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Abstract— Ensuring safety through set invariance has proven
a useful method in a variety of applications in robotics and
control. In this paper, we focus on the safe probabilistic
invariance verification problem for discrete-time dynamical
systems subject to stochastic disturbances over the infinite
time horizon. Our goal is to compute the lower and upper
bounds of the liveness probability for a given safe set and
set of initial states. This probability represents the likelihood
that the system will remain within the safe set for all time.
To address this problem, we draw inspiration from stochastic
barrier certificates for safety verification and build upon the
findings in [21], where an equation was presented for exact
probability analysis. We present two sets of optimizations and
demonstrate their effectiveness through two examples, using
semi-definite programming tools.

Index Terms— Stochastic Discrete-time Systems; Safe Prob-
abilistic Invariance Verification.

I. INTRODUCTION

The rapid development of modern technology has led to
an increase in intelligent autonomous systems. Ensuring the
safe operation of these systems is essential, but external
disturbances can cause uncertainties, making it necessary to
consider their impact on system safety. Safe robust invariance
is commonly used to formalize the impact of unknown
perturbations and guarantee that a system will remain inside
a specific safe set for all time, regardless of bounded external
disturbances. Many studies have been published on certifying
safe robust invariance over the past few decades [16], [22].

While bounding disturbances is useful for perturbation
analysis, many systems have more information available,
such as a probability distribution [7]. In such cases, safe
probabilistic invariance complements safe robust invariance
by ensuring that a system will remain inside a specified safe
set with a certain probability [12]. This approach reduces
inherent conservatism by allowing probabilistic violations
and has gained increasing attention [13]. Probabilistic invari-
ance can be evaluated by examining its dual, probabilistic
reachability. [2], [1] investigated the finite-time probabilistic
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invariance problem for discrete-time stochastic (hybrid) sys-
tems via reachability analysis. Meanwhile, [17], [18] studied
the infinite-time horizon probabilistic invariance by defining
it as a finite-time reach-avoid property in combination with
infinite-time invariance around absorbing sets over the state
space and provided a lower bound for infinite-time prob-
abilistic invariance. However, no known general automatic
procedure enables computing absorbing sets exactly.

This paper focuses on the safe probabilistic invariance
verification of stochastic discrete-time systems. The objective
is to establish lower and upper bounds on the liveness
probability of the system remaining inside a bounded safe set
for all time, given a specific initial set. While lower bounds
have been commonly studied in existing literature, this paper
also introduces an approach to compute upper bounds. The
utilization of upper bounds can enhance our comprehension
of the invariance properties of the system and provide a more
precise estimation of the exact liveness probability. Addi-
tionally, it can also help us deal with scenarios in which the
safe set remains safe but becomes uncomfortable. However,
it is important to note that this aspect is not the main focus
of our work, and therefore we will refrain from providing
an in-depth discussion of it in this context. We propose
optimizations for solving the safe probabilistic invariance
verification problem using an auxiliary switched system that
freezes outside the safe set. It is shown that verifying safe set
invariance for the original system is equivalent to verifying it
for the switched system. Firstly, a set of optimizations is pro-
posed to address the safe probabilistic invariance verification
problem using classical barrier certificates and the switched
system. While the barrier certificate based optimizations re-
quire the existence of non-negative supermartingales, which
can be challenging in practice, new optimizations that are
subject to weaker constraints are further proposed. These
are inspired by the equation presented in [21], [20], which
characterizes the exact probability of safely reaching a target
set with bounded solutions. To demonstrate the theoretical
developments, two numerical examples are solved using the
semi-definite programming tool.

The contributions of this work are summarized below.
1) The safe probabilistic invariance verification in

stochastic discrete-time systems is investigated. Given
a specific initial set, lower and upper bounds on the
liveness probability of the system remaining inside a
bounded safe set for all time are studied.

2) Based on an auxiliary switched system, two sets of
optimizations are proposed for addressing the safe set
invariance verification problem. One is adapted from
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the classical barrier certificates for safety verification.
The other is inspired by the equation in [21], which is
shown to be weaker than the previous one.

II. RELATED WORK

While there is a significant body of research on the ver-
ification of stochastic (hybrid) systems, this section focuses
specifically on works closely related to the topic at hand, with
the exception of the works mentioned earlier. For readers
interested in a broader survey of the field, we recommend
consulting [13].

The problem studied in this work is closely related to the
computation of probabilistic invariant sets, which define a
set of states for which a system starting from any point
in that set must remain inside a specified region of inter-
est with a certain probability. By computing probabilistic
invariant sets, we can demonstrate that certain properties
hold for an initial set if it is a subset of the computed
probabilistic invariant sets. Previous works, such as [10],
[11], and [9], have approximated polyhedral probabilistic
invariant sets using Chebyshev’s inequality for linear systems
with Gaussian noise. However, these methods are limited
to computing lower bounds of the liveness probability and
cannot be applied to compute upper bounds. Furthermore,
previous works have primarily focused on linear systems
with Gaussian disturbances, whereas this paper considers
nonlinear systems. Recently, [8] proposed an algorithm to
compute infinite-horizon probabilistic controlled invariant
sets based on the dynamic program in [2]. These probabilistic
invariant sets are computed using the stochastic backward
reachable set from a robust invariant set.

Another two closely related works to the present one
are [3], which studies the temporal verification based on
stochastic barrier certificates, and [21], which derives a set of
equations being able to characterize the exact probability of
reaching a specified target set while avoiding unsafe states.
With an assumption that the evolution space X is a robust
invariant (i.e., f(x,d) : X × D → X ), barrier certificates
inspired by the ones in [14] and [15] were formulated for
temporal verification of stochastic discrete-time systems in
[3]. The first set of optimizations in this paper was adapted
from them. The assumption that the evolution space X (i.e.,
the safe set in this paper) is a robust invariant is abandoned
in our method. Instead, an auxiliary switched system with a
robust invariant set is borrowed to construct our constraints
for addressing the safe set invariance verification problem.
Recently, [6], [19] extended the control barrier certificates
from deterministic setting to the synthesis of controllers for
enforcing invariance of a safe set with at least a certain
probability. However, continuous-time systems modelled by
stochastic differential equations were considered in [6], [19].
The second set of optimizations proposed in this paper,
which are subject to weaker constraints than the first ones, is
inspired by the results in [21]. A new equation which is able
to characterize the exact probability of leaving the safe set
X is formulated and constraints for addressing the safe set
invariance problem are constructed via relaxing this equation.

This paper is structured as follows. In Section III, we
formalize the stochastic system and associated safe prob-
abilistic invariance verification of interest. In Section IV
we present two sets of optimizations for addressing the
safe probabilistic invariance verification, and demonstrate
them on two examples in Section V. Finally, this paper is
concluded in Section VI.

III. PRELIMINARIES

We begin by introducing the concept of discrete-time
systems that are subject to stochastic disturbances, as well
as the problem of verifying safe probabilistic invariance.
Throughout this paper, we will refer to several basic notions.
For example, N is the set of nonnegative integers, while N≤k

is the set of nonnegative integers that are less than or equal to
k. Additionally, we use the notation ∆c and ∂∆ to represent
the complement and boundary of a set ∆, respectively;

∑
[x]

denotes the set of sum-of-squares polynomials over variables
x, i.e.,

∑
[x] = {p ∈ R[x] | p =

∑k
i=1 q

2
i (x), qi(x) ∈

R[x], i = 1, . . . , k}. Furthermore, R≥0 is the set of non-
negative real numbers. Finally, we use the indicator function
1A(x) to denote whether or not x is an element of a set A.
Specifically, if x ∈ A, then 1A(x) = 1, and if x /∈ A, then
1A(x) = 0.

A. Problem Statement

In this paper we are examining stochastic discrete-time
systems that are described by stochastic difference equations
of the form:

x(l + 1) = f(x(l),d(l)), ∀l ∈ N,
x(0) = x0 ∈ Rn.

(1)

Here, x(·) : N → Rn represents the states, and d(·) : N →
D with D ⊆ Rm represents the stochastic disturbances.
The random vectors d(0),d(1), . . . are independent and
identically distributed (i.i.d), and take values in D with the
probability distribution:

Prob(d(l) ∈ B) = P(B), ∀l ∈ N, ∀B ⊆ D.

In addition, E[·] is the expectation induced by P.
To prepare for defining the trajectory of system (1), we

first need to define a disturbance signal.
Definition 1: A disturbance signal π is an ordered se-

quence {d(i), i ∈ N}, where d(·) : N → D.
The disturbance signal π is a stochastic process defined

on the canonical sample space Ω = D∞ with the probability
measure P∞, and is denoted by {d(i), i ∈ N}. We use E∞[·]
to represent an expectation with respect to the probability
measure P∞.

Given a disturbance signal π and an initial state x0 ∈
Rn, a unique trajectory ϕx0

π (·) : N → Rn is induced with
ϕx0

π (0) = x0. Specifically, we have

ϕx0
π (l + 1) = f(ϕx0

π (l),d(l))

for all l ∈ N.
Given a safe set X and an initial set X0, where X0 ⊆ X ,

the safe probabilistic invariance verification problem is to
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determine lower and upper bounds of the liveness probability
of remaining within the safe set X for system (1), starting
from X0.

Definition 2: The safe set invariance verification is to
compute lower and upper bounds, denoted by ϵ1 ∈ [0, 1]
and ϵ2 ∈ [0, 1] respectively, for the liveness probability that
the system, starting from any state in X0, will remain inside
the safe set X for all time, i.e., to compute ϵ1 and ϵ2 such
that

ϵ1 ≤ P∞(∀k ∈ N.ϕx0
π (k) ∈ X | x0 ∈ X0) ≤ ϵ2. (2)

By computing these bounds, we can determine the degree
of safety that the system provides and ensure that it meets
the desired specifications.

Remark 1: If the set X c represents the desired (or, more
comfortable) states, then ϵ2 can be used as an upper bound
for the probability of the system (1) getting trapped within
X . This means that if we can ensure that the liveness
probability is below ϵ2, we can be confident that the system
will eventually reach the desired states with high probability.

This paper focuses on addressing the safe probabilistic
invariance verification problem as defined in Definition 2.

B. Reachability Probability Characterization in [21]

In this subsection, we will recall an equation that was
derived for probabilistic reach-avoid analysis. The equation’s
bounded solution is equivalent to the precise probability of
the system entering a specified target set within a finite time
while remaining inside a given safe set before the first target
is reached. We will adopt this equation to address the safe
invariance verification problem outlined in Definition 2.

Theorem 1 (Theorem 1, [21]): Given a bounded safe set
X , a target set Xr and an initial set X0, where X0,Xr ⊆ X ,
if there exist bounded functions v(x) : X̂ → R and w(x) :
X̂ → R such that for x ∈ X̂ ,{

v(x) = E∞[v(ϕ̂x
π(1))],

v(x) = 1Xr
(x) + E∞[w(ϕ̂x

π(1))]− w(x),
(3)

then

P∞(
∃k ∈ N.ϕx0

π (k) ∈ Xr

∧
∀l ∈ Nk.ϕ

x0
π (l) ∈ X | x0 ∈ X

)
= P∞(

∃k ∈ N.ϕ̂x0
π (k) ∈ Xr | x0 ∈ X

)
= lim

i→∞

E∞[
∑i−1

j=0 1X̂\X (ϕ̂x0
π (j))]

i
= v(x),

where ϕ̂x0
π (·) : N → Rn is the trajectory to the system
x(j + 1) = 1X\Xr

(x(j)) · f(x(j),d(j))
+1Xr

(x(j)) · x(j) + 1X̂\X (x(j)) · x(j),∀j ∈ N,
x(0) = x0,

and X̂ is a set satisfying X̂ ⊃ {x ∈ Rn | x =
f(x0,d),x0 ∈ X ,d ∈ D} ∪ X .

A sufficient condition for certifying lower bounds of the
probability P∞(

∃k ∈ N.ϕx0
π (k) ∈ Xr

∧
∀l ∈ Nk.ϕ

x0
π (l) ∈

X | x0 ∈ X0

)
can be derived via relaxing (3). It is obtained

by adding a constraint v(x) ≥ ϵ1,∀x ∈ X0 into the ones in
Corollary 1 in [21].

Proposition 1: Given a safe set X , a target set Xr and
an initial set X0, where X0,Xr ⊆ X , if there exist bounded
functions v(x) : X̂ → R and w(x) : X̂ → R such that

v(x) ≥ ϵ1,∀x ∈ X0,

v(x) ≤ E∞[v(ϕ̂x
π(1))],∀x ∈ X̂ ,

v(x) ≤ 1Xr (x) + E∞[w(ϕ̂x
π(1))]− w(x),∀x ∈ X̂

which is equivalent to

v(x) ≥ ϵ1,∀x ∈ X0,

v(x) ≤ E∞[v(ϕx
π(1))],∀x ∈ X \ Xr,

v(x) ≤ E∞[w(ϕx
π(1))]− w(x),∀x ∈ X \ Xr,

v(x) ≤ 1,∀x ∈ Xr,

v(x) ≤ 0,∀x ∈ X̂ \ X ,

(4)

then P∞(
∃k ∈ N.ϕx0

π (k) ∈ Xr

∧
∀l ∈ Nk.ϕ

x0
π (l) ∈ X |

x0 ∈ X0

)
= P∞(

∃k ∈ N.ϕ̂x0
π (k) ∈ Xr | x0 ∈ X0

)
≥ ϵ1.

IV. SAFE PROBABILISTIC INVARIANCE VERIFICATION

In this section we present two sets of optimizations for
addressing the safe probabilistic invariance verification prob-
lem in Definition 2. The first set of optimizations is adapted
from the classical stochastic barrier certificates for safety and
reachability verification. The second set of optimizations,
which are subject to weaker constraints than the first one,
is inspired by Theorem 1 and Proposition 1.

Similar to [21], in constructing our optimizations we need
an auxiliary system as follows:{

x(j + 1) = f̂(x(j),d(j)),∀j ∈ N,
x(0) = x0,

(5)

where f̂(x,d) = 1X (x) · f(x,d)+ 1X̂\X (x) ·x and X̂ is a
set containing the union of the set X and all reachable states
starting from X within one step, i.e.,

X̂ ⊃ {x ∈ Rn | x = f(x0,d),x0 ∈ X ,d ∈ D} ∪ X . (6)

Given a disturbance signal π, we define the trajectory to
system (5) as ϕ̂x0

π (·) : N → Rn, where ϕ̂x0
π (0) = x0. It is

easy to observe that X̂ is a robust invariant of system (5)
according to f̂(x,d) ∈ X̂ ,∀(x,d) ∈ X̂ × D.

Also, since ϕ̂x0
π (1) = ϕx0

π (1) for x ∈ X , we have that

P∞(∃k ∈ N.ϕx0
π (k) ∈ X̂ \ X ∧ ∀i ∈ Nk−1.ϕ

x0
π (i) ∈ X )

= P∞(∃k ∈ N.ϕ̂x0
π (k) ∈ X̂ \ X ∧ ∀i ∈ Nk−1.ϕ̂

x0
π (i) ∈ X )

and

P∞(∀k ∈ N.ϕx0
π (k) ∈ X ) = P∞(∀k ∈ N.ϕ̂x0

π (k) ∈ X ).

Given a disturbance signal π and an initial state x0 ∈ X ,
the resulting trajectory ϕ̂x0

π (·) : N → Rn either enters the
unsafe set X̂ \ X in finite time (i.e., ∃k ∈ N.ϕ̂x0

π (k) ∈
X̂ \ X ∧ ∀i ∈ N≤k−1.ϕ̂

x0
π (i) ∈ X ) or stays inside the safe

set X always (i.e., ∀k ∈ N.ϕ̂x0
π (k) ∈ X ). Thus,

P∞(∃k ∈ N.ϕ̂x0
π (k) ∈ X̂ \ X ∧ ∀i ∈ N≤k−1.ϕ̂

x0
π (i) ∈ X )

+ P∞(∀k ∈ N.ϕ̂x0
π (k) ∈ X ) = 1.
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Therefore, if the upper and lower bounds of the probability
P∞(∃k ∈ N.ϕ̂x0

π (k) ∈ X̂ \ X ∧ ∀i ∈ N≤k−1.ϕ̂
x0
π (i) ∈ X )

are gained, one can obtain the lower and upper bounds of
the liveness probability of staying inside the safe set X .

A. Barrier Certificates Based Invariance Verification

In this subsection we propose optimizations for certifying
lower and upper bounds of the liveness probability by adapt-
ing the classical barrier certificate for safety verification.

Proposition 2 provides a straightforward sufficient con-
dition for lower bounds on liveness probability, as demon-
strated in Theorem 5 of [3].

Proposition 2: Under the assumption that Ω ⊆ Rn is a
robust invariant set for system (1), i.e., f(x,d) : Ω×D → Ω,
and X ⊆ Ω, if there exists v(x) : Ω → R≥0 such that

v(x) ≤ 1− ϵ1,∀x ∈ X0,

v(x) ≥ 1,∀x ∈ Xunsafe(= Ω \ X ),

E∞[v(ϕx
π)]− v(x) ≤ 0,∀x ∈ Ω,

(7)

then P∞(
∃k ∈ N.ϕx0

π (k) ∈ Xunsafe | x0 ∈ X0

)
≤ 1 − ϵ1.

Thus, P∞(
∀k ∈ N.ϕx0

π (k) ∈ X | x0 ∈ X0

)
≥ ϵ1.

Similarly, a sufficient condition for determining upper
bounds of the liveness probability can be obtained straight-
forwardly from Theorem 16 in [3]. However, finding a robust
invariant set Ω for many systems, except for the trivial case of
Ω = Rn, can be challenging and computationally intensive,
if it even exists. Moreover, when Ω = Rn in Proposition
2, the resulting constraint (7) may be too strong, leading to
an overly conservative upper bound. We use an example to
illustrate this below.

Example 1: In this example we consider a computer-
based model, which is modified from the reversed-time Van
der Pol oscillator based on Euler’s method with the time step
0.01: 

x(l + 1) = x(l)− 0.02y(l),

y(l + 1) = y(l) + 0.01
(
(0.8 + d(l))x(l)

+ 10(x2(l)− 0.21)y(l)
)
,

(8)

where d(·) : N → D = [−0.1, 0.1], X = {(x, y)⊤ | h(x) ≤
0} with h(x) = x2+y2−1, and X0 = {(x, y)⊤ | g(x) < 0}
with g(x) = x2 + y2 − 0.01.

Via solving Op0, which is encoded into a semi-definite
program SDP0 (shown in Appendix) via the sum of squares
decomposition for multivariate polynomials:

Op0 max
v(x),ϵ1

ϵ1

s.t.



v(x) ≤ 1− ϵ1,∀x ∈ X0,

v(x) ≥ E∞[v(ϕx
π(1))],∀x ∈ Rn,

v(x) ≥ 1,∀x ∈ Rn \ X ,

v(x) ≥ 0,∀x ∈ Rn,

ϵ1 ≥ 0.

we obtain a lower bound of the liveness probability, which
is 2.1368e-07. This is too conservative to be useful in

practice. The resulting semi-definite program is addressed
when unknown polynomials of degree 8 are used. ■

In the following we will present weaker sufficient con-
ditions for certifying lower and upper bounds using the
switched system (5). They are respectively formulated in
Proposition 3 and 4.

Proposition 3: Given a safe set X and an initial set X0

with X0 ⊆ X , if there exist a barrier certificate v(x) : X̂ →
R satisfying

v(x) ≤ 1− ϵ1,∀x ∈ X0,

v(x) ≥ E∞[v(ϕx
π(1))],∀x ∈ X ,

v(x) ≥ 1,∀x ∈ X̂ \ X ,

v(x) ≥ 0,∀x ∈ X̂ ,

(9)

then P∞(
∃k ∈ N.ϕx0

π (k) ∈ X̂ \ X | x0 ∈ X0

)
≤ 1 − ϵ1.

Consequently, P∞(
∀k ∈ N.ϕx0

π (k) ∈ X | x0 ∈ X0

)
≥ ϵ1.

Proof: Constraint (9) is equivalent to the following
constraint

v(x) ≤ 1− ϵ1,∀x ∈ X0,

v(x) ≥ E∞[v(ϕ̂x
π(1))],∀x ∈ X̂ ,

v(x) ≥ 1,∀x ∈ Xunsafe(= X̂ \ X ),

v(x) ≥ 0,∀x ∈ X̂ .

Therefore, v(x) is a classical stochastic barrier certificate
for system (5) with the invariant set X̂ and the unsafe set
X̂ \ X . Therefore, according to Theorem 5 in [3], we have
the conclusion that the probability of reaching the unsafe set
X̂ \X for system (5) starting from X0 is less than or equal to
1−ϵ1, i.e., P∞(

∃k ∈ N.ϕ̂x0
π (k) ∈ X̂ \X | x0 ∈ X0

)
≤ 1−ϵ1.

Therefore,

P∞(
∀k ∈ N.ϕ̂x0

π (k) ∈ X | x0 ∈ X0

)
≥ ϵ1.

Since if x0 ∈ X , ϕ̂x0
π (1) = ϕx0

π (1) holds. Consequently,
P∞(

∀k ∈ N.ϕx0
π (k) ∈ X | x0 ∈ X0

)
≥ ϵ1.

According to Proposition 3, a lower bound of the live-
ness probability can be computed via solving the following
optimization:

Op1 max
v(x),ϵ1

ϵ1

s.t.



v(x) ≤ 1− ϵ1,∀x ∈ X0,

v(x) ≥ E∞[v(ϕx
π(1))],∀x ∈ X ,

v(x) ≥ 1,∀x ∈ X̂ \ X ,

v(x) ≥ 0,∀x ∈ X̂ ,

ϵ1 ≥ 0.

Example 2: Consider Example 1 once again. By solving
Op1 using X̂ = {(x, y)⊤ | ĥ(x) ≤ 0} with ĥ(x) =
x2 + y2 − 2, we encode it into a semi-definite program
SDP1(shown in Appendix) via the sum of squares decom-
position for multivariate polynomials. The solution yields a
lower bound for the liveness probability, which is 0.9465.
SDP1 is addressed when unknown polynomials of degree 8
are used. ■
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Proposition 4: Assume that Xunsafe = X̂ \ X and X
is a closed set1. If there exists a function v(x) : X̂ → R
satisfying

v(x) ≤ ϵ2,∀x ∈ X0,

v(x) ≥ 1,∀x ∈ ∂X̂ \ ∂Xunsafe,

E∞[v(ϕx
π(1))]− v(x) ≤ −δ, ∀x ∈ X ,

v(x) ≥ 0,∀x ∈ X̂ ,

(10)

where δ > 0 is a user-defined value, then P∞(
∀k ∈

N.ϕx0
π (k) ∈ X | x0 ∈ X0

)
≤ ϵ2.

Proof: Constraint (10) is equivalent to the following
constraint

v(x) ≤ ϵ2,∀x ∈ X0,

v(x) ≥ 1,∀x ∈ ∂X̂ \ ∂Xunsafe,

E∞[v(ϕ̂x
π(1))]− v(x) ≤ −δ, ∀x ∈ X̂ \ Xunsafe,

v(x) ≥ 0,∀x ∈ X̂ ,
(11)

According to Theorem 16 in [3] and following the proof of
Proposition 3, we have the conclusion P∞(

∀k ∈ N.ϕx0
π (k) ∈

X | x0 ∈ X0

)
≤ ϵ2 will be obtained.

Remark 2: If v(x) is bounded over X̂ in (10), constraint
(10) provides strong guarantees of leaving the safe set X
almost surely, i.e., P∞(

∀k ∈ N.ϕx0
π (k) ∈ X | x0 ∈ X0

)
=

0. This conclusion is justified as follows.
From E∞[v(ϕ̂x

π(1))] − v(x) ≤ −δ, ∀x ∈ X̂ \ Xunsafe,
where Xunsafe = X̂ \ X , we have

E∞[v(ϕ̂x
π(1))]− v(x)− δ1Xunsafe

(x) ≤ −δ, ∀x ∈ X̂ .

Thus, for x ∈ X̂ , we have that

E∞[v(ϕ̂x
π(k))]− v(x)− δ

k−1∑
i=0

E∞[1Xunsafe
(ϕ̂x

π(i))] ≤ −kδ,

which implies P∞(
∃k ∈ N.ϕ̂x

π(k) ∈ X̂ \ X | x ∈ X
)
=

limk→∞

∑k−1
i=0 E∞[1Xunsafe

(ϕ̂x
π(i))]

k ≥ 1 (according to Lemma
3 in [21]) Thus, we have the conclusion.

It is worth noting that if ∂X̂ ∩ ∂X = ∅, the set
∂X̂ \ ∂Xunsafe in (10) is empty. As a result, the constraint
v(x) ≥ 1,∀x ∈ ∂X̂ \ ∂Xunsafe becomes redundant and
can be removed. Throughout this paper, unless explicitly
stated otherwise, we assume that ∂X̂ ∩ ∂X = ∅. It is worth
mentioning that this assumption is not overly strict and can
be easily satisfied by enlarging the set that satisfies (6).
The primary role of this assumption is to facilitate solving
constraint (10). Accordingly, based on Proposition 4, we
can calculate an upper bound for the liveness probability
by solving the following optimization problem:

Op2 min
v(x),ϵ2

ϵ2

s.t.


v(x) ≤ ϵ2,∀x ∈ X0,

E∞[v(ϕx
π(1))]− v(x) ≤ −δ, ∀x ∈ X ,

v(x) ≥ 0,∀x ∈ X̂ ,

ϵ2 ≥ 0.

1The requirement that X is closed is reflected in (11) in the proof.

Remark 3: Another condition, which is analogous to the
one in Proposition 4, was proposed in [5].

Proposition 5: If there exist a function v(x) : X → R≥0

and constant c > 0 such that
v(x) ≥ c,∀x ∈ X ,

v(x) < c,∀x ∈ Xunsafe(= X̂ \ X ),

E∞[v(ϕx
π(1))]− v(x) ≤ −1,∀x ∈ X ,

(12)

then P∞(
∀k ∈ N.ϕx

π(k) ∈ X | x ∈ X0

)
= 0.

Proof: The proof is similar to the one of Proposition
3, and the conclusion is justified from Theorem 19 in [3].

Remark 4: It is worth remarking here that we do not
extend the k-Inductive Barrier certificates proposed in [3]
for addressing the problem in this paper. A set of sufficient
conditions, which is similar to the one in Proposition 2 can
be easily obtained based on k-Inductive barrier certificates.
However, the gain of sufficient conditions being analogous
to the ones in Proposition 3 and 4 should be carefully treated
and will be considered in the future work.

B. Equations Relaxation Based Invariance Verification

In this subsection, we present the second set of optimiza-
tions for addressing the set invariance verification problem
in Definition 2. We begin by introducing an equation that
characterizes the exit probability of leaving the safe set X .
This equation is adapted from (3), where the unsafe set X̂ \X
is regarded as the target set Xr in (3). We then propose two
sufficient conditions for certifying lower and upper bounds
of the liveness probability by relaxing the derived equation.

Theorem 2: Given a safe set X , if there exist a function
v(x) : X̂ → R 2 and a bounded function w(x) : X̂ → R
such that for x ∈ X̂ ,{

v(x) = E∞[v(ϕ̂x
π(1))],

v(x) = 1X̂\X (x) + E∞[w(ϕ̂x
π(1))]− w(x),

(13)

then

v(x0) = P∞(
∃k ∈ N.ϕx0

π (k) ∈ X̂ \ X | x0 ∈ X
)

= P∞(
∃k ∈ N.ϕ̂x0

π (k) ∈ X̂ \ X | x0 ∈ X
)

= lim
i→∞

E∞[
∑i−1

j=0 1X̂\X (ϕ̂x0
π (j))]

i
.

Thereby, P∞(
∀k ∈ N.ϕx0

π (k) ∈ X | x0 ∈ X
)
= 1− v(x0).

Proof: The conclusion can be assured by following the
proof of Theorem 1 in [21].

Like Proposition 1, two sufficient conditions can be ob-
tained for certifying lower and upper bounds of the liveness
probability via directly relaxing equation (13), respectively.

Proposition 6: Given a safe set X and an initial set X0

with X0 ⊆ X , if there exist a function v(x) : X̂ → R and a

2Comparing with Theorem 1, the explicit requirement that v(x) is
bounded is abandoned here. If following the proof of Theorem 1 in [21],
one can find that this requirement is not necessary.
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bounded function w(x) : X̂ → R satisfying
v(x) ≤ 1− ϵ1,∀x ∈ X0,

v(x) ≥ E∞[v(ϕx
π(1))],∀x ∈ X ,

v(x) ≥ E∞[w(ϕx
π(1))]− w(x),∀x ∈ X ,

v(x) ≥ 1,∀x ∈ X̂ \ X ,

(14)

then

P∞(
∃k ∈ N.ϕx0

π (k) ∈ X̂ \ X | x0 ∈ X
)
≤ v(x0) ≤ 1− ϵ1.

Consequently, P∞(
∀k ∈ N.ϕx0

π (k) ∈ X | x0 ∈ X0

)
≥ ϵ1.

Proof: The conclusion can be assured by following
the proof of Corollary 1 in [21], with the inequality signs
reversed.

According to Proposition 6, a lower bound of the live-
ness probability can be computed via solving the following
optimization:

Op3 max
v(x),w(x),ϵ1

ϵ1

s.t.



v(x) ≤ 1− ϵ1,∀x ∈ X0,

v(x) ≥ E∞[v(ϕx
π(1))],∀x ∈ X ,

v(x) ≥ E∞[w(ϕx
π(1))]− w(x),∀x ∈ X ,

v(x) ≥ 1,∀x ∈ X̂ \ X ,

ϵ1 ≥ 0,

w(x) is bounded over X̂ .

The comparison between (9) and (14) implies that (14)
is weaker than (9), since if v(x) satisfying (9) also satisfies
(14) with w(x) = 0 for x ∈ X̂ .

Proposition 7: Given a safe set X and an initial set X0

with X0 ⊆ X , if there exist a function v(x) : X̂ → R and a
bounded function w(x) : X̂ → R satisfying

v(x) ≥ 1− ϵ2,∀x ∈ X0,

v(x) ≤ E∞[v(ϕx
π(1))],∀x ∈ X ,

v(x) ≤ E∞[w(ϕx
π(1))]− w(x),∀x ∈ X ,

v(x) ≤ 1,∀x ∈ X̂ \ X ,

(15)

then

P∞(
∃k ∈ N.ϕx0

π (k) ∈ X̂ \X | x0 ∈ X0

)
≥ v(x0) ≥ 1− ϵ2.

Consequently, P∞(
∀k ∈ N.ϕx0

π (k) ∈ X | x0 ∈ X0

)
≤ ϵ2.

Proof: The conclusion can be assured by following the
proof of Corollary 1 in [21].

By comparing constraints (10) and (15), we can conclude
when X is closed and v(x) is bounded over X̂ that (15)
is weaker than (10). This is because if v(x) satisfies (10),
1−v(x) satisfies (15) with w(x) = M(1−v(x)) for x ∈ X̂ ,
where Mδ ≥ supx∈X̂ (1− v(x)).

According to Proposition 7, an upper bound of the live-
ness probability can be computed via solving the following

optimization:

Op4 min
v(x),w(x),ϵ2

ϵ2

s.t.



v(x) ≥ 1− ϵ2,∀x ∈ X0,

v(x) ≤ E∞[v(ϕx
π(1))],∀x ∈ X ,

v(x) ≤ E∞[w(ϕx
π(1))]− w(x),∀x ∈ X ,

v(x) ≤ 1,∀x ∈ X̂ \ X ,

ϵ2 ≥ 0,

w(x) is bounded over X̂ .

V. EXAMPLES

In this section we demonstrate our theoretical develop-
ments on two examples. Specifically, we encode the prob-
lems Op0-Op4 as semi-definite programs using the sum
of squares decomposition for multivariate polynomials, and
solve the resulting semi-definite programs (SDP0-SDP4,
see Appendix) using the Mosek 10.0 tool [4]. To ensure
numerical stability during the solution of the semi-definite
programs, we impose a constraint on the coefficients of
the unknown polynomials (v(x), w(x), si(x), i = 0, . . . , 4).
Specifically, we restrict these coefficients to the interval
[−100, 100].

Example 3: In this example we consider the one-
dimensional discrete-time system:

x(l + 1) = (−0.5 + d(l))x(l),

where d(·) : N → D = [−1, 1], X = {x | h(x) ≤ 0} with
h(x) = x2 − 1, and X0 = {x | (x+0.8)2 = 0}. Besides, we
assume that the probability distribution on D is the uniform
distribution.

The set X̂ = {x | ĥ(x) ≤ 0} with ĥ(x) = x2 − 2
is used in solving SDP1-SDP4. The computed lower and
upper bounds are summarized in Table I and Fig. 1. It is
concluded that tighter lower and upper bounds of the liveness
probability can be obtained when polynomials of higher
degree are used for performing computations. According to
Remark 2, SDP2 cannot be used to compute upper bounds
of the liveness probability, which is consistent with our
experimental results. However, we can obtain upper bounds
of the liveness probability via solving SDP4. Meanwhile, it
is also observed that the lower bounds computed from SDP1
and SDP3 are identical, and the ones generated by solving
SDP0 are the most conservative.

Example 4: In this example we consider the discrete-time
Lotka-Volterra model:{

x(l + 1) = rx(l)− ay(l)x(l),

y(l + 1) = sy(l) + acy(l)x(l),
(16)

where r = 0.5, a = 1, s = −0.5 + d(l) with d(·) : N →
D = [−1, 1] and c = 1, X = {(x, y)⊤ | h(x) ≤ 0}
h(x) = x2 + y2 − 4, and X0 = {(x, y)⊤ | g(x) ≤ 0} with
g(x) = (x + 0.6)2 + (y + 0.5)2 − 0.1. Besides, we assume
that the probability distribution imposed on D is the uniform
distribution. Three trajectories starting from (−0.6,−0.5)⊤

are visualized in Fig. 2.
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Op3 and Op4
d 2 4 6 8 10 12 14 16 18 20 22 24 26
ϵ1 0.3600 0.5922 0.6704 0.6914 0.6937 0.7289 0.7372 0.7552 0.7578 0.7600 0.7625 0.7633 0.7651
ϵ2 1.0000 0.9843 0.9504 0.9489 0.9487 0.9473 0.9240 0.9141 0.8988 0.8988 0.8924 0.8801 0.8763

Op1
ϵ1 0.3600 0.5922 0.6704 0.6914 0.6937 0.7289 0.7372 0.7552 0.7578 0.7600 0.7625 0.7633 0.7651

Op0
ϵ1 0.3600 0.5922 0.5922 0.5927 0.5942 0.6379 0.6777 0.6883 0.6885 0.6907 0.7090 0.7258 0.7283

TABLE I
COMPUTED LOWER AND UPPER BOUNDS OF THE LIVENESS PROBABILITY

(d DENOTES THE DEGREE OF UNKNOWN POLYNOMIALS INVOLVED IN THE RESULTING SDPS)

2 4 6 8 10 12 14 16 18 20 22 24 26

d

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1. A visualized illustration of computed lower and upper bounds
(shown in Table I) of the liveness probability via solving SDP3 and SDP4

The set X̂ = {(x, y)⊤ | ĥ(x) ≤ 0} with ĥ(x) =
x2 + y2 − 30 is used in solving SDP1-SDP4. The computed
lower and upper bounds are summarized in Table II. SDP3 is
able to compute tighter lower bounds than SDP1 and SDP0,
consistent with our theoretical conclusion that constraint
(14) is more expressive than constraints (9) and (7). Note
that SDP2 cannot be used to compute upper bounds of the
liveness probability, as mentioned in Remark 2. Instead, one
can obtain upper bounds by solving SDP4.

Op3 and Op4
d 8 10
ϵ1 0.2772 0.4852
ϵ2 1 0.9999

Op1
ϵ1 0.1668 0.4613

Op0
ϵ1 9.5417e-05 0.2603

TABLE II
COMPUTED LOWER AND UPPER BOUNDS OF THE LIVENESS

PROBABILITY (d DENOTE THE DEGREE OF UNKNOWN POLYNOMIALS

INVOLVED IN THE RESULTING SDPS)

Using higher-degree polynomials (i.e., v(x), w(x)) or a
larger set X̂ can lead to tighter bounds on the liveness prob-
ability when solving problems Op0, Op1, Op3, and Op4.
However, directly solving these problems is challenging, if
not impossible. Therefore, we relax them into semi-definite
programs (SDP0, SDP1, SDP3, and SDP4) using the sum of
squares decomposition for multivariate polynomials, which
allows for efficient solving. Nonetheless, this relaxation may
yield unexpected outcomes. For instance, when we use a
larger set X̂ = {(x, y)⊤ | x2 + y2 ≤ 36} to solve SDP1 and
SDP3 with unknown polynomials of degree 10 in Example 4,

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x

-3

-2

-1

0

1

2

2.5

y

Fig. 2. An illustration of four trajectories for system (16) starting from
(−0.6,−0.5)⊤ (red curve - ∂X ; green curve - ∂X0).

Op3
d 8 10
ϵ1 0.1085 0.5669

Op1
ϵ1 0.1431 0.4837

TABLE III
COMPUTED LOWER AND UPPER BOUNDS OF THE LIVENESS

PROBABILITY WHEN THE SET X̂ = {(x, y)⊤ | x2 + y2 ≤ 36} IS USED

(d DENOTE THE DEGREE OF UNKNOWN POLYNOMIALS INVOLVED IN THE

RESULTING SDPS)

we obtain larger lower bounds; when unknown polynomials
of degree 8 are taken for solving SDP1 and SDP3, the
lower bound computed from SDP1 is larger than the one
from SDP3. They are summarized in Table III. These results
may be affected by floating point errors. Therefore, besides
enhancing the accuracy of SDP solving algorithms, it is
imperative to develop advanced algorithms that can solve
Op0-Op4 in a nonlinear form that goes beyond polynomial.
Moreover, while our theoretical analysis demonstrates that
the constraint in Op3 is weaker than that in Op1, we cannot
guarantee that SDP3 is weaker than SDP1. Hence, it is
uncertain whether the lower bound obtained by solving SDP3
is tighter than that obtained by solving SDP1.

VI. CONCLUSION

In this paper, we propose two sets of optimizations for
computing lower and upper bounds of the liveness proba-
bility. These optimizations ensure that the system remains
inside a specified safe set for all time, starting from each state
in a specified initial set. The first optimization is based on
classical barrier certificates used for safety and reachability
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verification. The second uses an equation that characterizes
the exact reachability probability. Our theoretical analysis
shows that the second optimization is more expressive and
can provide tighter lower and upper bounds. To demonstrate
the proposed optimizations, we apply semi-definite program-
ming to two examples.
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APPENDIX

SDP0 max
ϵ1,v(x),si(x),i=0,...,1

−ϵ1

s.t.



1− ϵ1 − v(x) + s0(x)g(x) ∈
∑

[x],

v(x)− E∞[v(ϕx
π(1))] ∈

∑
[x],

v(x)− 1− s1(x)h(x) ∈
∑

[x],

v(x) ∈
∑

[x],

ϵ1 ≥ 0,

s0(x) ∈
∑

[x], s1(x) ∈
∑

[x].

SDP1 max
ϵ1,v(x),si(x),i=0,...,4

−ϵ1

s.t.



1− ϵ1 − v(x) + s0(x)g(x) ∈
∑

[x],

v(x)− E∞[v(ϕx
π(1))] + s1(x)h(x) ∈

∑
[x],

v(x)− 1 + s2(x)ĥ(x)− s3(x)h(x) ∈
∑

[x],

v(x) + s4(x)ĥ(x) ∈
∑

[x],

ϵ1 ≥ 0,

si(x) ∈
∑

[x], i = 0, . . . , 4.

SDP2 min
v(x),ϵ2,si(x),i=0,...,2

ϵ2

s.t.



ϵ2 − v(x) + s0(x)g(x) ∈
∑

[x],

−δ − E∞[v(ϕx
π(1))] + v(x) + s1(x)h(x) ∈

∑
[x],

v(x) + s2(x)ĥ(x) ∈
∑

[x],

ϵ2 ≥ 0,

si(x) ∈
∑

[x], i = 0, . . . , 2,

where δ = 10−6.

SDP3 max
ϵ1,v(x),w(x),si(x),i=0,...,4

−ϵ1

1− ϵ1 − v(x) + s0(x)g(x) ∈
∑

[x],

v(x)− E∞[v(ϕx
π(1))] + s1(x)h(x) ∈

∑
[x],

v(x)− E∞[w(ϕx
π(1))] + w(x) + s2(x)h(x) ∈

∑
[x],

v(x)− 1 + s3(x)ĥ(x)− s4(x)h(x) ∈
∑

[x],

ϵ1 ≥ 0,

si(x) ∈
∑

[x], i = 0, . . . , 4.

SDP4 min
ϵ2,v(x),w(x),si(x),i=0,...,4

ϵ2

v(x)− 1 + ϵ2 + s0(x)g(x) ∈
∑

[x],

E∞[v(ϕx
π(1))]− v(x) + s1(x)h(x) ∈

∑
[x],

−v(x) + E∞[w(ϕx
π(1))]− w(x) + s2(x)h(x) ∈

∑
[x],

1− v(x) + s3(x)ĥ(x)− s4(x)h(x) ∈
∑

[x],

ϵ2 ≥ 0,

si(x) ∈
∑

[x], i = 0, . . . , 4.
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