
An ADMM Solver for the MKL-L0/1-SVM

Yijie Shi and Bin Zhu

Abstract— We formulate the Multiple Kernel Learning (ab-
breviated as MKL) problem for the support vector machine
with the infamous (0, 1)-loss function. Some first-order opti-
mality conditions are given and then exploited to develop a fast
ADMM solver for the nonconvex and nonsmooth optimization
problem. A simple numerical experiment on synthetic planar
data shows that our MKL-L0/1-SVM framework could be
promising.

I. INTRODUCTION

The support vector machine (SVM) is a classic tool in
Machine Learning [1] with numerous applications in Control,
see e.g., [2], [3] and the references therein. The idea of SVM
dates back to the famous work of Cortes and Vapnik [4]. On
p. 281 of that paper, the authors suggested (implicitly) the
(0, 1)-loss function, also called L0/1 loss in [5], for quan-
tifying the error of classification which essentially counts
the number of samples to which the classifier assigns wrong
labels. However, they also pointed out that the resulting
optimization problem with the (0, 1) loss is NP-complete,
nonsmooth, and nonconvex, which directed researchers to
the path of designing other (easier) loss functions, notably
convex ones like the hinge loss. Recently in the literature,
there is a resurging interest in the original SVM problem
with the (0, 1) loss, abbreviated as “L0/1-SVM”, following
theoretical and algorithmic developments for optimization
problems with the “`0-norm”, see e.g., [6] and the refer-
ences therein. In particular, [5] proposed KKT-like optimality
conditions for the L0/1-SVM optimization problem and an
efficient ADMM solver to obtain an approximate solution.

In this work, we draw inspiration from the aforementioned
papers and present a kernelized version of the theory in
which the ambient functional space has a richer structure than
the usual Euclidean space. More precisely, we shall formulate
the L0/1-SVM problem in the context of Multiple Kernel
Learning [7] and describe a first-order optimality theory as
well as a numerical procedure for the optimization problem
via the ADMM. Obviously, the MKL framework can offer
much more flexibility than the single-kernel formulation
by letting the optimization algorithm determine the best
combination of different kernel functions. In this sense, our
results represent a substantial generalization of the work in
[5] while maintaining the core features of L0/1-SVM.

This work was supported in part by Shenzhen Science and Technology
Program (Grant No. 202206193000001-20220817184157001), the Funda-
mental Research Funds for the Central Universities, and the “Hundred-Talent
Program” of Sun Yat-sen University.

The authors are with School of Intelligent Systems Engineer-
ing, Sun Yat-sen University, Gongchang Road 66, 518107 Shen-
zhen, China. Emails: shiyj27@mail2.sysu.edu.cn (Y. Shi),
zhub26@mail.sysu.edu.cn (B. Zhu).

The remainder of this paper is organized as follows.
Section II reviews the classic L0/1-SVM in the single-
kernel case, while Section III discusses the MKL frame-
work. Section IV establishes the optimality theory for the
MKL-L0/1-SVM problem, and in Section V we propose an
ADMM algorithm to solve the optimization problem. Finally,
numerical experiments and concluding remarks are provided
in Sections VI and VII, respectively.

Notation

R+ denotes the set of nonnegative reals, and Rn+ := R+×
· · ·×R+ the n-fold Cartesian product. Nm := {1, 2, . . . ,m}
is a finite index set for the data points and NL for the kernels.
Throughout the paper, the summation variables i ∈ Nm is
reserved for the data index, and ` ∈ NL for the kernel index.
We write

∑
i and

∑
` in place of

∑m
i=1 and

∑L
`=1 to simplify

the notation.

II. PROBLEM FORMULATION: THE SINGLE-KERNEL CASE

Given the data set {(xi, yi) : i ∈ Nm} where xi ∈ Rn
and yi ∈ {−1, 1} is the label, the binary classification task
aims to predict the correct label y for each vector x, seen
or unseen. To this end, the SVM first lifts the problem to
a reproducing kernel Hilbert space1 (RKHS) H, in general
infinite-dimensional and equipped with a positive definite
kernel function, say κ : Rn × Rn → R, via the feature
mapping:

x 7→ φ(x) := κ(·,x) ∈ H, (1)

and then considers discriminant (or decision) functions of
the form

f̃(x) = b+ 〈w, φ(x)〉H = b+ w(x), (2)

where b ∈ R, w ∈ H, 〈·, ·〉H the inner product associated to
the RKHS H, and the second equality is due to the so-called
reproducing property. Note that such a discriminant function
is in general nonlinear in x, but is indeed linear with respect
to φ(x) in the feature space H. The label of x is assigned via
y(x) = sign[f̃(x)] where sign(·) is the sign function which
gives +1 for a positive number, −1 for a negative number,
and left undefined at zero.

In order to estimate the unknown quantities b and w in
(2), one sets up the unconstrained optimization problem:

min
w∈H, b∈R,
f̃(·)=w(·)+b

1

2
‖w‖2H + C

∑
i

L(yi, f̃(xi)), (3)

1The theory of RKHS goes back to [8] and many more, see e.g., [9]. It
has been used in the SVM as early as [4].

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 3339

where ‖w‖2H = 〈w, w〉H is the squared norm of w induced
by the inner product, L(·, ·) is a suitable loss function, and
C > 0 is a regularization parameter balancing the two
parts in the objective function. In the classic case where
H can be identified as Rn itself, ‖w‖H reduces to the
Euclidean norm ‖w‖ with w = [w1, . . . , wn]>. Moreover,
the quantity 1/‖w‖ can be interpreted as the width of the
margin between the decision hyperplane (corresponding to
the equation w>x + b = 0) and the nearest points in each
class, so that minimizing ‖w‖2 is equivalent to maximizing
the margin width, an intuitive measure of robustness of the
classifier. As for the loss function, we adopt the most natural
choice:

L0/1(y, f̃(x)) := H(1− yf̃(x)) (4)

where H is the (Heaviside) unit step function

H(t) =

{
1, t > 0

0, t ≤ 0.
(5)

In order to understand the loss function, notice that in
the case where two classes of points are linearly separable,
one can always identify a subset of decision hyperplanes
such that yif(xi) ≥ 1 for all i ∈ Nm [10]. In the linearly
inseparable case, however, the inequality can be violated by
some data points and such violations are in turn penalized
since the loss function now reads as

L0/1(y, f̃(x)) =

{
1, if 1− yf̃(x) > 0

0, if 1− yf̃(x) ≤ 0.
(6)

It is this latter case that will be the focus of this paper.
The optimization problem (3) is infinite-dimensional in

general due to the ambient space H. It can however, be
reduced to a finite-dimensional one via the celebrated repre-
senter theorem [11]. More precisely, by the semiparametric
representer theorem [12], any minimizer of (3) must have
the form

f̃(·) =
∑
i

wiκ(· ,xi) + b, (7)

so that the desired function w(·) is completely characterized
by the linear combination of the kernel sections κ(· ,xi),
and the coefficients in w = [w1, . . . , wm]> become the new
unknowns. After some algebra involving the kernel trick, we
are left with the following finite-dimensional optimization
problem:

min
w∈Rm, b∈R

J(w, b) :=
1

2
w>Kw + C‖(1−Aw − by)+‖0

(8)
where,
• K = K> is the kernel matrixκ(x1,x1) · · · κ(x1,xm)

...
. . .

...
κ(xm,x1) · · · κ(xm,xm)

 ∈ Rm×m (9)

which is positive semidefinite by construction,
• 1 ∈ Rm is a vector whose components are all 1’s,
• y = [y1, . . . , ym]> is the vector of labels,

• the matrix A = DyK is such that Dy = diag(y) is the
diagonal matrix whose (i, i) entry is yi,

• the function t+ := max{0, t} takes the positive part
of the argument when applied to a scalar2, and v+ :=
[(v1)+, . . . , (vm)+]> represents componentwise appli-
cation of the scalar function,

• ‖v‖0 is the `0-norm3 that counts the number of nonzero
components in the vector v.

Clearly, the composite function ‖v+‖0 counts the number of
(strictly) positive components in v. For a scalar t, it coincides
with the step function in (5).
Remark 1. The above formulation includes the problem
investigated in [5] as a special case. To see this, consider
the homogeneous polynomial kernel

κ(x,y) = (x>y)d (10)

with the degree parameter d = 1. Then the discriminant
function in (7) becomes

f̃(x) =
∑
i

wix
>
i x + b = w̃>x + b, (11)

where w̃ :=
∑
i wixi ∈ Rn is identified as the new variable

for optimization. Moreover, it is not difficult to verify the
relation w>Kw = w̃>w̃ = ‖w̃‖2, so that the optimization
problem in [5] results.

For reasons discussed in Remark 1, in the remaining part
of this paper, we shall always assume that the kernel matrix
K is positive definite, which is indeed true for the Gaussian
kernel

κ(x,y) = exp

(
−‖x− y‖2

2σ2

)
, (12)

where σ > 0 is a parameter (called hyperparameter), see
[13]. In such a case, the matrix A = DyK in (8) is also
invertible since Dy is a diagonal matrix4 whose diagonal
entries are the labels −1 or 1.

III. PROBLEM FORMULATION: THE MULTIPLE-KERNEL
CASE

In all kernel-based methods, the selection of a suitable
kernel and its parameter is a major issue. Usually, this is
done via cross-validation which inevitably has an ad-hoc
flavor. An active research area to handle such an issue is
called Multiple Kernel Learning (MKL), where one employs
a set of different kernels and lets the optimization procedure
determine the proper combination. One possibility in this
direction is to consider the nonlinear modeling function as
follows:

f̃(x) =
∑
`

f`(x) + b

=
∑
`

d`
∑
i

wiκ`(x,xi) + b,
(13)

2It is known as the ReLU (Rectified Linear Unit) activation function in
the context of artificial neural networks.

3The term “norm” is abused here since strictly speaking, “`p-norms” are
not bona fide norms for 0 ≤ p < 1 due to the violation of the triangle
inequality.

4In fact, Dy is both involutory and orthogonal, i.e., D2
y = D>y Dy = I .

3340

where for each ` ∈ NL, f` lives in a different RKHS H′`
corresponding to the kernel function d`κ`(·, ·), the param-
eters d`, b, wi ∈ R, and xi comes from the training data5.
In other words, the decision function f̃ is parametrized by
(w,d, b) ∈ Rm+L+1. In order to formally state our MKL
optimization problem for the L0/1-SVM, we need to borrow
the functional space setup from [7].

For each ` ∈ NL, let H` be a RKHS of functions on X ⊂
Rn with the kernel κ`(·, ·) and the inner product 〈·, ·〉H` .
Moreover, take d` ∈ R+, and define a Hilbert space H′` ⊂ H`
as

H′` :=

{
f ∈ H` :

‖f‖H`
d`

<∞
}

(14)

endowed with the inner product

〈f, g〉H′` =
〈f, g〉H`
d`

. (15)

In this paper, we use the convention that x/0 = 0 if x = 0
and ∞ otherwise. This means that, if d` = 0 then a function
f ∈ H` belongs to the Hilbert space H′` only if f = 0. In
such a case, H′` becomes a singleton containing only the null
element of H`. Within this framework, H′` is a RKHS with
the kernel κ′`(x,y) = d`κ`(x,y) since

∀f ∈ H′` ⊂ H`, f(x) = 〈f(·), κ`(x, ·)〉H`
=

1

d`
〈f(·), d`κ`(x, ·)〉H`

= 〈f(·), d`κ`(x, ·)〉H′` .

(16)

Define F := H′1×H′2×· · ·×H′L as the Cartesian product
of the RKHSs {H′`}, which is itself a Hilbert space with the
inner product

〈(f1, . . . , fL), (g1, . . . , gL)〉F =
∑
`

〈f`, g`〉H′` . (17)

Let H :=
⊕L

`=1 H′` be the direct sum of the RKHSs {H′`},
which is also a RKHS with the kernel function

κ(x,y) =
∑
`

d`κ`(x,y), (18)

see [8]. Moreover, the squared norm of f ∈ H is known as

‖f‖2H = min

{∑
`

‖f`‖2H′` =
∑
`

1

d`
‖f`‖2H` : f =

∑
`

f`

such that f` ∈ H′`} .
(19)

The vector d = (d1, . . . , dL) ∈ RL+ is seen as a tunable
parameter for the linear combination of kernels {κ`} in (18).

5Different kernels share the same weight vector w due to the representer
theorem applied in the direct sum space introduced before (18).

A typical MKL task can be formulated as

min
f=(f1,...,fL)∈F
d∈RL, b∈R

1

2

∑
`

1

d`
‖f`‖2H` + C

∑
i

L0/1(yi, f̃(xi))

s.t. d` ≥ 0, ` ∈ NL (20a)∑
`

d` = 1 (20b)

f̃(·) =
∑
`

f`(·) + b

where C > 0 is a regularization parameter. For our SVM
task, the first (regularization) term in the objective function
is chosen so due to its convexity (see [7, Appendix A.1]),
which makes the problem tractable.

IV. OPTIMALITY THEORY

In this section, we give some theoretical results on the
existence of an optimal solution to (20), and the KKT-like
first-order optimality conditions.

Assumption 1. Given the data points {xi : i ∈ Nm}, each
m×m kernel matrix K`, whose (i, j) entry is κ`(xi,xj), is
positive definite for ` ∈ NL.

The main results are given in the next two subsections.
Due to the page limit of the conference paper, the complete
proofs are deferred to the journal version [14].

A. Existence of a minimizer

The existence theorem is provided below.

Theorem 1. Assume that the intercept b takes value from a
closed interval I := [−M,M] where M > 0 is a sufficiently
large number. Then the optimization problem (20) has a
global minimizer and the set of all global minimizers is
bounded.

B. Characterization of global and local minimizers

The last equality constraint in (20) can be safely eliminated
by a substitution into the objective function. Next, define a
new variable u ∈ Rm by letting ui = 1 − yi(f(xi) + b)
where f =

∑
` f`. We can then rewrite (20) in the following

way:

min
f∈F, d∈RL
b∈R, u∈Rm

1

2

∑
`

1

d`
‖f`‖2H` + C‖u+‖0 (21a)

s.t. (20a) and (20b)
ui + yi (f(xi) + b) = 1, i ∈ Nm, (21b)

where the last equality constraint is obviously affine in the
“variables” (f , b,u).

Before stating the optimality conditions, we need a gener-
alized definition of a stationary point in nonlinear program-
ming.

Definition 1 (P-stationary point of (21)). Fix a regularization
parameter C > 0. We call (f∗,d∗, b∗,u∗) a proximal
stationary (abbreviated as P-stationary) point of (21) if there

3341

z0 √
2γC

proxγC‖(·)+‖0
(z)

Fig. 1: The L0/1 proximal operator on the real line.

exists a vector (θ∗, α∗,λ∗) ∈ RL+1+m and a number γ > 0
such that

d∗` ≥ 0, ` ∈ NL (22a)∑
`

d∗` = 1 (22b)

u∗i + yi (f∗(xi) + b∗) = 1, i ∈ Nm (22c)
θ∗` ≥ 0, ` ∈ NL (22d)

θ∗`d
∗
` = 0, ` ∈ NL (22e)

∀` ∈ NL,
1

d∗`
f∗` (·) = −

∑
i

λ∗i yiκ`(· ,xi) (22f)

− 1

2(d∗`)
2
‖f∗` ‖2H` + α∗ − θ∗` = 0, ` ∈ NL (22g)

y>λ∗ = 0 (22h)
proxγC‖(·)+‖0(u∗ − γλ∗) = u∗, (22i)

where the proximal operator is defined as

proxγC‖(·)+‖0(z) := argmin
v∈Rm

C‖v+‖0 +
1

2γ
‖v − z‖2.

(23)

According to [5], for a scalar z the proximal operator in
(22) can be evaluated in a closed form:

proxγC‖(·)+‖0(z) =

{
0, 0 < z ≤

√
2γC

z, z >
√

2γC or z ≤ 0,
(24)

see Fig. 1. For a vector z ∈ Rm, the proximal operator in
(23) is evaluated by applying the scalar version (24) to each
component of z, namely

[proxγC‖(·)+‖0(z)]i = proxγC‖(·)+‖0(zi), (25)

because the objective function on the right-hand side of (23)
can be decomposed as∑

i

C‖(vi)+‖0 +
1

2γ
(vi − zi)2.

Formula (25) is called “L0/1 proximal operator” in [5].
The components of the vector (θ∗, α∗,λ∗) in Definition 1

can be interpreted as the Lagrange multipliers as it appeared
in a smooth SVM problem and played a similar role in the
optimality conditions [4], although a direct dual analysis
here can be difficult due the presence of the nonsmooth
nonconvex function ‖(·)+‖0. The set of equations (22) are
understood as the KKT-like optimality conditions for the

optimization problem (21), where (22a), (22b), and (22c) are
the primal constraints, (22d) the dual constraints, (22e) the
complementary slackness, and (22f), (22g), (22h), and (22i)
are the stationarity conditions of the Lagrangian with respect
to the primal variables. Notice that the only nonsmooth
term presented is ‖u+‖0, and the corresponding stationarity
condition (22i) with respect to u is given by the proximal
operator (23).

The following theorem connects the optimality conditions
for (21) to P-stationary points.

Theorem 2. The global and local minimizers of (21) admit
the following characterizations:

1) A global minimizer is a P-stationary point with 0 <
γ < C1, where the positive number

C1 = min {λmin(K(d)) : d satisfies (20a) and (20b)}

in which λmin(·) denotes the smallest eigenvalue of a
matrix and K(d) :=

∑
` d`K` with K` the kernel matrix

corresponding to κ`(·, ·).
2) Any P-stationary point (with γ > 0) is also a local

minimizer of (21).

V. ALGORITHM DESIGN

In this section, we take advantages of the Alternating
Direction Method of Multipliers (ADMM) [15] and working
sets (active sets) to devise a first-order algorithm for our
MKL-L0/1-SVM optimization problem. More precisely, we
aim to obtain a P-stationary point (Definition 1) and hence
a local minimizer of (21) by Theorem 2. The unique issue
is that each f` ∈ H` could be an infinite-dimensional object.
Appealing to the KKT-like conditions (22), the next lemma
says that f` admits another finite-dimensional representation
which is suitable for numerical computation.

Lemma 1. Under Assumption 1, each f` is completely
represented by its values at the data points which are
collected into a vector

vf` :=
[
f`(x1) f`(x2) · · · f`(xm)

]>
. (26)

Moreover, we have ‖f`‖2H` = v>f`K
−1
` vf` .

Proof. According to (22f), we see that optimal f` is restricted
to the linear span of the m kernel sections {κ`(· ,xi)}. Let
the coefficients of linear combination be {w̃i}. Then it holds
that vf` = K`w̃ and ‖f`‖2H` = w̃>K`w̃ = v>f`K

−1
` vf`

where K` is invertible by assumption.

Now we can introduce the working set (with respect to
the data) and related support vectors along the lines of [5,
Subsec. 4.1]. Let (f∗,d∗, b∗,u∗) be a P-stationary point of
(21). Then by Definition 1, there exists a Lagrange multiplier
λ∗ ∈ Rm and a scalar γ > 0 such that (22i) holds. Define a
set

T∗ :=
{
i ∈ Nm : u∗i − γλ∗i ∈ (0,

√
2γC]

}
, (27)

and its complement T ∗ := Nm\T∗. For a vector z ∈ Rm and
an index set T ⊂ Nm with cardinality |T |, we write zT for

3342

the |T |-dimensional subvector of z whose components are
indexed in T . Then it follows from (22i), (25), and (24) that[

u∗T∗
u∗
T∗

]
=

[
0

(u∗ − γλ∗)T∗

]
. (28)

Consequently, we have λ∗
T∗

= 0 and the working set (27)
can be equivalently written as

T∗ :=
{
i ∈ Nm : λ∗i ∈ [−

√
2C/γ, 0)

}
. (29)

In plain words, the nonzero components of λ∗ are indexed
only in T∗ with values in the interval [−

√
2C/γ, 0). This

brings significant sparsification of the decision function since
by (22f) we have

1

d∗`
f∗` (·) = −

∑
i∈T∗

λ∗i yiκ`(· ,xi), ` ∈ NL. (30)

This familiar formula calls for the following comments:
• The vectors {xi : i ∈ T∗} correspond to nonzero

Lagrange multipliers {λ∗i } just like standard support
vectors in [4]. They are called L0/1-support vectors in
[5] since they are selected by the proximal operator (23).

• Moreover, the condition (22c) implies that

yi (f∗(xi) + b∗) = 1 for i ∈ T∗ (31)

since u∗T∗ = 0 by (28). This means that any L0/1-
support vector xi satisfies the equation f∗(x)+b∗ = ±1
which gives two hyperplanes in the RKHS H, called
support hyperplanes. It is well known that such a
property is guaranteed for linearly separable datasets,
and may not hold for linearly inseparable datasets
with penalty functions other than the (0, 1)-type. Such
an observation explains why the L0/1-SVM can (in
principle) have fewer support vectors than other SVM
models.

Next we give the framework of ADMM for (21) which
is now viewed as a finite-dimensional problem. In order
to handle the inequality constraints (20a), we employ the
indicator function (in the sense of Convex Analysis) of the
nonnegative orthant RL+, namely g(z) = 0 for z ∈ RL+ and
is equal to +∞ otherwise, and convert (21) to the form:

min
f∈F, d∈RL
b∈R, u∈Rm

z∈RL

1

2

∑
`

1

d`
‖f`‖2H` + C‖u+‖0 + g(z) (32a)

s.t. d = z (32b)
(20b) and (21b),

see [15, Section 5]. Obviously we have g(z) =
∑
` g`(z`)

where each g` is the respective indicator function for the
nonnegative semiaxis z` ≥ 0. The augmented Lagrangian of
(32) is given by

Lρ(f ,d, b,u, z;λ,θ, α) =
1

2

∑
`

1

d`
‖f`‖2H` + C‖u+‖0

+ g(z) + λ>r +
ρ1
2
‖r‖2 + θ>(d− z) +

ρ2
2
‖d− z‖2

+ α
(
1>d− 1

)
+
ρ3
2

(
1>d− 1

)2
(33)

where λ = (λ1, · · · , λm), θ = (θ1, · · · , θL), and α are the
Lagrangian multipliers, r := u + Dyvf + by − 1 is the
residual vector, and ρ = (ρ1, ρ2, ρ3) contains three positive
penalty parameters. We have also written f =

∑
` f` in the

the style of (21b) to simplify the notation.
Given the k-th iterate (fk,dk, bk,uk, zk;λk,θk, αk), the

framework to update each variable is as follows:

uk+1 = argmin
u∈Rm

Lρ(fk,dk, bk,u, zk;λk,θk, αk)

fk+1 = argmin
f∈F

Lρ(f ,dk, bk,uk+1, zk;λk,θk, αk)

bk+1 = argmin
b∈R

Lρ(fk+1,dk, b,uk+1, zk;λk,θk, αk)

zk+1 = argmin
z∈RL

Lρ(fk+1,dk, bk+1,uk+1, z;λk,θk, αk)

dk+1 = argmin
d∈RL

Lρ(fk+1,d, bk+1,uk+1, zk+1;λk,θk, αk)

θk+1 = θk + ρ2(dk+1 − zk+1)
αk+1 = αk + ρ3

(
1>dk+1 − 1

)
λk+1
i = λki + ρ1[uk+1

i + yi(f
k+1(xi) + bk+1)− 1], i ∈ Nm.

(34)
Next, we describe how to solve each subproblem above.

1) Updating uk+1. For each component of u, the ui-
subproblem in (34) admits a separation of variables and
can be solved along the following lines:

uk+1
i = argmin

ui∈R
C‖u+‖0 +

∑
i

λki ui

+
ρ1
2

∑
i

[ui + yi(f
k(xi) + bk)− 1]2

= argmin
ui∈R

C‖(ui)+‖0 +
ρ1
2

(ui − ski)2

= prox C
ρ1
‖(·)+‖0(ski),

(35)

where ski = 1 − yi(f
k(xi) + bk) − λki /ρ1 and the

proximal operator given in (24). The corresponding
vector can be written compactly as

sk = 1−Dyvfk − bky − λk/ρ1 (36)

with vfk defined similarly to (26). Define a working set
Tk at the k-th step by

Tk :=
{
i ∈ Nm : ski ∈ (0,

√
2C/ρ1]

}
. (37)

Then (35) can equivalently be written as

uk+1
Tk

= 0, uk+1

Tk
= sk

Tk
. (38)

2) Updating fk+1. The f -subproblem in (34) is

fk+1 =argmin
f∈F

1

2

∑
`

1

dk`
‖f`‖2H`+

+
∑
i

λki
[
uk+1
i + yi

(
f(xi) + bk

)
− 1
]

+
ρ1
2

∑
i

[
uk+1
i + yi

(
f(xi) + bk

)
− 1
]2
.

(39)
To solve (39), we again adopt a componentwise strategy,
that is, for each d` > 0 we update each f` separately

3343

according to the stationarity condition. By Lemma 1,
we only need to update the function values at all the
inputs {xi}, namely the vector in (26). More precisely,
notice that by the reproducing property, the Frechét
derivative of f`(xi) = 〈f`, κ`(· ,xi)〉 with respect to
f` can be identified as κ`(· ,xi). Then the stationary-
point equation for f` can be written as

0 =
1

dk`
f`(·) +

∑
i

{
λki yiκ`(· ,xi)

+ρ1yiκ`(· ,xi)
[
uk+1
i + yi(f(xi) + bk)− 1

]}
(40)

which holds for any x, and in particular for all xi.
Notice that here f = f` +

∑
t6=` f

k
t . In vector form,

we have the equation(
1

dk`
I + ρ1K`

)
vf` =

− ρ1K`Dy

uk+1 +Dy

∑
t6=`

vfkt + bky − 1 + λk/ρ1

 .

(41)
which can be readily solved since the coefficient matrix
before vf` is positive definite. On the other hand, for
each d` = 0 we keep f` ≡ 0.

3) Updating bk+1. The b-subproblem can be written as

bk+1 = argmin
b∈R

∑
i

λki [uk+1
i + yi(f

k+1(xi) + b)− 1]

+
ρ1
2

∑
i

[uk+1
i + yi(f

k+1(xi) + b)− 1]2.

(42)
The stationary-point equation is

0 =
∑
i

λki yi + ρ1
∑
i

yi[u
k+1
i + yi(f

k+1(xi) + b)− 1],

(43)
which is solved by

bk+1 =
1

m

[
y>(1− uk+1 − λk/ρ1)− 1>vfk+1

]
.

(44)
4) Updating zk+1. The subproblem for each component

of zk+1 in (34) also admits a separation of variables
and we carry out the update as follows:

zk+1
` = argmin

z`∈R
g(z)− (θk)>z +

ρ2
2
‖dk − z‖2

= argmin
z`∈R

g`(z`)− θk` z` +
ρ2
2

(dk` − z`)2

=
(
dk` + θk` /ρ2

)
+
.

(45)
where the function (·)+ takes the positive part of the
argument. Inspired by this expression, we can define
another working set

Sk := {` ∈ NL : dk` + θk` /ρ2 > 0} (46)

for the selection of kernels and Sk = NL\Sk. Then an
equivalent update formula for z is

zk+1
Sk

= (dk + θk/ρ2)Sk , zk+1

Sk
= 0. (47)

Notice that this working set is less complicated than Tk
in (37) since the function (·)+ is continuous, unlike the
proximal mapping.

5) Updating dk+1. Again we adopt a componentwise
strategy for the update of dk+1

` in (34):

dk+1
` = argmin

d`∈R

1

2d`
‖fk+1
` ‖2H` + θk` (d` − zk+1

`)

+
ρ2
2

(d` − zk+1
`)2 + αkd` +

ρ3
2

d` +
∑
t 6=`

dkt − 1

2

(48)
where ‖f`‖2H` = v>f`K

−1
` vf` (see Lemma 1), and dkt

are held fixed for t 6= `. The stationary-point equation
for d` is just

0 =− 1

2d2`
v>
fk+1
`

K−1` vfk+1
`

+ θk` + ρ2(d` − zk+1
`)

+ αk + ρ3

d` +
∑
t 6=`

dkt − 1

 .

(49)
This is a cubic polynomial equation (after multiplying
both sides by d2`) which can be solved numerically.
Moreover, since the coefficients are real, there must be
at least one real root. When ‖fk+1

` ‖2H` > 0, the objective
function in (48) is strictly convex in the positive semi-
axis d` > 0 and one can show without difficulty that
a local minimizer, which must be a stationary point,
exists. Therefore, we conclude that (49) must have a
positive real root.
However, if instead we search the minimum of (48) in
all of R, a pathology happens when ‖fk+1

` ‖2H` > 0 and
d` tends to zero from the left. In that case, the objective
function tends to −∞ and +∞ on two sides of zero.
As an ad-hoc recipe, we take the positive real root6 of
(49) as dk+1

` for ` ∈ Sk. For ` ∈ Sk, on the other hand,
we let

dk+1

Sk
= 0 (50)

in accordance with the second formula in (47), because
in the end (if the algorithm converges) we will have the
equality (32b).

6) Updating θk+1. With the help of the working set (46),
the update of θ in (34) can be simplified as:

θk+1
Sk

= θkSk + ρ2(dk+1 − zk+1)Sk , θk+1

Sk
= θk

Sk
.

(51)
7) Updating αk+1. See (34).
8) Updating λk+1. Inspired by the property of the working

set T∗ (see (28) and the next line after it), the update
of λ in (34) is simplified as follows:

λk+1
Tk

= λkTk + ρ1r
k+1
Tk

, λk+1

Tk
= 0 (52)

6If there are multiple positive real roots (possibly due to some numerical
issue), we take the one with the largest absolute value.

3344

where the vector rk+1 = uk+1+Dyvfk+1 +bk+1y−1.
In other words, we remove the components of λ which
are not in the current working set.

The update steps above are collected into the next algo-
rithm.

Algorithm 1 ADMM for the MKL-L0/1-SVM

1: Set C, ρ1, ρ2, ρ3, {κ`}, max_iter, and k = 0.
2: Initialize (f0,d0, b0,u0, z0;θ0, α0,λ0).
3: while The terminating condition is not met and k ≤
max_iter do

4: Update Tk as in (37).
5: Update uk+1 by (38).
6: Update fk+1 by (40).
7: Update bk+1 by (44).
8: Update zk+1 by (47).
9: Update dk+1 by (49).

10: Update θk+1 by (51).
11: Update αk+1 in (34).
12: Update λk+1 by (52).
13: Set k = k + 1.
14: end while
15: return the final iterate (fk,dk, bk,uk, zk;θk, αk,λk).

Unfortunately, we are not able to prove the convergence
of Algorithm 1 as it seems very hard in general due to
the nonconvexity and nonsmoothness of the optimization
problem (21). However, we can give a characterization of the
limit point if the algorithm converges, see the next result.

Theorem 3. Suppose that the sequence

{Ψk} = {(fk,dk, bk,uk, zk;θk, αk,λk)}

generated by the ADMM algorithm above has a limit point
Ψ∗ = (f∗,d∗, b∗,u∗, z∗;θ∗, α∗,λ∗). Then (f∗,d∗, b∗,u∗)
is a P-stationary point with γ = 1/ρ1 and also a local
minimizer of the problem (21).

Remark 2. Similar to the working set T∗ in (27) and the
associated support vectors, the working set Sk in (46) and its
limit set S∗ renders sparsity in the combination of the kernels
{κ`} for the MKL task, because the constraint (20b) can be
interpreted as ‖d‖1 = 1, an equality involving the `1-norm,
due to the nonnegativity condition (20a). Such an effect
of sparsification can also be observed from our numerical
example in the next section.

VI. SIMULATION ON SYNTHETIC DATA

In this section, we conduct numerical experiments using
Matlab on a Dell laptop workstation with 64 GB of memory
and an Intel Core i7 CPU of 2.5 GHz on synthetic data to
demonstrate the sparsity and effectiveness of the proposed
MKL-L0/1-SVM. The simulation presented here is very
simple and by no means extensive. More precisely, we work
with two-dimensional (planar) data (n = 2) for the purpose
of easy visualization using a ten-kernel (L = 10) L0/1-SVM.
The ten kernel functions are all Gaussian, see (12), with quite

arbitrarily chosen hyperparameters {σ`} which are listed in
Table I. Some specific points are discussed next.

TABLE I: An arbitrary choice of the hyperparameters

σ1 σ2 σ3 σ4 σ5

0.1400 0.0995 0.0161 0.0409 0.1561

σ6 σ7 σ8 σ9 σ10

0.0156 0.1221 0.1175 0.0539 0.1247

(a) Stopping criteria. In the implementation, we terminate
Algorithm 1 if the iterate (fk, dk bk, uk, zk; θk, αk, λk)
satisfies the condition:

max
{
βk1 , β

k
2 , β

k
3 , β

k
4 , β

k
5 , β

k
6 , β

k
7 , β

k
8

}
< tol, (53)

where the number tol > 0 is the tolerance level, and

βk1 := ‖uk − uk−1‖, βk2 := ‖fk − fk−1‖,
βk3 := |bk − bk−1|, βk4 := ‖zk − zk−1‖,
βk5 := ‖dk − dk−1‖, βk6 := ‖θk − θk−1‖,
βk7 := |αk − αk−1|, βk8 := ‖λk − λk−1‖.

(54)

The condition says, in plain words, that two successive
iterates are sufficiently close.

(b) Parameters setting. In Algorithm 1, the parameters
C and ρ1 characterize the working set (37) which is related
to the number of support vectors, see (30) and the comments
right after it. For simplicity, we have taken ρ = ρ1 =
ρ2 = ρ3 in the ADMM algorithm. In order to choose
the two parameters, the standard 10-fold Cross Validation
(CV) is employed on the training data, where C and ρ are
selected from {2−2, 2−1, · · · , 27} and {a−2, a−1, · · · , a7}
with a =

√
2, respectively. The parameter combination with

the highest CV accuracy is picked out. In addition, we set
the maximum number of iterations max_iter = 103 in
Algorithm 1 and the tolerance level tol = 10−3 in (53).

For the starting point, we set u0 = λ0 = 0, θ0 = 0,
f0 = 0, z0 = 0, α0 = 0 and d0 = 1

L1, b0 = 1
or −1. The reason for such a choice is explained in the
following. Let us call the objective function in (20) J(f ,d, b).
Then we immediately notice that J(0, 1

L1, 1) = Cm− and
J(0, 1

L1,−1) = Cm+ where m+ and m− denote the
numbers of positive and negative components in the label
vector y. Therefore, we should choose (f0,d0, b0) such that
J(f0,d0, b0) ≤ C min{m+,m−}.

(c) Evaluation criteria. To evaluate the classification
performance of our L0/1-SVM, we report two criteria: the
testing accuracy (TACC) and the number of support vectors
(NSV) which is equal to |T∗|. Let {(xtest

j , ytest
j) : j =

1, · · · ,mtest} be the testing data. The testing accuracy is
defined as

TACC := 1− 1

2mtest

mtest∑
j=1

∣∣∣∣∣sign

(∑
`

f∗` (xtest
j) + b∗

)
− ytest

j

∣∣∣∣∣ .
Here the quantity

∑
` f
∗
` (xtest

j) can be computed using (22f).
More specifically, for each ` ∈ NL we can evaluate f∗` (·) =

3345

−d∗`
∑
i λ
∗
i yiκ`(· ,xi) on the test data using the convergent

iterate produced by Algorithm 1.
(d) Simulation result. The planar data are generated

randomly in the four quadrants and then (randomly) split
into a training set and a testing set of equal size, i.e.,
m = mtest = 100. More specifically7, points in the first and
third quadrants are given label 1, while points in the second
and fourth quadrants are given label −1. The parameters C,
ρ are determined by the CV procedure described before on
the training set. After that, the MKL-L0/1-SVM is optimized
on the training set via Algorithm 1, and then the accuracy
of the optimal classifier is verified using the testing set. The
results are shown in Fig. 2 and Table II which also gives
the best parameters selected during the CV. Notice that we
have only reported the four d`’s which are significant in size
(larger than 10−4). The rest d`’s are set to zero. Additionally,
we found that setting d∗1 and d∗6 (which are relatively small
among the four) to 0 does not affect TACC. Therefore,
our optimization procedure has claimed the following: the
optimal linear combination of the ten candidate kernels in
our L0/1-SVM involves essentially only two kernels, namely
the ones with hyperparameters σ3 and σ5. In other words,
we have obtained great sparsity in the kernel combination
in accordance with Remark 2. We comment at last that the
testing accuracy of 90% is obviously not good enough and an
improvement is possible via a better selection of the kernels
and the hyperparameters.

TABLE II: Simulation results

C ρ d∗1 d∗3 d∗5 d∗6 TACC NSV

16 4 0.0021 0.4575 0.5290 0.0113 0.90 100

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
-1

1

decision boundary

Fig. 2: Scatter diagram for the result of classification on the testing
set with the decision boundary which corresponds to all x (on a
regular grid) that satisfy the equation f∗(x) + b∗ = 0.

7For details about data generation, the reader can refer to the
section “Train SVM Classifier Using Custom Kernel” in the online
documentation https://www.mathworks.com/help/stats/
support-vector-machines-for-binary-classification.
html.

VII. CONCLUSIONS

We have considered a MKL task for the L0/1-SVM in
order to select the best possible combination of some given
kernel functions while minimizing a regularized (0, 1)-loss
function. Despite the nonconvex and nonsmooth nature of
the objective function, we have provided a set of KKT-
like first-order optimality conditions to characterize global
and local minimizers. Numerically, we have developed an
efficient ADMM solver to obtain a locally optimal solution to
the MKL-L0/1-SVM problem. Preliminary simulation results
have shown the effectiveness of our theory and algorithm.
Future studies should regard the convergence analysis of
Algorithm 1 with reference to [16], [17].

REFERENCES

[1] S. Theodoridis, Machine Learning: A Bayesian and Optimization
Perspective, 2nd ed. Academic Press, 2020.

[2] J. A. Suykens, “Support vector machines: a nonlinear modelling and
control perspective,” European Journal of Control, vol. 7, no. 2-3, pp.
311–327, 2001.

[3] S. Iplikci, “Support vector machines-based generalized predictive con-
trol,” International Journal of Robust and Nonlinear Control, vol. 16,
no. 17, pp. 843–862, 2006.

[4] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learn-
ing, vol. 20, no. 3, pp. 273–297, 1995.

[5] H. Wang, Y. Shao, S. Zhou, C. Zhang, and N. Xiu, “Support vector
machine classifier via L0/1 soft-margin loss,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 44, no. 10, pp. 7253–
7265, 2022.

[6] M. Nikolova, “Description of the minimizers of least squares regular-
ized with `0-norm. uniqueness of the global minimizer,” SIAM Journal
on Imaging Sciences, vol. 6, no. 2, pp. 904–937, 2013.

[7] A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet, “Sim-
pleMKL,” Journal of Machine Learning Research, vol. 9, pp. 2491–
2521, 2008.

[8] N. Aronszajn, “Theory of reproducing kernels,” Transactions of the
American Mathematical Society, vol. 68, no. 3, pp. 337–404, 1950.

[9] V. I. Paulsen and M. Raghupathi, An Introduction to the Theory
of Reproducing Kernel Hilbert Spaces, ser. Cambridge Studies in
Advanced Mathematics. Cambridge University Press, 2016, vol. 152.

[10] V. Vapnik, The Nature of Statistical Learning Theory, 2nd ed.
Springer Science & Business Media, 2000.

[11] G. Kimeldorf and G. Wahba, “Some results on Tchebycheffian
spline functions,” Journal of Mathematical Analysis and Applications,
vol. 33, no. 1, pp. 82–95, 1971.

[12] B. Schölkopf and A. J. Smola, Learning with Kernels, ser. Adaptive
Computation and Machine Learning. Cambridge: MIT Press, 2001,
vol. 4.

[13] K. Slavakis, P. Bouboulis, and S. Theodoridis, “Online learning in
reproducing kernel Hilbert spaces,” in Academic Press Library in
Signal Processing. Elsevier, 2014, vol. 1, pp. 883–987.

[14] B. Zhu and Y. Shi, “MKL-L0/1-SVM,” arXiv preprint: 2308.12016,
2023.

[15] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Dis-
tributed optimization and statistical learning via the alternating di-
rection method of multipliers,” Foundations and Trends® in Machine
Learning, vol. 3, no. 1, pp. 1–122, 2011.

[16] T. Lin, S. Ma, and S. Zhang, “On the global linear convergence of
the admm with multiblock variables,” SIAM Journal on Optimization,
vol. 25, no. 3, pp. 1478–1497, 2015.

[17] M. Hong and Z.-Q. Luo, “On the linear convergence of the alternating
direction method of multipliers,” Mathematical Programming, vol.
162, no. 1-2, pp. 165–199, 2017.

3346

