i∈VG

)
, Υ = diag

(
[γi]i∈VG

)
, T =

diag
([

1/ωi
c

]
i∈VG

)
and W = diag

(
[Ke]e=(i,j)∈E

)
∈

R|E|×|E| with Ke = EiEj |Yij |.
With the implementation of secondary controllers, the

nominal set points for each DGi with i ∈ VG, can be
effectively calculated as

ωi
nom (t) = c

∫ t

0

[
uω
i (t) + uP

i (t)
]
dt, (5)

where uω
i (t) and uP

i (t) are respectively the frequency and
active power control laws which are the inputs in front of
the integrators, and c > 0 is the coupling strength. Next,
combine (2) and (3), we obtain the power flow equation in
matrix form. Then, derive the equation concerning nominal
time t to obtain

d

dt

[
PT
E −PT

L

]T
= BpW cos

(
BT

p θ (t)
)
BT

p ω̂. (6)

We denote L̃(θ(t)) = BpW cos
(
BT

p θ (t)
)
BT

p ∈ Rn×n

which is a dynamic matrix over time signal t, and always
satisfies all the characteristics of the Laplacian matix. If
we partition the matrix L̃(θ(t)) into the 2 × 2 form with
the blocks L̃11(t) ∈ Rm×m, L̃12(θ(t)) ∈ Rm×(n−m),
L̃21(θ(t)) ∈ R(n−m)×m, and L̃22(θ(t)) ∈ R(n−m)×(n−m).
By solving (5), we obtain the equivalent system,

ṖE = L̂11(θ(t))ω (t)− L̃12(θ(t))L̃
−1
22 ṖL, (7)

where L̃11(θ(t)) − L̃12(θ(t))L̃
−1
22 (θ(t))L̃21(θ(t)), denoted

as L̂11(t), is also a dynamical Laplacian matrix, and
L̃12(t)L̃

−1
22 (θ(t)) is denoted as S(t) ∈ Rm×(n−m) for sim-

plicity.
By applying (1)-(7), we can obtain the microgrid dynamic

system considering clock drifts,

Υω (t) = ωnom (t)−KPP (t)−ΥKDṖ (t) (8a)

ΥT Ṗ (t) = −P (t) + PE(t) (8b)

ṖE = L̂11(t)ω (t)− L̃12(t)L̃
−1
22 ṖL (8c)

Υω̇nom (t) = c
[
uω
i (t) + uP

i (t)
]
. (8d)

B. Steady-state Error and Operation Constraint

The frequency regulator aims to align each DGi’s fre-
quency with the rated value ωra, while a power regulator en-
sures equitable active power distribution among DGs. Clock
drift introduces steady-state deviations in both frequency and
power allocation, which are sought to be minimized [10].
The tolerances for these deviations are denoted by κ1 > 0
for frequency and κ2 > 0 for power. Then, the controllers
in (5) can be designed to regulate the active power nominal
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set-points in (1), such that the system terminal outputs, ωi (t)
and Pi (t), achieve the following control objectives,{

limt→∞ |ωi (t)− ωra| ≤ κ1, for i ∈ VG

limt→∞
∣∣KP

i Pi (t)−KP
j Pj (t)

∣∣ ≤ κ2, (i, j) ∈ Ẽ
(9)

where the droop coefficients are selected as KP
i Pmax

i =
KP

j Pmax
j for i, j ∈ VG, and Pmax

i is the maximum capacity
of DGi.

During regulation, each DG’s frequency must stay within
a specified range, with ωi(t)’s trajectories confined to a set
in Rn:

Ω1 = {ωi ∈ R : −ω ≤ ωi − ωra ≤ ω, ω ∈ R+} . (10)

Without loss of generality, ω1m is typically regarded as
having identical elements.

III. SECONDARY CONTROL CONSIDERING THE
CONSTRAINT AND CLOCK DRIFT

A. Cooperative Control with Clock Drifts

The control input, uω
i , is designed using neighboring

DGs’ output differences. The main objective is to develop a
distributed control protocol, denoted as uω

i (t), for the system
(8) such that limt→∞ |ωi (t)− ωra| = 0, then one can write,

uω
i (t) =ki1ϑ̃i0ai0 [ω

ra − ω∗
i (t)]

+ ki2
∑

j∈Ñi

ϑ̃ijaij
[
ω∗
j (t)− ω∗

i (t)
]

=ki1ϑ̃i0ai0 [ω
ra − γiωi (t)]

+ ki2
∑

j∈Ñi

ϑ̃ijaij [γjωj (t)− γiωi (t)]

(11)
with the leader adjacency matrix Λ and the corresponding
gain matrix Ξ = diag

(
ϑ̃10, · · · , ϑ̃m0

)
· DGi can access

ωra if and only if ai0 > 0. Θ = [ϑ̃sℓ]m×m is the positive
gain matrices corresponding to the cyber network’s adjacency
matrix Ã = [ãsℓ]m×m, ki1 and ki2 are positive control gains
to be designed.

The consensus-based power controllers are as follows:

uP
i (t) =ki3

∑
j∈Ñi

ϑ̃ij ãij
[
KP

j Pj (t)−KP
i Pi (t)

]
,

(12)
where ki3 is the positive control gain. Since the considered
cyber network graphs are directed, the corresponding matrix
Lc may be asymmetric. However, by the detailed balance
assumption, one can always choose the gain matrices Φ to
ensure the symmetries of Lc ⊙Θ.

Combine (11) and (12), we have the following compact
form,{

uω(t) = − [K1(Lc ⊙Θ) +K2Λ⊙ Ξ] (Υω (t)− ωra1m)
uP (t) = −K3(Lc ⊙Θ)KPP

.

(13)
where K1 = diag

([
ki1
]
i∈VG

)
, K2 = diag

([
ki2
]
i∈VG

)
and

K3 = diag
([

ki3
]
i∈VG

)
∈ Rm×m denote the control gain

matrix, which is to be designed such that the system can
make the constraints associated with frequencies and clock
drift satisfied.

In this case, system (8) can be rewritten by plugging in
uω
i and uP

i in (11) and (12),

Υω̇ (t) = −cΥ−1 (K1Lc ⊙Θ+K2Λ⊙ Ξ) (Υω (t)

−ωra1m)−cΥ−1K3Lc ⊙ΘKPP (t)−KP Ṗ (t)

−ΥKDP̈ (t) (14a)

ΥT Ṗ (t) = −P (t) + PE(t) (14b)

ṖE = L̂11(t)ω (t)− L̃12(t)L̃
−1
22 ṖL (14c)

Υω̇nom (t) = −c [(K1Lc ⊙Θ+K2Λ⊙ Ξ) (Υω (t)−ωra1m)

+K3Lc ⊙ΘKPP ] . (14d)

In the steady state, the left-hand side of all equations in (14)
equals zero. By (14d), we have

(K1Lc ⊙Θ+K2Λ⊙ Ξ) (Υωsyn1m−ωra1m)

+K3Lc ⊙ΘKPP
s = 0m,

(15)

where P s is the steady-state of P (t) and PE(t) which is
related to the final load state P s

L. It is easily obtained the
synchronous frequency ωsyn as

ωsyn =
1T
mK−1

3 K2Λ⊙ Ξ1m

1T
mK−1

3 (K2Λ⊙ Ξ +K1Lc ⊙Θ)Υ1m

ωra. (16)

The error between the synchronous frequency and the rated
frequency can be expressed as

∆ω = −ωsyn + ωra = s/(q + s), (17)

where s = 1T
mK−1

3 (K2Λ⊙Ξ+K1Lc⊙Θ)(Υ−Im)1m and
q = 1T

mK−1
3 K2Λ ⊙ Ξ1m. q ̸= 0, and ∆ω converge to zero

if and only if the value of s approaches 0.
By left-multiplying (15) with BT

c (Lc ⊙ Θ)†K−1
3 . Here,

Bc denotes the corresponding incidence matrix of Lc ⊙ Θ.
Further, we substitute the steady-state value P s into (15),
and obtain

−BT
c (Lc ⊙Θ)†K−1

3 [K1Lc ⊙Θ+K2Λ⊙ Ξ]×
(Υωsyn1m−ωra1m) = BT

c (Lc ⊙Θ)†Lc ⊙ΘKPP
s.

(18)

Since BT
c (Lc ⊙Θ)† = B†

c and BT
c (Lc ⊙Θ)†Lc ⊙Θ = BT

c .
These two equations transform (18) into

−B†
cK

−1
3 [K1Lc ⊙Θ+K2Λ⊙ Ξ] (Υωsyn1m−ωra1m)

= BT
c KPP

s.
(19)

It can be seen that P s is the solution of the combination of
linear matrix equations (15) and 1T

mP s = P s
L for a given

constant P s
L. Referencing (17) and (19), we reformulate (8)

as
|s/(q + s)| ≤ κ1

|B†
cK

−1
3 (K1Lc ⊙Θ+K2Λ⊙ Ξ)(Υωsyn1m−ωra1m) |

≤ κ2

(20)
in which, the synchronization frequency, ωsyn, is given by
(16).
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f(ζ, t) =


−cΥ−2 (K1Lc ⊙Θ+K2Λ⊙ Ξ)Υ−Υ−1KDT −1L̂11(t) −cΥ−2K3Lc ⊙ΘKP +K4 −K4 ∗

∗ −Υ−1T −1 Υ−1T −1 ∗
−cΥ−2 (K1Lc ⊙Θ+K2Λ⊙ Ξ)Υ −cΥ−2K3Lc ⊙ΘKP ∗ ∗

L̂11(t) ∗ ∗ ∗


︸ ︷︷ ︸

H(t)∈R4m×4m

ζ (t) +


Υ−1KDT −1L̃12(t)L̃

−1
22

∗
−L̃12(t)L̃

−1
22

∗


︸ ︷︷ ︸

Z(t)∈R4m×(n−m)

ṖL,
(21)

B. Condition Analysis for the Microgrid Constraint

To facilitate constraint analysis, we next apply coordinate
axis translation to move the equilibrium point of the system
(14) to the origin. We let δω = ω − ωsyn, δP = P − P s,
δPE = P−P s

E , with P s
E representing the steady-state of PE .

Then we obtain the fact that the dynamic of the state-error
variable ζ (t) = [δω (t)

T
, δP (t)

T
, ωT

nom, δPE (t)
T
]T ∈

R4m is bounded by a closed set Ω3 = [−ρmin, ρmax]

with ρmax = [δω
T
, δP

T
, ωnom

T , δPE
T
]T and ρmin =

[δωT , δPT , ωnom
T , δPE

T ]T . In order to satisfy constraint
Ω1 and constraint Ω2, the bounds of δω (t) and δP (t) are
respectively estimated as δω ∈ [−ω1m +∆ω, ω1m +∆ω],
δP ∈ [−P s, Pmax − P s] and δPE ∈ [−P s, η − P s] that all
contain the origin within them.

The dynamic of ζ(t), ζ̇ = f(ζ, t) shown in (21) follows
from (14). In (21), K4 = KPΥ

−2T −1 − KDΥ−2T −2,
all elements of the part marked with ∗ are zero. For sim-
plicity, we let Q(t) = −cΥ−2 (K1Lc ⊙Θ+K2Λ⊙ Ξ)Υ−
Υ−1KDT −1L̂11(t), N = −cΥ−2K3Lc ⊙ΘKP +K4.

Suppose the load change rate ṖL is within the range
[−α, α] where α can be estimated through historical data,
we then obtain the following result,

Theorem 1. In a microgrid with secondary controller (13),
assuming load changes nullify at equilibrium with initial
states ζi(0) in Ω1 and η ≤ Pmax, the following holds: the
trajectories of ζi, for i ∈ VG, are bounded by Ω1, if

−cΥ−2 (K1Lc ⊙Θ+K2Λ⊙ Ξ)Υ + b ≤ 0m, (C1)

with b = max{NPδP + NNδP + KP
4 δPE + KN

4 δPE +
β,NPδP +NNδP +KN

4 δPE +KP
4 δPE + β}.

Proof: We first prove that the condition for the above con-
straint to hold is the satisfaction of the following inequality,

max
{
H(t)+ρmax +H(t)0ρmin + Zα,

H(t)0ρmax +H(t)+ρmin + Zα
}
≤ 02m.

(22)

where Z = supZ(t) for t ≥ 0. It follows from the first part
of the above condition

H(t)+ρmax +H(t)0ρmin + Zα ≤ 0, (23)

and the following inequality holds,

(I4m + τH(t)+)ρmax + τH(t)0ρmin + τZα ≤ ρmax, (24)

where τ is a positive scalar. Setting t as zero and utilizing
the previous derivation, we then have

(I4m + τH(0))ζ(0) + τZṖL(0) ≤ ρmax, (25)

yielding the following inequality,

(I4m+ τH(0)+)ρmax+ τH(0)0ρmin+ τZα < ρmax. (26)

Using the Taylor expansion for (21), it yields,

ζ(t+ τ) = (I4m+ τH(t))ζ(t)+ τZ(t)ṖL(t)+R(τ), (27)

where R(τ) is the remainder term. From (25) and (27), we
obtain

ζ(τ)τ = ((I4m + τH(0))ζ(0) + τZṖL(0) +R(τ))/τ

≤ (ρmax +R(τ))/τ.
(28)

Next, we consider the inequality part of (28),

ζ(τ)/τ < (ρmax +R(τ))/τ. (29)

which can be written in a form of

ζ(τ)/τ ≤ ρmax/τ − κ+R(τ)/τ, (30)

where κ is a positive scalar. Since limτ→0+
R(τ)
τ = 0, there

always exists 0 < τ < τ1 such that ζ(τ) < ρmax. Thus, (26)
leads to ζ(τ) < ρmax. Similarly, using the other half part of
the condition (22), one has,

(I4m +τH(0))ζ(0)+τZṖL (0)

≥ −(I4m + τH(0)+)ρmin − τH(0)0ρmax − τZα

≥ −ρmin,

(31)

which can be rewritten in an inequality part as

(I4m + τH(0)+)ρmin + τH(0)0ρmax + τZα < ρmin. (32)

Mirroring the approach of (27)-(30), we deduce from (32)
that ζ(τ) > ρmin. Thus, (26) and (32) guarantee the state
variable stays within the open interval (−ρmin, ρmax). We
then consider a sequence of dynamics {fn},

fn(ζ) =

(
1− 1

n+ 1

)
H(t)ζ (t)+Z(t)ṖL, n = 1, 2, . . .

(33)
Obviously, limn→∞ fn = f . Denote

(
1− 1

n+1

)
H(t) =

Hn(t), and ζ̃n(t) as the solution of the equation I4mζ̇(t) =
fn(ζ) with the initial condition ζ(0) ∈ Ω1. It can be inferred
that, for n = 1, 2, . . .,{

(I4m + τHn(0)
+)ρmax + τHn(0)

0ρmin + τZα < ρmax

(I4m + τHn(0)
+)ρmin + τHn(0)

0ρmax + τZα < ρmin

(34)
. By applying the same steps as above, we can arrive at that
ζ̃n(t) ∈ Ω1. By [17], there exists an integer n0 such that
each ζ̃n(t), n ≥ n0, converges to ζ(t) for t ∈ [0, t1]. Then
one can conclude that ζ(t) ∈ Ω1, t ∈ [0, t1]. In summary,
condition (22) ensures the validity of conclusion ζ(t) ∈ Ω1

for t ≥ 0.
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Substitute the upper and lower bounds ρmax and ρmin into
the condition (22) yielding,{
Q(t)ω1m+NPδP +NNδP +KP

4 δPE +KN
4 δPE+β ≤ 0m

Q(t)ω1m+NPδP +NNδP +KN
4 δPE +KP

4 δPE+β ≤ 0m

(35)
where β is the first m rows of Zα. Since L̂11(t)ω1m = 0m,
(33) can be simplified as follows:

−cΥ−2 (K1Lc ⊙Θ+K2Λ⊙ Ξ)Υ + b ≤ 0m, (36)

which completes the proof.
By the fact that NN ≤ cK3(−Υ−2Lc ⊙ ΘKP )

N + KN
4

and NP ≤ cK3(−Υ−2Lc⊙ΘKP )
P+KP

4 , we can obtain the
following inequality from (36),

−cΥ−2 (K1Lc ⊙Θ+K2Λ⊙ Ξ)Υ + cK3α1 + α2 ≤ 0m,
(37)

where α1 = max{(−Υ−2Lc ⊙ ΘKP )
NδP + (−Υ−2Lc ⊙

ΘKP )
PδP , (−Υ−2Lc ⊙ ΘKP )

PδP} + (−Υ−2Lc ⊙
ΘKP )

NδP and α2 = max{KN
4 (δPE + δP ) + KP

4 (δPE +
δP ) + β,KP

4 (δPE + δP ) +KN
4 (δPE + δP ) + β}.

Integrating constraint (9) and condition in Theorem 1
allows us to identify the necessary conditions for secondary
controller design. Referencing studies on ideal clocks, in-
corporating real-world clock drifts significantly complicates
achieving precise frequency synchronization and power al-
location due to the uncertainty in drift coefficients γi. We
model the clock drift coefficient γi as a random variable X
with a normal distribution N(µ, σ2), where µ is the mean and
σ is the standard deviation. For m DGs, the mean clock drift
X̄ adheres to N(µ, σ√

m
) as per the Central Limit Theorem,

indicating a reduced standard deviation with increased DG
count. We denote the range of clock drift coefficients in the
microgrid as ∆γ > 0.

Based on Theorem 1 and (9), we can obtain

s = ϕ1κ1(s+ q)

B†
cK

−1
3 (K1Lc ⊙Θ+K2Λ⊙ Ξ) (Υωsyn1m −ωra1m)

= κ2ϕ21|Ẽ|

cΥ−2K−1
3 (K1Lc ⊙Θ+K2Λ⊙ Ξ)Υω1m

= ϕ3(K
−1
3 α2 + cα1)

(38)
where ϕ1 ∈ [−1, 1], ϕ2 is a diagonal matrix belonging to
R|Ẽ|×|Ẽ| with all diagonal elements in the interval [−1, 1]
and ϕ3 is a diagonal matrix belonging to Rm×m with all
diagonal elements in the interval [1,∞]. Then, we have the
following result,

Theorem 2. In a microgrid with the secondary controller
(13), given a large number of DGs and assuming µ = 1, the
conditions in Theorem 1 and (9) are satisfied if

K−1
3 K1 = l1Im, ,K−1

3 K2Λ⊙ Ξ = l2Im, l1, l2 > 0 (39a)

(ωra + κ1)||l1I|Ẽ |+ l2B
†
cB

†
c

T ||∞∆γ ≤ κ2 (39b)

K−1
3 α2+cα1 ≤ cω

γmax2(ωra + κ1)
Bcκ2ϕ21|Ẽ|+

l2cω

γ2
max

γmin1m

(39c)

Proof: Initially, consider the relationships K−1
3 K1 = l1Im

and K−1
3 K2Λ ⊙ Ξ = l2Im, where both l1, l2 > 0. It

follows that 1T
mK−1

3 (K2Λ⊙Ξ+K1Lc⊙Θ)(Υ−Im)1m =
l2
∑m

i=1(γi − 1), and 1T
mK−1

3 (K2Λ⊙Ξ+K1Lc⊙Θ)(Υ−
Im)1m + 1T

mK−1
3 K2Λ⊙Ξ1m = l2

∑m
i=1 γi. Subsequently,

from (19), we deduce

|ωsyn−ωra| =
l2|

∑m
i=1(γi − 1)|

l2
∑m

i=1 γi
=

|
∑m

i=1(γi − 1)|∑m
i=1 γi

. (40)

By the above assumption, the steady-state frequency devia-
tion of DGs will be 0.

BT
c KPP

s

= l1B
T
c (Υωsyn1m −ωra1m) + l2B

†
c (Υωsyn1m −ωra1m)

= ωsyn

(
l1I |Ẽ| + l2B

†
cB

†
c

T
)
BT

c Υ1m = κ2ϕ21|Ẽ|.

(41)
Based on (39b), we can derive the inequality that provides
the basis for the selection of l1 and l2,

||BT
c KPP

s||∞ = ||ωsyn

(
l1I |Ẽ| + l2B

†
cB

†
c

T
)
BT

c Υ1m||∞

≤ (ωra + κ1)||l1I |Ẽ| + l2B
†
cB

†
c

T ||∞∆γ ≤ κ2.
(42)

Next, by left multiplying BT
c to both sides of the second

equality in (38), we can derive,

BcB
†
cK

−1
3 (K1Lc ⊙Θ+K2Λ⊙ Ξ) (Υωsyn1m − ωra1m)

= BcB
†
cK

−1
3 (K1Lc ⊙Θ+K2Λ⊙ Ξ)Υωsyn1m

= Bcκ2ϕ21|Ẽ|.
(43)

Further, it can be obtained that,

K−1
3 (K1Lc ⊙Θ+K2Λ⊙ Ξ)Υω1m

=
ω

ωsyn
Bcκ2ϕ21|Ẽ|

+
ω

m
1m×mK−1

3 (K1Lc ⊙Θ+K2Λ⊙ Ξ)Υ1m.

(44)

Next, we insert the aforementioned formula into the third
equation in (38), and based on condition (39c), we thus
obtain

cΥ−2K−1
3 (K1Lc ⊙Θ+K2Λ⊙ Ξ)Υω1m

=
cω

ωsyn
Υ−2Bcκ2ϕ21|Ẽ| +

l2cω

m
Υ−21m×mΥ1m

≥ K−1
3 α2 + cα1.

(45)

The proof is completed.

Remark 1. Theorem 2 specifies the conditions for the
parameter matrices K1,K2, and K3. When these conditions
are satisfied, the microgrid’s steady-state error and transient
constraints can be managed within acceptable limits. In
designing these parameters, it is prudent to account for
the worst-case scenarios. For instance, the communication
topology parameters of the microgrid should be selected
to ensure that condition (39) is satisfied under the most
stringent conditions, the extreme variations in load change
rates, or severe clock drift. As a result, the computed K1,K2,
and K3 will be robust enough to handle a wide range
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Fig. 1. Test Microgrid Schematic Diagram

Fig. 2. Real-time experiment with OPAL-RT simulator: real-time experi-
mental setup including the OPAL-RT target, the host PC, and Ethernet cable
for networking.

of perturbations while continuously meeting the required
conditions.

IV. PERFORMANCE VALIDATION

In our research, we developed a test microgrid with five
DGs and three loads. Fig. 1 shows the microgrid’s layout
and highlights the secondary cyber network integral to its
power and control systems. The DGs are interconnected via
resistive-inductive lines, simulated as series RL branches.
Specifications for the DGs, lines, and loads are summarized
in Table I for quick reference.

As shown in Fig.2, Our tuning method’s validity is demon-
strated via real-time simulations on the OPAL-RT OP5707
system, connecting to a PC through LAN and interfaced by
RT-LAB software with MATLAB. Our simulation unfolds

TABLE I
MICROGRID INVERTER SIMULATION PARAMETERS

Parameter DG1&3&4 DG2&5

DC Voltage VDC 360 V 300 V
Maximum Current imax

i 2A 4A
Duty Cycle di 6 3
Voltage Proportional Gain Kv,PI

i 5/560 4/800

Current Proportional Gain Ki,PI
i 1.2/97 1/97

p− f Droop Coefficient KP
i 2× 10−5 2.8× 10−5

Maximum Capacity Pmax
i 14000W 14000W

Parameter Load5&6 Load7
Active Power P 1kW 2 kW
Reactive Power Q 1kvar 1.5kvar
Parameter Line1&2&3&4&5

Line Resistance Rline 0.64Ω
Line Inductance Lline 1.32µH

in three phases. Initially, we craft a controller tailored to
specific parameters. Next, we tweak its control settings to
breach condition (39c), analyzing the resultant frequency
and power feedback. The final phase involves adjusting
parameters against condition (39b), again observing feedback
for frequency and power.

This simulation methodically examines controller re-
sponses to dynamic load changes. The system load escalates
from startup to a stable 48000W within 0-5 seconds, followed
by oscillatory load fluctuations over the next 10 seconds.
subsequently experiencing a surge and asymptotically stabi-
lizing at a value of 66000W. Importantly, during this entire
process, the rate of load variation remains confined below
26700W/s. Assuming there is clock drift in the microgrid,
the clock drift coefficient is denoted as γi. Its mean value is
1, and the mean of ∆γ is 3× 10−5.

Step 1: We initiated the controller tuning by setting gains
l1 and l2, ensuring they satisfy condition (39b). With specific
parameters (ωra = 50 × 2π, rad/s, κ1 = 0, l1 = 0.5, l2 =
0.67, ∆̄γ = 3.0 × 10−5, and ω = 0.05 × 2π, rad/s), we
computed κ2 = 3.3×10−3Im. Starting with K3 = 30×Im,
we adjusted it iteratively to meet condition (39c), finalizing
K1 = 15Im, K2 = 20Im, and K3 = 30Im. Simulation
results in Fig. 3 show that our tuning method stabilizes the
microgrid’s frequency at 50Hz, maintaining all frequencies
and power allocations within prescribed limits.

Step 2: Keeping l1 and l2 constant, we invalidated con-
dition (39c) by adjusting K3 to 3Im. Despite this, simula-
tions (Fig. 4) indicate acceptable frequency synchronization
and power allocation, except for transient phase frequency
breaches beyond predefined limits, falling below 49.95Hz.

Step 3: For the final test, we altered l1 = 2.5 and
l2 = 5.9 to breach condition (39b) while setting K3 to
40Im to maintain condition (39c). The outcomes in Fig. 5
confirm stable frequency at 50Hz and adherence to frequency
constraints during transient phases. However, the steady-state
power allocation error surpassed the threshold, indicating a
balance between meeting and missing specific conditions
impacts system performance. Future work could focus on
advanced clock synchronization techniques to improve mi-
crogrid stability and reliability.

V. CONCLUSION

In this research, we tackled the challenges of microgrids
under secondary cooperative control, focusing on operation
constraints and clock drifts. Our comprehensive approach
includes a detailed cyber-physical microgrid model and
conditions ensuring reliable performance in transient and
steady states amidst clock drifts and load changes. We
introduced a novel algorithm for fine-tuning parameters
within the secondary control scheme, effectively minimizing
steady-state errors caused by clock drift while maintaining
transient operation quality. Rigorous experiments validated
the effectiveness of our methods.
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Fig. 3. Frequency and active response under all conditions in (39) met.

Fig. 4. Frequency and active power response under the condition where the third condition in (39) is not satisfied.

Fig. 5. Frequency and active power response under the condition where the second condition in (39) is not satisfied.
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