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Abstract— This paper proposes a new approach for solving
a structured nonsmooth nonconvex optimization problem with
nonlinear equality constraints, where both the objective func-
tion and constraints are 2-blocks separable. Our method is
based on a 2-block linearized ADMM, where we linearize the
smooth part of the cost function and the nonlinear term of the
functional constraints in the augmented Lagrangian at each
outer iteration. This results in simple subproblems, whose so-
lutions are used to update the iterates of the 2 blocks variables.
We prove global convergence for the sequence generated by
our method to a stationary point of the original problem. To
demonstrate its effectiveness, we apply our proposed algorithm
as a solver for the nonlinear model predictive control problem
of an inverted pendulum on a cart.

I. INTRODUCTION

Many applications in the recently most concerned fields
such as nonlinear model predictive control, machine learning,
and signal processing can be formulated as the following
structured nonconvex nonsmooth optimization problem with
nonlinear equality constraints [10], [16], [18]:

min
x∈Rn,y∈Rp

f(x) + g(x) + h(y)

s.t. F (x) +Gy = 0,
(1)

where f : Rn → R and F (x) , (f1(x), ..., fm(x))
T , with

fi : Rn → R, for all i ∈ {1, ...,m} nonlinear functions.
We assume f, h, fi ∈ C2, for all i = 1, ...,m, f, h possibly
nonconvex, g is a nonsmooth but proximal-friendly function,
i.e., the proximal operator is easy to compute. Moreover, we
require matrix G ∈ Rm×p to have full row rank i.e., there
exists σ > 0 such that σmin(GT ) ≥ σ, where σmin(GT )
denotes the smallest singular value of the matrix GT .

In this paper, we propose an augmented Lagrangian approach
to address problem (1). The augmented Lagrangian method,
or method of multipliers, was introduced in [13], [15] to
minimize an objective function under equality constraints. It
provides many theoretical advantages, even for non-convex
problems (e.g., no duality gap and exact penalty repre-
sentation), highlighted by Rockafellar in [22]. Researchers
started to investigate the augmented Lagrangian framework
in detail when the Alternating Direction Method of Multiplier

1Department of Automatic Control and Systems Engineering, Univer-
sitatea Nationala de Stiinta si Tehnologie Politehnica Bucuresti, 060042
Bucharest, Romania. lel@stud.acs.upb.ro

2Gheorghe Mihoc-Caius Iacob Institute of Mathematical Statistics and
Applied Mathematics of the Romanian Academy, 050711 Bucharest, Ro-
mania. ion.necoara@upb.ro

3Department of Electrical Engineering (ESAT-STADIUS), KU Leuven,
3001 Leuven, Belgium. panos.patrinos@esat.kuleuven.be

(ADMM) showed strong advantages (recall that the aug-
mented Lagrangian framework is at the heart of the ADMM),
see [4]–[6], [8], [11], [12], [25].

In the literature, the augmented Lagrangian approach has
been widely studied for convex problems, see e.g., [1]–
[3], [6] and references therein, and recently its extension
to non-convex (smooth/non-smooth) problems with linear
constraints have been proposed in [14], [16], [17], [19]–
[21], [25], [26]. However, there are very few studies on the
use of the augmented Lagrangian framework for nonconvex
optimization with nonlinear constraints, such as [8], [9],
[24]. In particular, in [24], a proximal augmented Lagrangian
(Proximal AL) algorithm is proposed to solve the problem
(1); in this method, a static proximal term is added to the
original augmented Lagrangian function. It is proved that
when an approximate first- (second-) order solution of the
subproblem is found, then an ε first- (second-) order solution
of the original problem (1) is obtained within O(1/ε2−η)
outer iterations, for some parameter η ∈ [0, 2]. Note that
when η is close to 2, the efficiency is reduced to O(1) outer
iterations, but the subproblem, which is already non-convex,
becomes very ill-conditioned as the penalty parameter of
the augmented Lagrangian is inversely proportional to εη .
Furthermore, in [8], the authors proposed an augmented
Lagrangian-based method to deal with the same problem
considered in this paper and under the same assumptions.
In that algorithm, the authors linearize the smooth part of
the augmented Lagrangian function and added a dynamic
quadratic regularization, and prove global convergence of
their method using Lyapunov analysis. Finally, in [9] a
linearized augmented Lagrangian method is proposed, where
the functional constraints are linearized within the augmented
Lagrangian, while keeping the objective function unchanged,
yielding a simple subproblem at each iteration. Under mild
assumptions, it is proved that the iterates converge globally to
a first-order optimality point within a rate of order O(1/ε2).

In addition to the high cost of solving the subproblem in
[24], neither [24] nor [9] employ specific schemes that can
leverage the unique structure of the problem, such as its
separability. Moreover, in contrast to the large approximation
error in the model considered in [8], which arises from
linearizing the entire smooth part of the augmented La-
grangian function, in this paper we propose a linearized two-
block alternating direction method of multipliers (linearized
ADMM) to solve problem (1). Specifically, in our algorithm,
we linearize the smooth part of the objective function and the
nonlinear term of the functional constraints in the augmented
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Lagrangian function, and we add a dynamic regularization.
Thus, our method borrows the advantages of methods from
[8] since it takes advantage of the separability structure
of the problem at hand and from [9] since it considers
more accurate model approximations by linearizing inside
the augmented Lagrangian. We prove global convergence
of the iterates to a stationary point of the original problem
(1). Furthermore, we compare the efficiency of the proposed
method with IPOPT [23] and the method in [8] to solve
the predictive control problem of a nonlinear model of an
inverted pendulum on a cart.

The paper is structured as follows. In the next section, we
introduce some mathematical preliminaries, in section III we
present the linearized ADMM method followed in section IV
by its convergence analysis. Finally, section V presents some
preliminary numerical results.

II. PRELIMINARIES

We use ‖.‖ to denote the 2−norm of a vector or of a matrix,
respectively. For a differentiable function f : Rn → R, we
denote by ∇f(x) ∈ Rn its gradient at a point x. For a
differentiable function F : Rn → Rm, we denote its Jacobian
at a given point x by ∇F (x) ∈ Rm×n. We further introduce
the following notations:

lf (x; x̄) := f(x̄) + 〈∇f(x̄), x− x̄〉 ∀x, x̄,

lh(y; ȳ) := h(ȳ) + 〈∇h(ȳ), y − ȳ〉 ∀y, ȳ,

lF (x; x̄) := F (x̄) +∇F (x̄)(x− x̄) ∀x, x̄.

Let (x∗, y∗) ∈ Rn × Rm be a local minimizer of (1) such
that x∗ satisfies the following constraint qualification [8]:

(i) The function f is subdifferential regular at x∗.
(ii) ∂∞f(x∗) ∩ range∇F (x∗)T = {0}.

Then, there exists a KKT point for problem (1) at (x∗, y∗).
Note that KKT points are critical points of the Lagrangian
function. The main purpose of this work is to devise an
algorithm that converges to such a point. Let’s also consider
the following assumption, which is used in our analysis of
the optimization problem (1), throughout the paper:

Assumption 2.1: Given a compact set S ⊆ Rn, there exist
positive constants Mf ,Mh,MF , σ, Lf , Lh, LF such that the
functions f, h and F satisfy the following conditions for all
x, y ∈ S (a given compact set):

(i) ‖∇f(x)‖ ≤Mf ,
(ii) ‖∇f(x)−∇f(y)‖ ≤ Lf‖x− y‖,

(iii) ‖∇h(x)‖ ≤Mh,
(iv) ‖∇h(x)−∇h(y)‖ ≤ Lh‖x− y‖,
(v) ‖∇F (x)‖2 ≤MF ,

(vi) ‖∇F (x)−∇F (y)‖2 ≤ LF ‖x− y‖,

Note that these assumptions are standard in nonconvex
optimization, see e.g., [8], [9], [24]. In fact, it covers a
large class of problems; more precisely, (i), (ii), (iii) and
(iv) hold if f and h are smooth and ∇f,∇h are locally
Lipschitz continuous on a neighborhood of S. Similarly,
(v) and (vi) are valid if F is smooth and ∇F is locally

Lipschitz continuous on a neighborhood of S. Note that these
assumptions are not very restrictive because they are satisfied
locally for any f, h, F ∈ C2 and for any matrix G having
full rank. We further introduce the following notations:

ψρ(x, y, λ) = f(x) + 〈λ, F (x) +Gy〉+
ρ

2
‖F (x) +Gy‖2.

Then, the augmented Lagrangian associated with (1) is:

Lρ(x, y, λ)

= f(x) + g(x) + h(y) + 〈λ, F (x) +Gy〉+ ρ
2‖F (x) +Gy‖2

= g(x) + h(y) + ψρ(x, y, λ).

Given a pair (x̄, λ̄), we denote:

L̄ρ(x, y, λ; x̄, ȳ) = lf (x; x̄) + g(x) + lh(y; ȳ)

+ 〈λ, lF (x; x̄) +Gy〉+
ρ

2
‖lF (x; x̄) +Gy‖2.

The gradient of ψρ is:
∇xψρ(x, y, λ) = ∇f(x) +∇F (x)

T
(λ+ ρ (F (x) +Gy)) ,

∇yψρ(x, y, λ) = GT (λ+ ρ (F (x) +Gy)) ,

∇λψρ(x, y, λ) = F (x) +Gy.

Note that from Assumption 2.1 it follows that ψρ is smooth,
(i.e., it has Lipschitz continuous gradient).

Before we present our algorithm, let us discuss an alternative
approach to address problem (1) that involves eliminating
the constraints and the second block of the primal variables
y. Indeed, this can be achieved using the relation y =
−G†F (x), where G† represents the pseudoinverse of matrix
G. By applying this approach, we obtain the following
equivalent problem for (1):

min
x∈Rn

f(x) + g(x) + h(−G†F (x))

Reformulating the original problem as above may bring
some potential advantages. For example, it reduces the
dimension of the problem and can be more suitable for
some optimization methods, such as proximal gradient, as
they do not require handling constraints explicitly. However,
there are also disadvantages for the above formulation. For
example, eliminating the variable y, the (sparse) structure
of the original problem will be lost. Furthermore, this re-
formulation might induce ill-conditioning since the pseudoin-
verse of a matrix can be ill-conditioned and consequently
affecting the numerical stability and accuracy of the solution.
As in [8], in the following we consider the original structured
formulation (1).

III. LINEARIZED ADMM

In this section we propose an augmented Lagrangian based
method (Algorithm 1), which is similar to the one proposed
in [8] but with a difference in the update of the first block
of primal variables (see Step 5 below). In [8], the authors
linearized the smooth part of the augmented Lagrangian
function ψρ and added a dynamic quadratic regularization,
while in our paper we linearize the nonlinear functional
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constraints inside the augmenting function, which makes
our model to approximate better the original augmented
Lagrangian function than the model considered in [8].
We will also see in simulations that this more accurate
approximation yields a better behavior in practice.

Algorithm 1 Linearized ADMM
1: Initialization: x0, y0, λ0, and ρ, θ0 > 0
2: k ← 0
3: while stopping criterion is not satisfied do
4: generate a proximal parameter βk+1 > 0
5: xk+1 ← arg minx L̄ρ(x, yk, λk;xk, yk) + βk+1

2 ‖x− xk‖
2

6: generate a proximal parameter θk+1 ≥ θ0
7: yk+1 ← arg miny lh(y : yk) + ψρ(xk+1, y, λk) + θk+1

2 ‖y − yk‖
2

8: λk+1 ← λk + ρ (F (xk+1) +Gyk+1)
9: k ← k + 1

10: end while

Note that the dominant step in Algorithm 1 is Step 5,
as it involves the nonsmooth function g in addition to a
quadratic term. When g is convex or weakly convex, the
objective function of the subproblem in Step 5 is strongly
convex. The objective function of the subproblem in Step
7 of Algorithm 1 is always a strongly convex quadratic
function, even when h is nonconvex. Therefore, solving this
subproblem is equivalent to solving a linear system. The
dual variables are updated in Step 8 using the conventional
update of the dual in traditional augmented Lagrangian-based
methods. Let us denote the difference of the steps in x, y and
λ, for all k ≥ 1 as:

∆xk = xk−xk−1, ∆yk = yk−yk−1 and ∆λk = λk−λk−1.

Let ν > 0 be a user-defined parameter. By using the fact that
ψρ is smooth, we can always find βk+1 satisfying:

ψρ(xk+1, yk, λk)− ψρ(xk, yk, λk)− 〈∇xψρ(xk, yk, λk), xk+1 − xk〉

≤ βk+1 − ν
2

‖xk+1 − xk‖2 ∀k ≥ 0. (2)

Similarly, let θ0 > 0 and α ∈ (0, 1) be a user-defined
parameters. Since h is smooth, one can always find, for any
k ≥ 0, θk+1 satisfying:

h(yk+1)− lh(yk+1; yk) ≤ (1−α)θk+1

2 ‖yk+1 − yk‖2. (3)

Note that for any k ≥ 1, βk and θk are well defined since
ψρ is smooth, as shown in Lemma 4.1 [8] and h is smooth
from Assumption 2.1. To determine these regularization
parameters, one approach is to use a backtracking scheme, as
described in [8]. Assuming the iterates {yk}k≥1 are bounded,
we have, for any k ≥ 1, θk ≤ Lh

1−α . Going forward, we will
assume that βk satisfies the following condition:

Assumption 3.1: Assume that the sequence {βk}k≥1 is
bounded, i.e.,

β := sup
k≥1

βk <∞.

IV. CONVERGENCE ANALYSIS

In this section, we derive the asymptotic convergence of the
proposed scheme (Algorithm 1). Let us start by proving the
decrease with respect to the first argument for the augmented
Lagrangian function.

Lemma 4.1: [Descent of Lρ w.r.t. the first block of primal
variables] If Assumption 2.1 holds, then for all k ≥ 0 we
have the following:

Lρ(xk+1, yk, λk) ≤ Lρ(xk, yk, λk)− ν

2
‖xk+1 − xk‖2.

Proof: Using the definition of xk+1, we have:

L̄ρ(xk+1, yk, λk;xk, yk) +
βk+1

2
‖xk+1 − xk‖2

≤ L̄ρ(xk, yk, λk;xk, yk) = Lρ(xk, yk, λk).

Further, from definition of L̄ρ and Lρ, we get:

lf (xk+1;xk) + g(xk+1) + 〈λk, lF (xk+1;xk)〉

+
ρ

2
‖lF (xk+1;xk) +Gyk‖2

≤f(xk) + g(xk) + 〈λk, F (xk)〉

+
ρ

2
‖F (xk) +Gyk‖2 −

βk+1

2
‖∆xk+1‖2.

Rearranging the above inequality, it follows:

g(xk+1)− g(xk)

≤− 〈∇f(xk),∆xk+1〉 − 〈∇F (xk)∆xk+1, λk〉

− ρ

2
〈∇F (xk)∆xk+1, 2(F (xk) +Gyk)〉

− ρ

2
〈∇F (xk)∆xk+1,∇F (xk)∆xk+1〉 −

βk+1

2
‖∆xk+1‖2

=− ρ

2
‖∇F (xk)∆xk+1‖2 − 〈∇f(xk),∆xk+1〉

− 〈∇F (xk)
T

(λk + ρ(F (xk) +Gyk),∆xk+1〉

− βk+1

2
‖∆xk+1‖2

≤− 〈∇f(xk) +∇F (xk)
T

(λk + ρ(F (xk) +Gyk)),∆xk+1〉

− βk+1

2
‖∆xk+1‖2.

=− 〈∇xψρ(xk, yk, λk),∆xk+1〉 −
βk+1

2
‖∆xk+1‖2. (4)

Using the definitions of Lρ and ψρ, we further obtain:

Lρ(xk+1, yk, λk)− Lρ(xk, yk, λk)

= g(xk+1)− g(xk) + ψρ(xk+1, yk, λk)− ψρ(xk, yk, λk)
(2),(4)
≤ − ν

2
‖xk+1 − xk‖2.

This proves our statement.
Let us now prove the decrease with respect to the second
argument for the augmented Lagrangian function.

Lemma 4.2: [Descent of Lρ w.r.t. second block of primal
variables] If Assumption 2.1 holds, then we have the descent:

Lρ(xk+1, yk+1, λk) ≤ Lρ(xk+1, yk, λk)− αθk+1

2 ‖yk+1 − yk‖2.
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Proof: Using the definition of yk+1 and Lρ, we have:

Lρ(xk+1, yk+1, λk)− Lρ(xk+1, yk, λk)

≤h(yk+1)− lh(yk+1; yk)− θk+1

2
‖yk+1 − yk‖2

(3)
≤ − αθk+1

2
‖yk+1 − yk‖2.

This completes our proof.
Let us define the following Lyapunov function inspired from
[24] (see also [8], [9]):

P (x, y, λ, z, γ) = Lρ(x, y, λ) +
γ

2
‖y − z‖2, (5)

with γ > 0 to be defined later. The evaluation of the
Lyapunov function along the iterates of Algorithm 1 is
denoted by:

Pk = P (xk, yk, λk, yk−1, γk) ∀k ≥ 1. (6)

Let us prove that {Pk}k≥1 is decreasing. Indeed:

P k+1 − Pk
=Lρ(xk+1, yk+1, λk+1)− Lρ(xk+1, yk+1, λk)

+ Lρ(xk+1, yk+1, λk)− Lρ(xk+1, yk, λk)

+ Lρ(xk+1, yk, λk)− Lρ(xk, yk, λk)

+
γk+1

2
‖yk+1 − yk‖2 −

γk
2
‖yk − yk−1‖2

≤1

ρ
‖∆λk+1‖2 −

ν

2
‖∆xk+1‖2 −

αθk+1 − γk+1

2
‖∆yk+1‖2

− γk
2
‖∆yk‖2, (7)

where the inequality follows from Lemmas 4.1, 4.2 and from
the update of the dual multipliers in Step 8 of Algorithm 1.
Now we are going to bound the dual variables by the primal
variables.

Lemma 4.3: [Bound for ‖∆λk+1‖] If Assumption 2.1
holds on some compact set S and the sequence generated
by Algorithm 1 is in S, then we have:

‖∆λk+1‖2 ≤ 2
θ2k+1

σ2 ‖∆yk+1‖2 + 2 (θk+Lh)
2

σ2 ‖∆yk‖2. (8)
Proof: See Lemma 4.5 in [8].

Now, using the inequality (8) in (7), we obtain:

Pk+1 − Pk ≤ −
ν

2
‖∆xk+1‖2 −

γk+1

4
‖∆yk+1‖2 −

γk
4
‖∆yk‖2

−
(

2αθk+1 − 3γk+1

4
−

2θ2k+1

ρσ2

)
‖∆yk+1‖2

−
(
γk
4
− 2(θk + Lh)2

ρσ2

)
‖∆yk‖2

≤ −ν
2
‖∆xk+1‖2 −

αθk+1

8
‖∆yk+1‖2 −

αθk
8
‖∆yk‖2

−
(
αθk+1

8
− 2(θk+1 + Lh)2

ρσ2

)
‖∆yk+1‖2

−
(
αθk
8
− 2(θk + Lh)2

ρσ2

)
‖∆yk‖2.

The last inequality follows by selecting γk = αθk
2 for all

k ≥ 1, and noting that Lh is positive.

Since θ0 ≤ θk ≤ Lh

1−α , ∀k ≥ 1, then by choosing

ρ ≥ 16(2− α)2

α(1− α)2
L2
h

θ0
,

it follows that:

Pk+1 − Pk ≤ −ν2‖∆xk+1‖2 − αθk+1

8 ‖∆yk+1‖2 − αθk
8 ‖∆yk‖

2. (9)

Before proving the global convergence for the iterates gen-
erated by Algorithm 1, let us first bound ∂Lρ. Here, ∂Lρ
denotes the limiting subdifferential of the augmented La-
grangian function (see [22] for more details on the limiting
subdifferential).

Lemma 4.4: [Subgradient bound for ∂Lρ] Let {zk :=
(xk, yk, λk)}k≥1 be the sequence generated by the Algorithm
1. If Assumption 2.1 holds, then there exists c > 0 such that
for every k ≥ 1, there exists vk+1 ∈ ∂Lρ(zk+1) satisfying:

‖vk+1‖ ≤ c‖zk+1 − zk‖,

where c = Lψ + β + Lh + ‖G‖+ ρ−1.
Proof: See Lemma 4.8 in [8] for details.

Let us now present the global asymptotic convergence for
the iterates of Algorithm 1.

Theorem 1: [Limit points are stationary points] Suppose
Assumptions 2.1 and 3.1 hold in a compact set S with
radius DS , and let ρ be chosen as specified above. Further,
assume that the sequence {zk := (xk, yk, λk)}k≥1 gen-
erated by Algorithm 1 is bounded. Then, any limit point
z∗ := (x∗, y∗, λ∗) of {zk}k≥1 is a stationary point, i.e.,
0 ∈ ∂Lρ(x∗, y∗, λ∗). Equivalently:

−∇f(x∗)−∇F (x∗)
T
λ∗ ∈ ∂g(x∗),

∇h(y∗) +GTλ∗ = 0 and F (x∗) +Gy∗ = 0.
Proof: Since θk ≥ θ0, for any k ≥ 1, it then follows

from (9) that, for any k ≥ 1 we have:

ν

2
‖∆xk+1‖2 +

αθ0
8
‖∆yk+1‖2 +

αθ0
8
‖∆yk‖2 ≤ Pk − Pk+1.

Let k ≥ 1, by summing up the above inequality from i = 1
to i = k, we obtain:

k∑
i=1

(
ν

2
‖∆xk+1‖2 +

αθ0
8
‖∆yk+1‖2 +

αθ0
8
‖∆yk‖2

)
≤ P1 − Pk+1≤P1 − P̄, (10)

where P̄ is the lower bound of the sequence {Pk}k≥1 (it is
well-defined see Lemma 4.9 [8]). Since (10) holds for any
k ≥ 1, we have:
∞∑
i=1

(
ν

2
‖∆xk+1‖2 +

αθ0
8
‖∆yk+1‖2 +

αθ0
8
‖∆yk‖2

)
<∞.

This, together with the fact that ν, α, θ0 > 0, yields that:

lim
k→∞

‖∆xk‖ = 0 and lim
k→∞

‖∆yk‖ = 0. (11)

From Lemma 4.3, it follows that

lim
k→∞

‖zk+1 − zk‖ = 0.
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Since the sequence {(xk, yk, λk)}k≥1 is bounded, then
there exists a convergent subsequence, let us say
{(xk, yk, λk)}k∈K, with the limit (x∗, y∗, λ∗). From Lemma
4.4, we have vk+1 ∈ ∂Lρ(zk+1) such that:

‖v∗‖ := lim
k∈K
‖vk+1‖ ≤ c lim

k∈K
‖zk+1 − zk‖ = 0.

Thus, 0 ∈ ∂Lρ(x∗, y∗, λ∗), which completes the proof.
Thus, in addition to its straightforward implementation and
relative simplicity of steps, our algorithm boasts theoretical
convergence results, ensuring that it can reliably find optimal
solutions to a wide range of nonconvex problems.

V. NUMERICAL RESULTS

In this section, we compare Algorithm 1 with dynamic
linearized alternating direction method of multipliers (DAM)
from [8] and IPOPT [23] for solving the nonlinear model
predictive control (MPC) problem for controlling an inverted
pendulum on a cart. The input to the system is the force
applied on the cart, denote by u ∈ R. The horizontal position
of the cart is denoted z1 ∈ R, and the angular position of
the pendulum (relative to the vertical) is denoted z3 ∈ R.
The continuous-time dynamics of the system can be found
in [7]. Hence, the state variables are: z , [z1 ż1 z3 ż3]T .
Using Euler discretization, discrete-time model is:

z(k + 1) := ψ(z(k), u(k)) (12)

=


z1(k) + Tz2(k)

z2(k) + T
Mpg cos(z3(k)) sin(z3(k))−MpLz4(k)

2 sin(z3(k))+u(k)
Mc+Mp sin2(z3(k))

z3(k) + Tz4(k)

z3(k) + T
(Mp+Mc)g sin(z3(k))−MpLz4(k)

2 cos(z3(k)) sin(z3(k))+u(k) cos(z3(k))
L(Mc+Mp sin2(z3(k)))

,

where T is the sampling time. The pendulum operates under
the following state and input constraints:

zmin ≤ z(k) ≤ zmax, umin ≤ u(k) ≤ umax.

Our goal is to stabilize the pendulum in the vertical position
and the carriage at the origin. More precisely, we aim to
achieve zref = [0, 0, 0, 0]T and uref = 0 using nonlinear MPC.
To accomplish this we solve a nonlinear MPC problem at
each sampling time. This problem is obtained by adopting
a single shooting approach, where the state variables are
eliminated under the assumption of a piecewise constant
input trajectory. Slack variables are added to state constraints
to convert them to equality constraints, and the constraints on
the slack variables are incorporated into the objective func-
tion via soft constraints on the state variables. The decision
variables for NMPC are given by x = (u0, . . . , uN−1) ∈
RN . Before presenting the resulting NMPC, we introduce a
sequence of functions Fk : Rn → R4 for k ∈ {0, . . . , N−1}:

F0(x) = z(0), Fk+1(x) = ψ(Fk(x), uk).

The resulting NMPC problem that needs to be solved at each
sampling time is then given by:

min
(x,{(sk+1,s′k+1)}

N−1
k=0 )

l(x) +

N−1∑
k=0

V (sk+1, s
′
k+1)

s.t.: Fk+1(x)− zmax + sk+1 = 0 (13)
zmin − Fk+1(x) + s′k+1 = 0

umin ≤ u(k) ≤ umax k = 0 : N − 1, z(0) given,

where V (s, s′) = ζ
2

(
max{0,−s}2 + max{0,−s′}2

)
,

and where l(x) = 1
2

∑N−1
k=0

(
Fk+1(x)TQFk+1(x) + uTkRuk

)
.

The problem described in (13) can be reformulated as
problem (1), where G is the identity matrix of dimension
8N and N represents the prediction horizon. The nonsmooth
function g is the indicator function of the set describing the
input constraints. At this point it is worth mentioning that
since g is an indicator function, then Step 5 of Algorithm 1
and its counterpart in DAM [8] basically reduces to finding
a solution of a QP problem with box constraints. All the
codes were implemented in MATLAB and we used the
following setup for our system and for nonlinear MPC:

T = 0.2,Mp = 0.1,Mc = 1, L = 0.8, g = 9.81,

N = 10, Q = diag(3, 3, 1, 1), R = 1, zmax = [10, 10, 1, 10]T ,

zmin = −zmax, umax = 10, umin = −umax,

and the simulation horizon is 40. Moreover, the parameters
for the DAM algorithm and the Linearized ADMM algorithm
are provided in Table I. Note that the above parameters are

`````````Method
Parameters

ρ βk θk ζ

DAM from [8] 30 50 1 5
Linearized ADMM 3 1 1 5

TABLE I
PARAMETERS FOR LINEARIZED ADMM AND DAM.

the best ones found for each algorithm. For DAM, a large
value of βk is required to cover the big approximation error
generated by the linearization of the full smooth part of the
augmented Lagrangian function. Additionally, a value of ρ
less than the one reported in Table I either does not allow
convergence or is extremely slow. On the other hand, we
chose θk = 1 for both our method and the DAM. The value
ζ = 5 is of course the one considered in the case of IPOPT.
In Table II, we report the number of iterations required for
each algorithm to solve a nonlinear MPC problem (the first
NMPC problem in our case), the CPU time required for each
algorithm to solve a nonlinear MPC problem, the optimal
value found by each algorithm, and the degree of infeasibility
at the obtained optimal point. As can be seen from Table II,
our algorithm requires fewer iterations to solve the problem,
since the model considered in Step 5 approximates better
the original augmented Lagrangian than the one considered
in [8]. At the same time, the complexity of Step 5 for us does
not differ too much from the complexity of the corresponding
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step in DAM, which results in the fact that our algorithm is
much faster than DAM. Also, our algorithm is slightly faster
than IPOPT. Both the proposed method and DAM algorithm
achieve an optimal value that is very close to that of the
IPOPT solver. In Table II, the term ”infeasibility” refers to
the infeasibility of the problem (13). This is equivalent to
violations of the state constraints when the penalty parameter
ζ is sufficiently large.

hhhhhhhhhhhMethod
Characteristics # Iter Cpu (s) Optimal value Infeasibility

IPOPT 35 2.88 350.29 1.28× 10−6

DAM from [8] 208 13.04 358.32 9.76× 10−5

Linearized ADMM 60 0.85 350.30 6.31× 10−5

TABLE II
NUMERICAL RESULTS COMPARING LINEARIZED ADMM AND DAM ON

A NONLINEAR MPC PROBLEM.

Figure 1 displays the closed-loop trajectories of inputs and
states obtained using Algorithm 1 (linearized ADMM), re-
vealing the successful stabilization of the system through the
proposed approach.

Fig. 1. Nonlinear MPC inputs u (top), cart lateral position z1 (middle) and
pendulum angular position z3 (bottom) computed using Linearized ADMM.

VI. CONCLUSIONS

In this paper we have introduced a linearized ADMM method
for solving structured nonsmooth nonconvex optimization
problems. By linearizing the smooth term of the objective
function and functional constraints within the augmented
Lagrangian, we have been able to derive simple updates. We
have established that the iterates of our method globally con-
verge to a critical point of the original problem. Furthermore,
the numerical experiments have shown the effectiveness of
our proposed algorithm in solving nonlinear MPC problems.
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