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Abstract— Swarm aerial robots are required to maintain
close proximity to successfully traverse narrow areas in clut-
tered environments. However, this movement is affected by
the downwash effect generated from other quadrotors in the
swarm. This aerodynamic effect is highly nonlinear and hard
to describe through mathematical modeling. Additionally, the
existence of the downwash disturbance can be predicted based
on the states of neighboring quadrotors. If this prediction
is considered, the control loop can proactively handle the
disturbance, resulting in improved performance.

To address these challenges, we propose an approach that in-
tegrates a Neural network Downwash Predictor with Nonlinear
Model Predictive Control (NDP-NMPC). The neural network
is trained with spectral normalization to ensure robustness and
safety in uncollected cases. The predicted disturbances are then
incorporated into the optimization scheme in NMPC, which
enforces constraints to ensure that states and inputs remain
within safe limits. We also design a quadrotor system, identify
its parameters, and implement the proposed method on board.
Finally, we conduct a prediction experiment to validate the
safety and effectiveness of the network. In addition, a real-time
trajectory tracking experiment is performed with the entire
system, demonstrating a 75.37% reduction in tracking error in
height under the downwash effect.

SUPPLEMENTARY MATERIAL

We make the code and dataset available to the community
at: https://github.com/Li-Jinjie/ndp nmpc qd.

I. INTRODUCTION

Advances in swarm robots have attracted significant at-
tention since they can utilize cooperation and coordination
among a group of robots [1] to achieve complex tasks that are
impossible for a single robot. As one type of swarm robot,
aerial swarm robots differ from ground robots in that each
agent can be affected by the strong airflow generated from its
upper neighbors, which is referred to as the downwash effect
[2]. When an agent cannot accurately track its trajectory
due to the airflow disturbances, it could influence other
agents in normal flight (Fig. 1), thereby amplifying the
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Fig. 1. Comparison of two methods in real-world close-proximity flight.
In each scenario, two quadrotors fly together to track reference trajectories
from left to right, with the lower quadrotor experiencing downwash effects
from the upper drone.

disturbance until it affects the entire system. Thus, addressing
the downwash effect is crucial for ensuring the flight safety
of aerial swarm robots.

As the distances among aerial robots vary, the downwash
effect exhibits a corresponding variation in strength, with
greater intensity observed at shorter distances and weaker
effects observed at longer distances. Hence, some researches
[3], [4] treat the quadrotor as an ellipsoid with a long
vertical axis, attempting to avoid close vertical flight when
planning trajectories. However, this assumption reduces the
reachable set of the aerial swarm robots, preventing pushing
their mobility to the boundary. A better approach is to
consider the downwash effect as a disturbance rejection
problem and address it within the control layer [5]. In this
way, the planning layer only needs to consider the collision
radius of each agent and thus maximizes mobility. Therefore,
it is necessary to model the downwash disturbance and
incorporate it into the control loop.

The downwash effect is difficult to model by mathematical
equations due to its high-degree nonlinearity. Traditionally,
the airflow effect can be accurately modeled through real-
world experiments [6], [7] or Computational Fluid Dynamics
(CFD) simulation [8], while these approaches all pose high
requirements for experimental equipment or computational
time. On the other hand, the rapid development of deep
learning in recent years renders the possibility to simulate
nonlinear phenomena such as airflow disturbance in low time
and fund demands [9]. Shi et al. conduct a series of pioneer
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Fig. 2. The overall workflow of the proposed method, which follows the Path Planning-Trajectory Generation-Control pipeline. Specifically, Nonlinear
Model Predictive Control (NMPC) is adopted for trajectory tracking, of which the model is a nominal quadrotor model assisted by a predicted disturbance
sequence calculated before every iteration. These disturbances are predicted by a network using the error state sequence of its own and other quadrotors.

research to apply deep learning to model the airflow phe-
nomena in aerial robotics, including the ground effect when
the quadrotor lands [10], the downwash disturbances among
quadrotors [5], and the disturbances in strong winds [11],
which demonstrate the feasibility of modeling downwash
effect using neural networks (NNs).

When integrating the NN model inside the control loop,
the research [5] adopts a hierarchical feedback-linearization
controller, which generates control inputs based on only the
current states. However, the downwash effect is generated by
the relative motions of other quadrotors and hence can be
predicted through the exchange of reference trajectories. If
the controller can fully exploit this prediction, the overshoots
when tracking trajectories will be reduced, and thus the track-
ing performance is improved. As a prediction-based method,
Model Predictive Control (MPC) can look forward and is
a suitable solution to integrate the downwash prediction.
Besides, MPC has the advantage of handling constraints [12],
which can avoid the input saturation of quadrotors when
resisting disturbances.

Numerous studies have attempted to combine deep net-
works with MPC and to assess their performance on a
single quadrotor [13]–[15], while limited research tries to
apply this combination to the downwash problem. Matei
et al. [16] apply an MPC-based controller with a learning-
driven interaction model to solve the downwash problem.
Nevertheless, their approach uses a network as the MPC
dynamics to accelerate computation, which is less accurate
than a physics-based model and cannot be run onboard in
real-time.

In this work, we design a trajectory tracking system for
close-proximity flight by integrating a neural network dis-
turbance predictor with Nonlinear Model Predictive Control
(NMPC). The proposed approach is inspired by Shi et al. [5]
and extends it to NMPC to fully exploit predictive power.
First, using motor speed sensors and a physical model to
collect downwash data, we train a Multi-Layer Perceptron
(MLP) to predict disturbances and utilize spectral normal-
ization to ensure robustness. Then, we integrate the predictor
with NMPC to propose the trajectory tracking method. We
also briefly introduce the trajectory generation algorithm to
close the loop. Finally, we implement the proposed approach

on two quadrotors to verify its effectiveness.
The main contributions are as follows:
1) an NMPC-based trajectory tracking method with net-

work disturbance prediction (NDP-NMPC) to exploit
predicted movement information and to address the
saturation constraints under close-proximity flight,

2) real-time experiments to verify trajectory tracking per-
formance under downwash effects, and

3) provision of open-source code and a dataset to support
further research in this area.

II. METHODOLOGY

This section outlines our proposed control scheme that
combines a neural network disturbance observer with NMPC
to enhance tracking performance during close-proximity
flight. The overall workflow is presented in Section III-A.
Then, subsections B and C introduce notation, coordinate
systems, and a nominal quadrotor model. Leveraging these
conventions, a neural network observer is implemented to
predict the downwash disturbance in Section III-D. Finally,
a modified NMPC trajectory tracking controller with distur-
bance prediction is proposed in Section III-E. This subsection
also briefly introduces the generation of reference trajecto-
ries, which is essential to practical implementation.

A. System Overview

The system architecture is illustrated in Fig. 2. Moving
from left to right, a sequence of position points and yaw
angles is initially transmitted from a Path Planner to a
Trajectory Generator. The latter module then leverages the
minimum snap method [17] to generate a continuous poly-
nomial trajectory from multiple derivatives of position and
yaw angle. Subsequently, a Trajectory Server discretizes the
trajectory and computes the desired full states through differ-
ential flatness [17]. These full-state points are transmitted as
control reference to an NMPC Controller at a high frequency
for computing control outputs. The control command, after
being converted from force to throttle by a Hover Throttle
Estimator, is ultimately executed by the PX4 Autopilot [18]
to operate the quadrotor. The estimated states are fed back
from the Autopilot to the Controller for closing the loop.

The downwash effect is taken into account within the
NMPC controller. NMPC is a model-based control approach,
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Fig. 3. Diagram of a quadrotor model with the ENU (X East, Y North, Z
Up) inertial frame and FLU (X Forward, Y Left, Z Up) body frame.

and its model consists of two components: one based on a
nominal quadrotor model and the other based on a neural
network disturbance predictor. Prior to flight, the network
is trained to predict disturbance forces based on relative
states with nearby quadrotors. During flight, the sequence
of disturbance predictions is employed by the controller to
mitigate the downwash effect. By predicting the downwash
effect using a neural network, the quadrotor can achieve more
accurate trajectory-tracking performance during vertically-
aligned flight.

B. Notation and Coordinate Systems

We denote scalars in lowercase x ∈ R, vectors in bold low-
ercase x ∈ Rn, and matrices in bold uppercase X ∈ Rn×m.
We use [·] to denote arrays and (·) to denote functions. We
use ·̂ to denote estimated values. The coordinate systems,
depicted in Fig. 3, contain the world inertial frame I, the
body frame B, as well as the propeller numbering convention.
The vector in the frame I is denoted as Ip, and the rotation
from B to I is denoted as I

BR (rotation matrix) or I
Bq

(attitude quaternion). We use the ENU inertial frame and
FLU body frame to ensure compatibility with MAVROS, a
toolkit for communication with autopilots like PX4 [18].

We use q = [qw, qx, qy, qz]
T ∈ H to denote the

attitude quaternion in Hamilton-convention [19], q∗ =
[qw,−qx,−qy,−qz]T to denote the quaternion conjugation,
and ◦ to denote the quaternion multiplication operator. The
attitude quaternion is a unit quaternion (∥q∥=1), and thus its
inverse q−1 is the same as q∗. We use V(·) to represent the
vector part of the quaternion V(q) := [qx, qy, qz]

T ,H → R3,
and V∗(·) to denote the reverse mapping from a position
point V∗(p) := [0,p]T ,R3 → H. Then full SE3 transfor-
mations from B to I can be represented as Ip = V(IBq ◦
V∗(Bp) ◦IB q∗)+ IpBo = I

BR(q)Bp+ IpBo, where IpBo is
the position of B frame’s origin in the I frame, and R(q)
is the rotation matrix from a quaternion following:

R =

 1− 2q2y − 2q2z 2qxqy − 2qwqz 2qxqz + 2qwqy
2qxqy + 2qwqz 1− 2q2x − 2q2z 2qyqz − 2qwqx
2qxqz − 2qwqy 2qyqz + 2qwqx 1− 2q2x − 2q2y

 .
C. Nominal Quadrotor Model

We assume that the origin of the body frame B is at the
center of mass, and four rotors are all placed in the B frame’s
XY-plane. Established from 6-DoF rigid body dynamics, the

quadrotor model is written as follows [12]
I ṗ = Iv, (1)

I v̇ =
(
I
BR(q) · Bfu + Ifd

)
/m+ Ig, (2)

I
B q̇ = 1/2 · IBq ◦ V∗(Bω), (3)

Bω̇ = I−1 ·
(
−Bω ×

(
I · Bω

)
+ Bτu + Bτd

)
, (4)

where m is the mass, Ig = [0, 0,−g]T is the gravity vector,
I = diag(Ixx, Iyy, Izz) is the inertia matrix assuming that
quadrotors exhibit symmetry across all three axes, Bfu and
Bτu are the force and torque caused by rotors, Ifd and Bτd
are the force and torque caused by disturbances, and Bω =
[ωx, ωy, ωz]

T is the angular rate expressed in the B frame.
The thrust generated by rotors is assumed to be vertical

to the B frame’s XY-plane, and we therefore obtain Bfu =
[0, 0, fc]

T and Bτu = [τx, τy, τz]
T , where fc is the collective

force of four rotors. We use a quadratic fit to model the thrust
and torque for each propeller:

fi = kt · Ω2, τi = kq · Ω2, (5)

where kt and kq are the thrust coefficient and torque coef-
ficient, respectively, as well as Ω represents motor speed in
kRPM. Then [fc, τx, τy, τz]

T and the thrust of each rotor fi
is connected by

[fc, τx, τy, τz]
T
= G · [f1, f2, f3, f4]T , (6)

in which the control allocation matrix G is

G =


1 1 1 1

−L sinα L sinα L sinα −L sinα
−L cosα L cosα −L cosα L cosα
−kq/kt −kq/kt kq/kt kq/kt

 , (7)

where L and α are the geometric parameters as in Fig. 3.
The quadrotor’s nominal model established above is uti-

lized for designing both the disturbance observer and con-
troller. The disturbance Bτd is compensated by a high-
frequency body-rate controller within the autopilot, and the
Ifd is estimated in the subsequent section.

D. Neural Network Observer for Downwash Effect

This part introduces a neural network observer to model
the disturbance between quadrotors in close-proximity flight.

1) Neural Network Disturbance Observer: Considering
the high nonlinearity of airflow, we employ a Multi-Layer
Perceptron (MLP) to estimate the disturbances. A trained
MLP can be viewed as a mapping function y = f(x;θ) :
Ri → Ro from the input x to the output y, where θ :={
W 1, b1, · · · ,WH+1, bH+1

}
represent the weight and bias

parameters, and H is the number of hidden layers. By
choosing the element-wise ReLU ϕ(x) = max(0,x) as the
activation function, the MLP network can be written as

f (x;θ) = WH+1 ·ϕ
(
· · ·ϕ

(
W 1x+ b1

)
· · ·
)
+ bH+1. (8)

When applying the network to model the downwash
effect, the input variables encompass the relative position
and velocity of the ego quadrotor and the other one as
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x = [Iprela,
Ivrela]

T , while the outputs encompass the
disturbances as y = I f̂d.

2) Spectral Normalization: The training set we collected
is impossible to cover the entire state space, and thus
the output of the network in those data-uncovered states
is critical to flight safety. Spectral normalization has been
demonstrated in recent papers [10], [20] that it can enhance
the robustness and generalization of neural networks and
hence be adopted.

The Lipschitz constant of a function ∥f∥Lip is defined as
the smallest value such that

∀x,x′ : ∥f(x)− f(x′)∥2 / ∥x− x′∥2 ≤ ∥f∥Lip. (9)

Let l(x) = Wx+b, and then we can get the Lipschitz norm
of one layer in (8):

∥Wx+ b−Wx′ − b∥2
∥x− x′∥2

≤ ∥W ∥2 = σ(W ) = ∥l∥Lip,

(10)
where σ(·) represents spectral norm, i.e., the maximum
singular value. Leveraging the Lipschitz constant inequality
of composite functions ∥g1 ◦ g2∥Lip ≤ ∥g1∥Lip · ∥g2∥Lip,
and the fact that the Lipschitz constant of ReLU function
∥ϕ(x)∥Lip = 1, we can obtain the bound of the MLP (8):

∥f(x)∥Lip ≤ σ(WH+1)·1 · · ·σ(W ) =

H+1∏
l=1

σ
(
W l
)
. (11)

In training phase, if every W l is normalized by its spectral
norm σ(·) and the scale ratio γ at each training epoch

W
l
:= γ ·W l/σ

(
W l
)
, (12)

then the Lipschitz norm of the network can be bounded as∥∥∥f(x;W l
)
∥∥∥

Lip
≤ γH+1. (13)

Spectral normalization effectively limits the change rate
of the network’s output and leads to a more uniform output.
This uniformity is further substantiated by our subsequent
experiments.

3) Data Acquisition: Collecting the disturbance force is
vital for training the network. Assuming that the physical
model obtained through parameter identification is accurate,
the disturbance force can be computed by subtracting the
nominal force from the real one.

The nominal resultant force Ifn can be calculated as
follows assuming that the motor speed Ωi is measured during
the training phase:

Ifn = I
BR(q) · Bfu +m · Ig, (14)

where Bfu comes from (5) and (6). In addition, the real
resultant force If can be acquired using odometry. The
odometry module of an autopilot offers velocity estimates,
and its derivative I ˙̂v is numerically calculated using Tustin’s
method. Subsequently, the real resultant force on the body
is obtained through classical mechanics:

If = m · I ˙̂v. (15)

Finally, the disturbance Ifd is determined by

Ifd = If − Ifn. (16)

Now the inputs
[
Iprela,

Ivrela

]
and outputs Ifd have been

constructed for training the neural network.
Remark: The resultant force can also be estimated directly

using the inertial measurement unit (IMU), but the noise level
is unacceptable. In addition, predictions for a sequence of
states can be computed collectively in a single batch when
utilizing the network in real flight.

E. Nonlinear MPC with Network Disturbance Prediction

This subsection first introduces the generation of the
control target, i.e., the reference trajectory. Subsequently, the
detailed presentation of the proposed NMPC-based control
approach follows.

1) Reference Trajectory Generation: Trajectory genera-
tion involves the creation of a smooth, dynamically feasible,
and time-indexed curve that traverses a set of points, includ-
ing a start point, multiple predefined waypoints, and an end
point. Leveraging the inherent mathematical property of dif-
ferential flatness in quadrotors, the process of trajectory gen-
eration can be reformulated into a polynomial optimization
problem for the four flat outputs [x, y, z, ψ] corresponding to
3D position and yaw angle. To achieve this, we implement
the minimum snap algorithm as outlined in [17], except
that the time allocation among points is accomplished by
straightforwardly dividing the relative distance by the user-
defined average velocity.

The generated trajectory comprises a collection of para-
metric equations, which requires a trajectory server to dis-
cretize the curve. This server is also responsible for selecting
the future reference states that align with the prediction
horizon of NMPC, and then publishing these references. The
publication frequency is set to be the same as the control
frequency.

2) Nonlinear MPC: During close-proximity flight, we
assume that each quadrotor employs an NMPC controller.
This enables them to share predictions among themselves,
ensuring the possibility of future disturbance predictions.
Under above assumption, we select Nonlinear MPC for
close-proximity flight due to two primary reasons. First,
the ego quadrotor can prepare for the downwash effect in
advance through the prediction trajectory of another quadro-
tor. Second, the potential saturation of the thrust command,
which arises as one quadrotor experiences the downwash
airflow, can be powerfully handled by NMPC.

Given the reference trajectory, the cost function is defined
as the accumulated error between predicted and reference
states over the time horizon. Then a constrained nonlinear
optimization problem is formulated as

min
uk

(
xT
NQNxN +

N−1∑
k=0

(
xT
kQxk + uT

kRuk

))
(17)
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Fig. 4. A diagram illustrating the NDP-NMPC algorithm. From top to
bottom, the initial value of each state point in this iteration is derived from
the result of the previous iteration, a concept known as warm-starting. Then
the first state is constrained to match the current state, introducing a feedback
mechanism into NMPC. Next, the disturbances are predicted by a neural
network and used as parameters for the optimizer, as well as the reference
states are provided by the trajectory server. Finally, these data points are
transmitted to ACADOS [22] for optimization.

with constraints of dynamics, initial values, and control
inputs:

xk+1 = f (xk,uk) ,

x0 = xinit,

uk ∈ [umin,umax] ,

(18)

where the symbol (·) = (·) − (·)r denotes the error w.r.t.
the reference, xinit is the current quadrotor state, the di-
agonal matrices QN ,Q,R represent weights for terminal
cost, state cost, and control energy cost, respectively, and
f(·) is the quadrotor nominal model (1-3) discretized by
the 4th-order Runge-Kutta method. Specifically, the state xk

equals to [Ipk,
Ivk,

Iqk]
T , and the control input uk equals

to [fc,
Bω]T . Note that (17) is a nonlinear least squares cost

due to the nonlinearity introduced by quaternions. If the
quaternion error is denoted as qe = q ◦q−1

r , considering the
fact that only three variables in a quaternion are independent,
we can write the quaternion term in the cost function as

qT
kQqqk = ∥sgn(qew) · V(qe)∥2Q = V(qe)TQqV(qe), (19)

where sgn(·) denotes the sign function. The sign term, which
can avoid the unwinding phenomenon in quaternion-based
control [21], is able to be eliminated in the quadratic cost.

Subsequently, warm-starting, real-time iteration (RTI),
and multi-shooting techniques [22] are applied to accelerate
the NMPC computation, which is illustrated in Fig. 4.
Finally, the control command is extracted from the optimized
result sequence:

uNDP−NMPC = u∗
0 =

[
f ′c, ω

′
x, ω

′
y, ω

′
z

]
. (20)

Note that the thrust command f ′c needs to be normalized
into [0, 1] to align with the MAVROS toolkit. This normal-

(a) Flight platform (b) Parameter identification

Fig. 5. (a) Two self-made quadrotors with onboard computing resources.
(b) The quadrotor is identified for rotor parameters and inertial parameters.

TABLE I: IDENTIFIED PARAMETERS

Parameter(s) Value(s) Unit

L 0.1372 m
α 45 deg
m 1.5344 kg
g 9.81 m/s2

Ixx 0.0094 kg · m2

Iyy 0.0134 kg · m2

Izz 0.0145 kg · m2

kq 3.7611 E-4 N · m/kRPM2

kt 2.8158 E-2 N/kRPM2

[Ωmin,Ωmax] [2.6, 24.0] kRPM
thrust/weight 4.3100 —

flight time 705 s

ization can be implemented either by a Kalman Filter to
estimate the hover throttle, similar to the approach used in
the PX4 autopilot [23], or through a calibration mapping that
relates thrust to throttle.

III. EXPERIMENTS

This section introduces the experimental setup and ana-
lyzes the results. We begin by presenting the system identi-
fication of our hardware platform. Following that, we discuss
the data collection related to the downwash effect. Next, we
describe an open-loop experiment conducted for disturbance
prediction. Finally, we perform a closed-loop trajectory
tracking experiment to validate the control performance.

A. Parameter Identification for Quadrotors

We constructed our flight platform as depicted in Fig. 5a.
It was noteworthy that the selected Electronic Speed Con-
trollers (ESCs) supported rotor speed measurement through
the DShot protocol1. Then, we leveraged a load cell as illus-
trated in Fig. 5b to identify the rotor parameters. Specifically,
a 3D-printed connector was used to position the quadrotor on
the load cell, and square wave signals were applied to drive
a pair of propellers diagonally. This setup took into account
the airflow effect of the body on the rotors. Assuming that
the quadrotor is symmetrical in all three axes, we measured
its inertial matrix using the bifilar-pendulum method [24].
The identified parameters listed in Table I were employed
for both PX4 SITL simulation and control.

1https://docs.px4.io/main/en/peripherals/dshot.html
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Fig. 6. Disturbance predictions of the neural network under different
spectral normalization ratios γ. Each square represents the predicted Z force
in a 1m×1m X-Y area. Given zero relative velocity, we change the γ to
observe the output at different heights. The relative heights of the other
quadrotor to the ego one are listed from left to right, where the negative
number indicates flying above. The disturbance predictions for the X and
Y axes are not displayed, as they are considered negligible when compared
to the Z force.

B. Data Collection, Training, and Testing

To collect data points under the downwash effect, two
quadrotors were operated by pilots to fly over each other.
The lower quadrotor remained stationary while the upper
quadrotor was moved to increase the likelihood of overlap.
The height of the moving quadrotor was varied to diversify
the data collection. Data from both quadrotors, including
their states and estimated disturbances along with times-
tamps, were captured at a rate of 100Hz using the ROS tool
rosbag. A total of 570-second data were collected for both
quadrotors, and this data size can be doubled due to the
similarity of drones. Then the data were bias eliminated by
subtracting the average disturbance force in the hover state
and time-aligned. Finally, the collected data were shuffled
with a ratio of 0.75 for training and 0.25 for testing.

In training, the network was implemented in PyTorch with
the parameters detailed in Table II. As previously mentioned,
the input consisted of the 3-axis relative position and veloc-
ity, while the output included the 3-axis disturbance force.
The network was trained with various spectral normalization
ratios γ to determine the optimal value.

The spectral normalization ratio γ is critical to the balance
of accuracy and robustness. We recorded the losses for
different values of γ and plotted the predictions at different
heights as Fig. 6 to evaluate performance in cases where no
data are available.

From the figure, we can observe that a high value of γ
(the third row) describes the disturbances well, while a low
value of γ (the first row) is too conservative. In other words,
the stronger the influence of spectral normalization, the lower
the accuracy in fitting data. However, this low γ value results
in safer predictions for points where no data have been
collected. For the third row without spectral normalization,

TABLE II: SETTINGS FOR TRAINING THE NETWORK

Setting Layers Initialization Activation Function

Value 6-128-64-128-3 normal ReLU

Optimizer Epoch Learning Rate Loss Function

Adam 20,000 1e-4 Mean Squared Error

0.0
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1.0

z [
m

]
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RMSE = 0.0544 m
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Strong Downwash Effect Aera

Upper Reference
Lower Reference

Baseline
Our Method

Fig. 7. Comparison of closed-loop tracking results between the baseline
[25] and the proposed method. Each curve represents the average of three
rounds, with the shaded area indicating the range of values. The shaded
middle region highlights the zone with a strong downwash effect.

the predicted force suddenly increases at 1.3m due to the lack
of data. Nevertheless, the first and second rows with Low γ
mitigate this trend and guarantee flight safety. In conclusion,
we decide to choose γ = 4 as the balance between data
fitting and safety.

C. Trajectory Tracking under Downwash Effect

In this section, we aim to close the loop and verify the
feasibility of the proposed method considering hardware
limitations such as system latency and constrained computa-
tional resources for embedded platforms. The entire system
was developed in Python and leveraged Robot Operating
System (ROS) for communication. The system operated on
both an onboard TX2 NX computer and a desktop PC.
Specifically, the trajectory server, NDP-NMPC controller,
and hover throttle estimator ran on the TX2 NX, while the
PC was responsible for trajectory generation, broadcasting
motion capture (MoCap) data, and serving as the ROS master
node. The NMPC method was implemented using ACADOS
with parameters listed in Table III. We assigned high weights
to positions in order to minimize tracking errors.

We conducted quadrotor flights within a room measuring
7×4×3 and used an OptiTrack MoCap system for localiza-
tion. The flight trajectories were carefully designed to ensure
an overlapping area. During the experiments, two quadrotors
initiated from the same side but at different altitudes, and
then executed back-and-forth movements. To evaluate the
performance of closed-loop tracking, we conducted multiple
runs, and the resulting trajectories are illustrated in Fig.
7. We established the NMPC method without disturbance
prediction [25] as the baseline.

From Fig. 7, the baseline quadrotor is severely affected and
thus deviates from the reference. In contrast, NDP-NMPC

TABLE III: CONTROL PARAMETERS

Parameter Value Parameter Value Parameter Value

N 20 dtnmpc 1/60s dtpred 0.1s
Qp,xy 300 Qp,z 400 Qv,xyz 1
Qq,xyz 0.1 Rω,xyz 10 Rfc 10
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significantly mitigates the impact of disturbances, leading
to a noteworthy 75.37% reduction in the tracking Root-
Mean-Square Error (RMSE). This reduction emphasizes the
positive impact of NDP-NMPC on close-proximity flight.
Additionally, we observe that the lower quadrotor suddenly
jumps before it enters the downwash area and then is pushed
down to the reference height. This phenomenon is caused by
the inaccuracy of neural network predictions. In other words,
the neural network predicts a disturbance that does not exist
in reality and has no corresponding counterbalancing force,
which results in an unexpected ascent of the lower quadrotor.
This prediction inaccuracy also introduces fluctuations in
the horizontal plane as shown in Fig. 7. Therefore, when
attempting to integrate predictions to enhance the system
performance, it is critical to carefully weigh the potential
implications.

IV. CONCLUSION

In this article, we proposed NDP-NMPC, a trajectory
tracking method to alleviate the disturbance from downwash
airflow in close-proximity flight. This approach utilized a
neural network with spectral normalization to predict the
disturbances caused by other quadrotors flying above. The
network observer was then combined with an NMPC con-
troller. To test the method, we trained a neural network
and evaluated the performance of the disturbance prediction.
Finally, we executed the algorithm on two quadrotors in real-
time for trajectory tracking. We reported that the network was
robust, and the proposed approach reduced 75.37% tracking
error in the Z axis.

In the future, the proposed approach should be compared
with non-prediction methods to better highlight the advan-
tage of integrating predictions. Additionally, future directions
will extend the proposed method to large-scale swarm drones
and consider the uncertainty of predictions inside the NMPC
workflow.
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Zürich, Zürich, Switzerland, Sep. 2016.

[24] M. R. Jardin and E. R. Mueller, “Optimized Measurements of
Unmanned-Air-Vehicle Mass Moment of Inertia with a Bifilar
Pendulum,” Journal of Aircraft, vol. 46, no. 3, pp. 763–775, May
2009.

[25] D. Falanga, P. Foehn, P. Lu, and D. Scaramuzza, “PAMPC: Perception-
Aware Model Predictive Control for Quadrotors,” in Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Oct. 2018, pp. 1–8.

2128


