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Abstract— This paper investigates the event-triggered dis-
tributed optimization problems (ETDOPs) over strongly con-
nected directed networks. By assigning an additional scalar
state variable to each agent and utilizing diminishing time-
varying gain/step-size, a class of modified event-triggered dis-
tributed optimization algorithms (ETDOAs) is proposed, which
can address the ETDOPs well and can avoid the inverse oper-
ation of some estimators in the existing literature. Compared
with the existing DOAs, this paper gives a new idea to solve
the DOPs under weighted-unbalanced digraphs and continuous
communication of agent networks is avoided. Finally, numerical
simulations are given to illustrate the effectiveness of the
proposed ETDOAs.

I. INTRODUCTION

Distributed optimization problem (DOP) generally refers
to minimizing the sum of local cost functions through
cooperation and coordination among multiple agents [4]-
[5], while each agent only has access to one local cost
function. In the past two decades, the theory and applications
of distributed optimization have attracted more and more
attention, and gradually penetrated into almost all fields of
scientific research, engineering applications and social life,
such as smart power grids, sensor networks, social networks,
and cyber-physical systems [1]-[3].

The DOP was originally proposed in [4], in which the
authors designed a discrete-time distributed optimization
algorithm (DOA) consisting of a consistency term and a
negative gradient term, the so-called distributed subgradient
method. This basic algorithm was yet modified to apply to
more general networks [5]. Later, continuous-time dynamic
DOAs based on auxiliary variables were proposed [6] to
overcome the disadvantages caused by the use of decay
step size in the discrete-time algorithms [4]-[5]. Although
the auxiliary variable algorithm abandons the disadvantages
caused by the attenuation step, the introduction of auxiliary
variables will inevitably lead to the increase of communi-
cation and computation, and then increase the consumption
of network resources. Then, two classes of continuous-time
zero-gradient-sum DOAs were proposed [7]-[8], so as to
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solve the problem caused by decay step size and auxiliary
variables.

Note that the aforementioned results mainly concentrate
on the DOPs under undirected communication topologies.
Until now, some literature also consider this problem over
directed networks. Two kinds of proportional-integral DOAs
were proposed for DOPs under weight-balanced digraphs
[9]-[10]. Then, the authors proposed a fully distributed
adaptive optimization algorithm [11] over strongly connected
digraphs while the left eigenvector corresponding to the
zero eigenvalues of the Laplacian matrix must be known.
By utilizing surplus-based method, a directed-distributed
projected subgradient algorithm [12] was proposed to solve
a constrained optimization problem. Further, discrete-time
and continuous-time DOAs [13]-[14] were designed for
weight-unbalanced digraphs by combining with additional
estimators. Recently, the authors also investigated the DOPs
for time-varying directed graphs [15].

Look back at the literature mentioned above, although
much research has been carried out in DOPs, much of
the existing literature invokes the assumptions that (i) the
communication topology among agents is bidirectional or
directed but weighted-balanced and (ii) the communication
transmission is continuous (see [4]-[6], [9]-[10]). However,
these assumptions are not always practical in real-world
distributed systems, where communication may be unidi-
rectional and the agent’s power supply and communication
channels are limited (e.g., agents in outdoor wireless network
use broadcast-based communication schemes).

Motivated by these limitations, this paper investigates the
event-triggered distributed optimization problems (ETDOPs)
under strongly connected directed networks. A modified
event-triggered distributed optimization algorithm (ETDOA)
is proposed, which is suitable for implementation in the case
where the communication between agents is described in
terms of a weighted unbalanced graph. The main contribu-
tions of this paper distinguishing from the existing literature
[4]-[15] are described as follows:

First, the communication topology studied in this paper
focuses on weighted-unbalanced digraphs. Compared with
most existing works [4]-[6], [9]-[10], the scenarios consid-
ered in this paper are much more general and thus more
applicable in practice. By assigning an additional scalar
state variable to each agent, a class of modified ETDOAs
is proposed, which can deal with the unbalance of the graph
well with the cost of knowing the out-degree information
of each agent. Compared with the existing directed network
results [13], [14], the initial conditions of additional scalar
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state variable can be chosen arbitrarily, and the proposed
ETDOA can effectively avoid the inverse operation of the
estimator and reduce the the dimension of auxiliary variable.

Second, the communication transmission mode adopted in
this paper is event-triggered. It is known to all that there
is few results about ETDOAs over weighted-unbalanced
directed networks. By designing appropriate event triggering
mechanisms, continuous communication of agent networks
is avoided and Zeno behavior is excluded.

Third, a diminishing time-varying gain/step-size is em-
bedded in the ETDOA, which will eventually make the
system converge to the accurate optimal solution slowly
without missing it. On the other hand, the diminishing
gains/step-sizes could be designed without having any global
information about the network or the aggregate/local cost
functions. This is in contrast to the algorithms which work
with a constant gain/step-size [4]-[6], [9]-[15].

The reminder of this paper is organized as follows. In
Section II, some preliminaries and the problem statement
are presented. In Section III, a modified ETDOA over
directed networks is proposed. Then, numerical simulations
are provided to illustrate the obtained results in Section IV.
Finally, Section V summarizes this paper.

Notations: Rn denotes n-dimension real vectors and Rn×n

denotes n× n-dimension real matrices. Notation In denotes
the n× n identity matrix. 1 and 0 are the column vectors,
respectively with all elements being 1 and 0. ⊗ is the
Kronecker product. For a matrix M ∈ Rn×n, MT denotes its
transpose. Let ∇h be the gradient of a function h. For a vector
θ = (θ1,θ2, · · · ,θn)

T ∈ Rn, let ∥θ∥ be the Euclidean norm of
θ .

For a continuously differentiable function h : Rn → R,
∇h represents its gradient. h is strongly convex on Rn if
there exists a positive constant µ such that (y−x)T (∇h(y)−
∇h(x)) ≥ µ∥y− x∥2,∀x,y ∈ Rn,x ̸= y. h is locally Lipschitz
at x ∈ Rn if there exists a neighborhood W and a positive
constant ω such that ∥h(y)−h(x)∥ ≤ ω∥y− x∥,∀x,y ∈ W . h
is globally Lipschitz on Rn if it is locally Lipschitz at x for
all x ∈ Rn.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Graph theory

A weighted digraph is described by G (V ,E ,A ) to repre-
sent information communication among nodes, which con-
sists of a node set V = {v1,v2, . . . ,vN} and a directed edge set
E ⊆ V ×V and a weighted adjacency matrix A = [ai j]N×N .
For a directed network, an edge e ji ∈ E implies that node
v j can receive information from vi. All elements in A
are nonnegative, and a ji > 0 if and only if e ji ∈ E . A
directed network is strongly connected if there is a directed
path between any two vertexes. Let N i

i =
{

j ∈ V : ai j > 0
}

and N o
i =

{
j ∈ V : a ji > 0

}
denote the set of in-neighbors

and out-neighbors of node vi, respectively. Correspondingly,
din

i = ∑ j∈N i
i

ai j represents the in-degree of node vi and
dout

i = ∑ j∈N o
i

a ji represents the out-degree of node vi. The
Laplacian matrix L = [li j]N×N of a directed network G
is defined in this paper by L = Dout −A , where Dout =

diag(dout
1 , . . . ,dout

N ). Note that 1T
NL = 0T

N and L is column
diagonally dominant, thus, all the eigenvalues of L have
strictly positive real parts except for the zero eigenvalue(s). A
directed network is weight-balanced if and only if dout

i = din
i .

Assumption 1: This paper considers the strongly con-
nected directed networks.

Since G is assumed to be strongly connected, we can
further deduce that (1) Zero is a simple eigenvalue of L . (2)
There exists a unique positive vector ϕ = (ϕ1, . . . ,ϕN)

T , such
that L ϕ = 0N and 1T

Nϕ = 1. (3) L Φ is the Laplacian matrix
for a strongly connected and weight-balanced network with
the adjacency matrix A Φ, where Φ = diag(ϕ1,ϕ2, · · · ,ϕN),
matrix L̂ = ΦL T +L Φ is positive semi-definite, and 0 is
a simple eigenvalue of L̂ . (4) limt→∞ exp(−L t) = ϕ1T

N .
Assumption 2: Each agent can know its own out-degree

information.

B. Problem statement

This paper considers the following distributed optimization
problem under strongly connected directed graphs:

min
X∈RNn

h̃(X) = min
xi∈Rn

N

∑
i=1

hi(xi), s.t. xi = x j, i, j ∈ V , (1)

where xi ∈ Rn is the state of agent i, h̃(X) = ∑N
i=1 hi(xi),

X = (xT
1 , . . . ,x

T
N)

T and hi(xi) : Rn →R, is a local cost function
available only for agent i.

Assumption 3: The local cost function hi(xi), i = 1, . . . ,N,
is continuously differentiable, strongly convex, and ∇hi (xi)
is globally Lipschitz on Rn.

The objective of this paper is to design ETDOAs under
strongly connected directed networks, so as to solve the DOP
(1) and reduce communication cost.

Before moving on, a basic lemma is proposed as follows:
Lemma 1: Consider the following estimator that does not

use an event-triggered communication strategy,

γ̇i =−dout
i γi + ∑

j∈N i
i

ai jγ j, (2)

where γi is the state of estimator i with initial condition
∑N

i=1 γi (0) = 1. Then, γi will eventually estimate the elements
ϕ1, . . . ,ϕN of the right eigenvector corresponding to the zero
eigenvalue of the Laplacian matrix L , i.e., limt→∞ γ (t) = ϕ .
Proof : The compact form of (2) is γ̇ = −L γ, where γ =(
γT

1 , . . . ,γT
N
)T ∈ RN . The solution of the above equation is

γ (t) = e−L tγ (0), where γ (0) =
(
γT

1 (0) , . . . ,γT
N (0)

)T . Note
that L = Dout −A , and lim

t→∞
e−L t = ϕ1T

N , thus, one can
obtain that

lim
t→∞

γ (t) = ϕ1T
Nγ (0) =

 ϕ1 · · · ϕ1
...

. . .
...

ϕN · · · ϕN

γ (0) .

Therefore, if one selects ∑N
i=1 γi (0) = 1, then lim

t→∞
γ (t) = ϕ .

This completes the proof. ■
Remark 1: The initial conditions γi (0) can be chosen

arbitrarily, as long as γi (0) ≥ 0, and γi (0) ̸= 0 for all
i = 1,2, . . . ,N. Therefore, the convergence of γ (t) can be
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expressed more generally as limt→∞ γ (t) = mϕ , where m =

∑N
i=1 γi (0)> 0.

III. ETDOA OVER DIRECTED NETWORKS

In this section, a modified ETDOA over directed networks
is designed as follows:

ẋi =−α (t)∇hi (xi)−dout
i γix̃i + ∑

j∈N i
i

ai jγ j x̃ j, (3a)

γ̇i =−dout
i γ̃i + ∑

j∈N i
i

ai j γ̃ j, (3b)

where x̃i(t) = xi(t i
k), ∀t ∈

[
t i
k, t

i
k+1

)
is the sampled state

at k-th triggering instant of agent i and it will remain
unchanged until the next triggering instant. γ̃i(t) = γi(τ i

k),
∀t ∈

[
τ i

k,τ
i
k+1

)
. α (t) is a continuous and monotonically non-

increasing function which satisfies α (t)> 0,
∫ ∞

0 α (t)dt = ∞,
and lim

t→∞
α (t) = 0. The initial conditions xi (0) are chosen

arbitrarily, and γi (0) are selected as ∑N
i=1 γi (0) = 1 for the

convenience of analysis. For example, one can initialize one
of the estimators in the network to 1 and set the rest to 0.

Remark 2: The introduction of estimator γi (t) gives a new
idea to solve the DOPs under weighted-unbalanced digraphs,
which has three obvious advantages: First, it will avoid the
inverse operation of the estimator adopted in references [13],
[14] and so on. Second, compared with references [13],
[14], in which the estimators zi(t) must be initialized at the
corresponding location z j

i (0) = 0,∀i ̸= j, zi
i(0) = 1,∀i ∈ V

(this scheme will inevitably lead to the problem of agent
numbering, that is, each agent must know the numbering of
its own and its neighbors), the initialization scheme adopted
in this paper is more flexible. Third, form lemma 1, one
can see that the requirement of γi (0) in this paper is more
general. At the same time, the dimension of auxiliary variable
γi (t) is smaller than the estimators in [14], which will reduce
the amount of computation in practical application.

The triggering instants t i
k and τ i

k are determined by the
following event-triggered conditions:

t i
k+1 = inf{t > t i

k : ∥exi∥2 −µ1ie−υ1it ≥ 0}, (4a)

τ i
k+1 = inf{t > τ i

k :
∥∥eγi

∥∥2 −µ2ie−υ2it ≥ 0}, (4b)

where exi(t) = x̃i(t) − xi(t) and eγi(t) = γ̃i(t) − γi(t) are
measurement errors of the i-th agent and measurement errors
of the i-th compensator, and µ1i, υ1i and µ2i, υ2i are positive
constants. Information flows among agents are generated
only when the triggering conditions (4) are met. At the same
time, exi(t) and eγi(t) will reset to zero.
Let x =

(
xT

1 , . . . ,x
T
N
)T , Λd = diag{γ1, . . . ,γN}, ∇h(x) =(

∇h1(x1)
T , . . . ,∇hN(xN)

T )T , then, system (3) can be written
into the following compact form:

ẋ =−α (t)∇h(x)− (L Λd ⊗ In) x̃, (5a)
γ̇ =−L γ̃. (5b)

Lemma 2: The event-triggered estimator (5b) can con-
verge to the unique right eigenvector associated with the zero
eigenvalue of L without existing Zeno behavior.

Proof : Define a tracking error between the estimator and the
right eigenvector as η = γ−ϕ , where γ =

(
γT

1 , · · · ,γT
N
)T

,ϕ =(
ϕ T

1 , . . . ,ϕ T
N
)T .

Then, the dynamics of tracking error η is

η̇ = γ̇ =−L
(
η +ϕ + eγ

)
, (6)

where eγ =
[
eT

γ1, . . . ,e
T
γN

]T
. Due to L ϕ = 0N , one has η̇ =

−L
(
η + eγ

)
.

Construct the following candidate Lyapunov function V1 =
ηT

(
ΦT ⊗ IN

)
η , where Φ = diag(ϕ1, . . . ,ϕN). Taking the

time derivative of V1 along the trajectories of (6), one has

V̇ =η̇T (ΦT ⊗ IN
)

η +ηT (ΦT ⊗ IN
)

η̇

=−
(
η + eγ

)T (
L T ΦT ⊗ I

)
η −ηT (ΦT L ⊗ I

)(
η + eγ

)
=−ηT

((
L Φ+ΦL T )T ⊗ I

)
η −ηT (ΦT L ⊗ I

)
eγ

− eT
γ
(
L T ΦT ⊗ I

)
η

=−ηT
((

L Φ+ΦL T )T ⊗ I
)

η −2ηT (ΦT L ⊗ I
)

eγ

≤−ηT
((

L Φ+ΦL T )T ⊗ I
)

η +αηT (L ΦΦL T ⊗ I
)

η

+
1
α

eT
γ
(
L ΦΦL T ⊗ I

)
eγ

≤−λ2
(
L̂

)
ηT η+βλmax

(
L̃

)
ηT η+

1
β

λmax
(
L̃

)
eT

γ eγ

≤−
[
λ2

(
L̂

)
−βλmax

(
L̃

)]
ηT η +

1
β

λmax
(
L̃

)
eT

γ eγ ,

(7)
where Φ = ΦT , L̂ = ΦL T +L Φ, λ2

(
L̂

)
is the minimum

nonzero eigenvalue of matrix L̂ . L̃ =L ΦΦL T , λmax
(
L̃

)
is the maximum eigenvalue of matrix L̃ . Then, by selecting

β <
λ2(L̂ )

λmax(L̃ )
and utilizing event-triggering condition

∥∥eγ
∥∥2−

µ2e−υ2t ≤ 0, it can be obtained that

V̇1≤−
[
λ2

(
L̂

)
−βλmax

(
L̃

)]
ηT η+

λmax
(
L̃

)
β

µ2e−υ2t .

(8)
Then, it follows from the Barbalat’s lemma that the

tracking error η (t) can converge to 0. Consequently, one can
deduce that the event-triggered estimator (5b) can converge
to the unique right eigenvector associated with the zero
eigenvalue of L , i.e., limt→∞ γ (t) = ϕ and limt→∞ Λd = Φ.

In the following, it’s shown that there is no Zeno behavior
among the event-triggered estimators. First, the time deriva-
tive of ∥eγi(t)∥ over the interval

[
τ i

k,τ
i
k+1

)
satisfies

d
dt

∥∥eγi (t)
∥∥≤

∥∥∥eT
γi

∥∥∥∥∥eγi
∥∥ ∥∥ėγi

∥∥=

∥∥∥∥∥∥−dout
i γ̃i + ∑

j∈N i
i

ai j γ̃ j

∥∥∥∥∥∥
≤
∥∥eγi (t)

∥∥+
∥∥∥∥∥∥−dout

i γ̃i + ∑
j∈N i

i

ai j γ̃ j

∥∥∥∥∥∥
≤
∥∥eγi (t)

∥∥+Ji,

(9)

where d
dt

∥∥eγi (t)
∥∥ denotes the right-hand derivative of∥∥eγi (t)

∥∥ at t = τ i
k, and Ji= max

t∈[τ i
k,τ

i
k+1)

∥∥∥∥∥−dout
i γ̃i+ ∑

j∈N i
i

ai j γ̃ j

∥∥∥∥∥.
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Then, it follows that∥∥eγi (t)
∥∥≤ Ji

(
et−τ i

k −1
)
, (10)

and eγi
(
τ i

k

)
= 0. Recalling the triggering function (4b),

one has
∥∥eγi

∥∥2 ≤ µ2ie−υ2it between any two triggering
instants. Therefore, a lower bounded T1 of τ i

k+1 − τ i
k can

be determined by solving µ2ie−υ2i(τ i
k+T1) ≤ J 2

i
(
eT1 −1

)2
,

which yields τ i
k+1−τ i

k ≥ T1 ≥ ln
(√µ2i

Ji
e−

υ2i
2 (τ i

k+T1) +1
)
> 0.

Therefore, there is a positive lower bound between any two
triggering intervals and there does not exist Zeno behavior
in the event-triggered balanced compensator. This completes
the proof.

Theorem 1: Under Assumptions 1-3, by adopting the
modified ETDOA (3) with triggering conditions (4),
choosing suitable time-varying gain α (t), and initialing
∑N

i=1 γi (0) = 1, then, the states of each agent asymptotically
converge to the unique global minimizer x∗ ∈ Rn of the
problem (1) over any strongly connected directed networks.
Besides, the communication cost is reduced and the system
does not exist Zeno behavior.
Proof : The proof of the main results is divided into two
parts: optimality analysis and convergence analysis.

A. Optimality analysis

By making a change of variable, one has

ẋ =−α (t)∇h(x)− (L Λd ⊗ In) x̃

=−α (t)∇h(x)−(L Φ⊗ In) x̃−(L (Λd−Φ)⊗ In) x̃.
(11)

Hence, the equilibrium point x̄ =
(
x̄T

1 , . . . , x̄
T
N
)T ∈ RNn of (5a)

satisfies

−α (t)∇h(x̄)− (L Φ⊗ In) x̄− (L (Λd −Φ)⊗ In) x̄ = 0.
(12)

Left multiplying (12) by 1T
N and using the fact 1T

NL Φ =
0T

N ,α (t)> 0, and limt→∞ Λd = Φ, one has

N

∑
i=1

∇hi (x̄i) = 0, (13)

thus, based on the strong convexity of the local cost function
hi, one is able to derive that the equilibrium point x̄ of (5a)
is the optimal solution of problem (1) and x̄ = 1N ⊗ x⋆.

B. Convergence analysis

Introduce state transition variable ξ = x − x̄, and the
dynamics of ξ is expressed as

ξ̇ =−α (t)(∇h(ξ + x̄)−∇h(x̄))− (L Φ⊗ In)(ξ + ex)

− (L (Λd −Φ)⊗ In)(ξ + ex) .
(14)

Since limt→∞ Λd = Φ according to Lemma 2 and following
from Lemma 6 in [17], one can obtain that analyzing the
convergence of the above system is equivalent to analyzing
the convergence of the following nominal system:

ξ̇ =−α (t)(∇h(ξ+x̄)−∇h(x̄))−(L Φ⊗ In)(ξ+ex) . (15)

Next, consider a candidate Lyapunov function V2 = 1
2 ξ T ξ ,

therefore, the derivative of the Lyapunov function with
respect to time is

V̇2 =−α (t)ξ T (∇h(ξ+x̄)−∇h(x̄))−ξ T (L Φ⊗ In)(ξ+ex) .
(16)

Then, by exploiting the Assumption 2 and µ-strong convex-
ity of the local cost functions, the following inequality is
obtained, −α (t)ξ T (∇h(ξ + x̄)−∇h(x̄))≤ µα (t)ξ T ξ .

The second term of Lyapunov function derivative can be
treated as follows:

−ξ T (L Φ⊗ In)(ξ + ex)

=−1
2

ξ T ((ΦL T +L Φ
)
⊗ In

)
ξ−ξ T (L Φ⊗ In)ex

≤−1
2

λ2
(
L̂

)
ξ T ξ+

δ
2

ξ T ξ+
1

2δ
eT

x
(
L ΦΦL T ⊗ In

)
ex

≤−1
2
(
λ2

(
L̂

)
−δ

)
ξ T ξ+

1
2δ

λmax
(
L̃

)
eT

x ex.

(17)
Therefore,

V̇2 ≤−1
2
(
λ2

(
L̂

)
−δ−2µα (t)

)
ξ T ξ+

1
2δ

λmax
(
L̃

)
eT

x ex

≤−1
2
(
λ2

(
L̂

)
−δ−2µα (t)

)
V2+

1
2δ

λmax
(
L̃

)
µ1e−υ1t

≤−θ1 (t)V2 +κµ1e−υ1t ,
(18)

where the last inequality is obtained by using the
event-triggering condition ∥ex∥2 − µ1e−υ1t ≤ 0, θ1 (t) =
1
2

(
−2µα (t)−δ +λ2

(
L̂

))
, and κ = 1

2δ λmax
(
L̃

)
.

From the Comparison Lemma [[16], Lemma 3.4], it fol-
lows that

V2≤V2 (0)e−
∫ t

0 θ1(τ)dτ+κµ1

∫ t

0
e−

∫ s
τ θ1(s)dse−υ1τ dτ. (19)

Obviously,
∫ ∞

0 θ1 (t)dt = ∞, therefore, as t → ∞, the
first term on the right-hand side vanishes. Note that if
one selects suitable time-varying gain α (t) such that 1)
limsupt→∞

κµ1e−υ1t

θ1(t)
< ∞. 2) there exists a finite time t0 > 0,

and θ1 (t)≥ 0 for all t ≥ t0.
Therefore, there exists a time t1 > t0 and a positive constant

Γ such that κµ1e−υ1t

θ1(t)
< Γ for all t > t1. Furthermore,

κµ1

∫ t

0
e−

∫ s
τ θ1(s)dse−υ1τ dτ <Γ

∫ t

0
e−

∫ s
τ θ1(s)dsθ1 (τ)dτ <Γ,

for all t > t1. Similarly, there exists a time t2 > 0 such that
V2 (0)e−

∫ t
0 θ1(τ)dτ < Γ for all t > t2. Let t ′ := max{t1, t2}, and

Γ̂ := max
0≤t≤t ′

V2 (t). Therefore, one has V2 (t) < max
{

Γ̂,2Γ
}

for all t > 0. Then, in light of V2 (t) ≥ 1
2∥ξ (t)∥2, one has

that ξ (t) exponentially converges to a bounded set, i.e.,
the states of each agent exponentially converge to a small
neighborhood of the unique global minimizer x∗ of the
problem (1).

Next, it is proved that there is no Zeno phenomenon in
the execution of the ETDOA.
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The time derivative of exi(t) over the interval
[
t i
k, t

i
k+1

)
satisfies

ėxi (t) =−α (t)∇hi (xi)−dout
i γix̃i + ∑

j∈N i
i

ai jγ j x̃ j, (20)

According to exi
(
t i
k

)
= 0, the solution of exi(t) is

exi (t)=
∫ t

t i
s

{
−α (τ)∇hi (xi (τ))−dout

i γixi

(
t i
s

)
+ ∑

j∈N i
i

ai jγ jx j

(
t j
q

)}
dτ,

(21)
where t i

s and t j
q are the latest triggering instants of agent

i and agent j, respectively. Let t i
s+1 be the next triggering

instant of agent i and σ = t − t i
s. Then, we will show that

t i
s+1 − t i

s has a positive lower bound, implying that no Zeno
behavior exists.

Above, it is proved that the states of each agent can
asymptotically converge to the global optimal point x∗

of the problem (1). Therefore, one can has the bound-
edness of ∇hi (xi) and −dout

i γixi + ∑
j∈N i

i

ai jγ jx j. Then, de-

fine ∆1 = max
i∈1,··· ,N

{∥∇hi (xi)∥}, ∆2 = max
i∈1,··· ,N

{∥∥∥∥− dout
i γixi +

∑
j∈N i

i

ai jγ jx j

∥∥∥∥}, and F (σ) = (∆1 +∆2)σ . Note that

F (σ) > 0 if and only if σ > 0. Since ∥exi(t)∥ ≤ F (σ),
∀t ≥ t i

s, the interval between two adjacent events t i
s+1 − t i

s
is larger than or equal to the implicit solution of F (σ̄) =
√µ1ie−

υ1i
2 (σ̄+t i

s). And the right-hand side of the above equa-
tion is always strictly positive, which implies that t i

s+1− t i
s ≥

σ̄ > 0, thus the intervals between any two adjacent events
for the i-th agent are strictly positive, i.e., no Zeno behavior
exists. This completes the proof. ■

Corollary 1: If one changes the time-varying gain α (t)
to be a fixed positive constant gain α , the ETDOP can be
also addressed and ξ (t) will exponentially converge to 0.
Proof : Under this case, the ETDOA is now designed as

ẋi =−α∇hi (xi)−dout
i γix̃i + ∑

j∈N i
i

ai jγ j x̃ j, (22a)

γ̇i =−dout
i γ̃i + ∑

j∈N i
i

ai j γ̃ j. (22b)

It is easy to find that the proof of optimality is similar to
Theorem 1, we only analyze the convergence of the system
(22a). The dynamics of ξ is now expressed as

ξ̇ =−α (∇h(ξ+x̄)−∇h(x̄))−(L Φ⊗ In)(ξ+ex)

− (L (Λd −Φ)⊗ In)(ξ + ex) .
(23)

Chose the same Lyapunov function V2 =
1
2 ξ T ξ , therefore,

V̇2 =−αξ T (∇h(ξ+x̄)−∇h(x̄))−ξ T (L Φ⊗ In)(ξ+ex) .
(24)

Then, one has

V̇2 ≤−1
2
(
λ2

(
L̂

)
−δ −2µα

)
V2 +κµ1e−υ1t , (25)

1

2

3

6

5

4

Fig. 1: The communication network among agents.

Fig. 2: The evolution of the state trajectory of each estimator.

Then, if one selects a small α satisfying α <
λ2(L̂ )−δ

2µ ,
then, it follows from the Comparison Lemma that ξ (t)
exponentially converges to 0, i.e., the states of each agent
exponentially converge to the unique global minimizer x∗ of
the problem (1) with zero errors.

Remark 3: The advantage of using decreasing time-
varying gain/step α (t) in this paper is that the system
can slowly converge to the exact optimal solution without
missing it as the system gradually approaches the optimal
solution. Besides, the diminishing gains/step-sizes could be
designed without having any global information about the
network or the aggregate/local cost functions, while the cost
of utilizing α (t) is a slower convergence rate of system. For
convenience, a suitable constant gain α can also be selected
when designing the ETDOAs, and the proof procedure can
be simplified.

IV. SIMULATIONS

Consider a group of six agents and the underlying
communication network is shown in Fig. 1. Each agent is

0 20 40 60 80 100

time(s)
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100

200

300

400

500

∑
6 i=

1
h
i
(x

i
)

∑6
i=1 hi (xi)

Optimal value
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time(s)

0

2

4

∑
6 i=

1
h
i
(x

i
)

X: 100

Y: 2.59

X: 10

Y: 2.572

Fig. 3: The evolution of the sum of local cost functions ∑6
i=1 hi (xi) under

ETDOA (3).
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Fig. 4: The evolution of the state trajectory of each agent.
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Fig. 5: Triggering instants of each estimator and agent.

assigned a local cost function hi, i = 1,2, · · · ,6, which
is represented by h1 = 0.5e−0.5x1 + 0.4e0.3x1 ,h2 =
0.5x2

2 ln
(
1+ x2

2
)
,h3 = 0.5x2

3 ln
(
1+ x2

3
)

+ x2
3,h4 =

x2
4 + e0.1x4 ,h5 = ln

(
e−0.1x5 + e0.3x5

)
+0.1x2

5,h6 =
x2

6
ln(2+x2

6)
.

The initial values xi(0) are chosen as [6;5;10;−6;4;−4]
and the initial values γi(0) are set to [1;0;0;0;0;0]. µ1i,
υ1i, µ2i, υ2i are set to the appropriate positive parameter.
And the time-varying gain α (t) is chosen as 5

t+2 for
all t > 0. In Fig. 2, the evolution of the state trajectory
of each estimator is presented, which demonstrates that
γi(t), i = 1, · · · ,6, converge to unique right eigenvector ψ
associated with the zero eigenvalue of L . Fig. 3 gives the
evolution of the sum of local cost functions ∑6

i=1 hi (xi)
under ETDOA (3). In Fig. 4, the evolution of the state
trajectory of each agent under ETDOA (3) is shown. And
Fig. 5 depicts the triggering instants of each agent and each
estimator, which indicates that continuous communication
is avoided. These simulation results demonstrates that the
ETDOP under strongly connected directed graphs is solved,
i.e., the sum of the local cost functions is minimized, the
states of each agent asymptotically converge to the unique
global minimizer x∗, and the continuous communication is
avoided.

V. CONCLUSIONS

In this paper, a class of modified ETDOAs is proposed
to deal with the ETDOPs under the weighted-unbalanced
digraphs. Compared with the existing literature, the com-
munication topology and communication mechanism in this
paper have more practical significance. Future work will be

on the event-triggered distributed constrained optimization
problems under weighted-unbalanced digraphs.
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