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Abstract— Dynamic mode decomposition (DMD) is a
data-driven method for the estimation, prediction, and con-
trol of complex dynamical systems, which has gained much
attention in the fields of nonlinear dynamics and fluid me-
chanics. A DMD method for quantum spin systems, described
by a linear dynamical system of a finite-dimensional set of
observables, has been proposed recently. In this study, we
propose two DMD methods applicable to infinite-dimensional
open quantum systems, which use time-series data obtained
by quantum state tomography. First, we propose a kernel
DMD method for a data-driven spectral analysis of the
Liouville superoperator. Second, we propose a method for the
parameter estimation of the Liouville superoperator, which
incorporates prior knowledge of the model structure into
DMD. The proposed methods can accurately reconstruct the
system dynamics and show that DMD frameworks can be
applicable to infinite-dimensional open quantum systems.

I. Introduction

With the recent progress in quantum information
science, the demand for reliable and consistent quantum
control has been growing. The task of central importance
for stable manipulation of quantum systems is to charac-
terize the dynamics of black-box quantum systems from
input-output data, and such a task is generally known as
quantum process tomography [1], [2]. In the systems and
control community, similar mathematical problems have
been studied as quantum system identification [3], [4],
and various methods for reconstructing the mathematical
model of quantum system dynamics from input-output
data have been proposed [3]–[12].

In the communities of nonlinear dynamics and fluid
mechanics, dynamic mode decomposition (DMD) has
gained much attention as a data-driven method for
estimation, prediction, and control of complex dynam-
ical systems [13]. Using DMD, we can approximately
extract linearly evolving eigenmodes of complex non-
linear dynamical systems, e.g., oscillatory eigenmodes
of a fluid system exhibiting Karman vortex streets,
from time-series data. The original DMD is proposed
by Schmid [14] for extracting spatiotemporal coherent
structures in nonlinear complex fluid flows. Shortly
after the original proposal, Rowley et. al. [15] clarified
the relationship between DMD and Koopman operator
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(a) (b)

Fig. 1. Schematic diagram of DMD for infinite-dimensional
open quantum systems. (a) Spectral analysis and (b) parameter
estimation of the Liouville superoperator.

theory for nonlinear dynamical systems [16], [17]. On the
basis of this theoretical relationship, a large number of
investigations have been carried out on DMD and its
extensions such as Hankel DMD that uses time-delayed
coordinates [18], [19], kernel DMD [20] and extended
DMD [21] for efficient numerical computation, DMD
with control [22], sparsity-promoting DMD [23], and
DMD-based parameter estimation [24]–[26].

The DMD framework has also been applied to quan-
tum systems recently. Goldschmidt proposed a bilinear
DMD method for data-driven quantum control and
numerically applied it to a single spin system [27], and
we extended the applicability of DMD to quantum spin
networks with limited access by using Hankel DMD
[28]. Also, Klus applied DMD to quantum dynamical
systems described by the Schrödinger equation [29], [30].
However, application of DMD to infinite-dimensional
open quantum systems, which cannot be described by
a finite-dimensional linear dynamical system, has not
been studied.

In this study, we propose two DMD methods that
are applicable to infinite-dimensional open quantum
systems, which use the time-series data obtained by
quantum state tomography [31], [32]. First, we propose
a kernel DMD (KDMD) method, which approximately
extracts the eigenvalues and eigenoperators of the Liou-
ville superoperator from the time-series data. Second,
we propose a DMD-based method for the parameter
estimation of the Liouville superoperator, which provides
better performance than the simple DMD by incorporat-
ing prior knowledge of the model structure into DMD.
Figure 1 shows a schematic diagram of the two proposed
methods. Using the quantum van der Pol oscillator with
Kerr effect as an example, we numerically demonstrate
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that the proposed DMD methods can accurately recon-
struct the system dynamics. Our results show that DMD
frameworks can be applicable to infinite-dimensional
open quantum systems.

This paper is organized as follows. In section II,
we briefly review DMD, its numerical algorithm, and
KDMD. In section III, we discuss KDMD for a data-
driven spectral analysis of the Liouville superoperator.
In section IV, we discuss a DMD-based parameter esti-
mation method for the Liouville superoperator. Section
V concludes the paper.

II. Overview of Dynamic mode decomposition
In this section, we provide a brief overview of DMD, its

numerical algorithm with singular value decomposition
(SVD) [13], [18], and KDMD that uses a kernel trick for
reducing computational cost of DMD [20].
A. Dynamic mode decomposition

We consider a dynamical system
dx

dt
= F (x), (1)

where x ∈ CN represents a system state and F : CN →
CN is a vector field representing the system dynamics.
We collect time-series data {xk} (k = 1, 2, 3, . . . ) from
the system with a sampling interval of ∆t, namely, xk =
x(k∆t).

In DMD, using the collected time-series data, we seek
a locally linear dynamical system approximating Eq. (1)
as

dx

dt
≈ Ax, (2)

where A ∈ CN×N . The solution to Eq. (2) is written as

x(t) =

N∑
j=1

ϕj exp (λjt) bj = Φ exp(λt)b, (3)

where we introduced matrices Φ = [ϕ1, ...,ϕN ], λ =
diag(λ1, ..., λN ) with diag representing a diagonal matrix,
and a vector b = (b1, ..., bN )T with T representing the
transpose. Here, {λj}Nj=1 and {ϕj}Nj=1 represent the
eigenvalues and eigenvectors of the matrix A, respec-
tively, and {bj}Nj=1 represent the expansion coefficients
(coordinates) of x(0) with respect to the eigenvector
basis {ϕj}Nj=1.

For this purpose, we construct two matrices X,X′ ∈
CN×(M−1) using the time-series data {xk} as

X =
[
x1 x2 · · · xM−1

]
, X ′ =

[
x2 x3 · · · xM

]
.

(4)
Then, the local linear approximation can be written as

X′ ≈ AX, A = exp(A∆t), (5)

where A ∈ CN×N , and the optimal matrix A is obtained
by solving

A = arg min
Ā

∥∥X ′ − ĀX
∥∥
F
, (6)

where ∥C∥F =
√∑N

j=1

∑M−1
k=1 |Cjk|2 represents the

Frobenius norm of C ∈ RN×(M−1). The solution to
Eq. (6) is obtained as

A =X ′X+, (7)

where + represents the Moore-Penrose pseudoinverse.
We can obtain Eq. (3) from the eigendecomposition

of the matrix A, where the eigenvalues λj of A are
evaluated as λj = ln(Λj)/∆t from the eigenvalues Λj

of A [13].

B. Numerical algorithm for DMD
In practice, when considering data matrices with large

dimensions, the numerical calculation of the matrix A is
time-consuming. In such cases, instead of A, a rank-
reduced SVD matrix Ã obtained by SVD of X is
introduced. The numerical algorithm of DMD with SVD
is performed as follows [13], [18].

1) We apply SVD to the original X and, by retaining
only the dominant r singular values, obtain a rank-
reduced matrix X ≈ UΣV † with † representing
the Hermitian conjugate (the same symbol X is
used for the rank-reduced matrix), where U ∈
CN×r,Σ ∈ Rr×r,V ∈ CM×r (r is the rank of
the reduced matrix), U †U = Ir,V †V = Ir, and
Ik represents the k-dimensional identity matrix.
The pseudoinverse of X can be approximately
expressed as X+ ≈ V Σ+U †.

2) We construct a r×r matrix Ã = U †(X ′V Σ+U †)U
= U †X ′V Σ+ ∈ Cr×r, which is a projection of the
matrix A onto the r SVD modes; that is, x̃k+1 =
Ãx̃k is approximately satisfied for the projected
coordinate x̃k = U †xk.

3) We take the eigendecomposition of Ã as ÃW =
WΛ, where the columns of W ∈ Cr×r are the
eigenvectors of Ã and Λ ∈ Cr×r is a diagonal
matrix of the eigenvalues Λj (j = 1, 2, . . . , r) of
Ã.

4) We approximately obtain the dominant r eigen-
vectors and eigenvalues of A as Φ =X ′V Σ+W ∈
CN×r and Λ, respectively.

Using the obtained eigenvalues Λ1, ...,Λr and r-
dimensional eigenvectors ϕ1, ...,ϕr, we can approxi-
mately describe the state x(t) as

xd(t) ≈
r∑

j=1

ϕd
j exp

(
λdj t

)
bdj = Φd exp(λdt)bd, (8)

where λdj = ln(Λd
j )/∆t. Setting the initial state at time

t = 0 as x1, i.e., x1 = xd(0) = Φdbd, we obtain the
coefficient vector bd as bd = (Φd)+x1.

C. Kernel DMD
The DMD algorithm in the last subsection requires

the calculation of the pseudoinverse of X, which is some-
times computationally expensive. We can incorporate the
kernel trick with DMD for reducing the computational
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cost when the dimension N of the system is much larger
than the length M of the collected data, i.e., N ≫ M
[13], [20].

We consider the eigenvalue problem Λkϕk = Aϕk for
the eigenvalue Λk and eigenvector ϕk of A. Introducing
ϕk = Uϕ̃k, where ϕ̃k ∈ Cr×1, we approximately obtain

ΛkUϕ̃k = AUϕ̃k =X ′X+Uϕ̃k =X ′X+
(
XV Σ+

)
ϕ̃k

=X ′ (V Σ+
)
ϕ̃k =

(
X†)+X†X ′ (V Σ+

)
ϕ̃k

=
(
X†)+ (

X†X ′) (V Σ+
)
ϕ̃k

= U
(
Σ+V †) (X†X ′) (V Σ+

)
ϕ̃k = UÃϕ̃k.

(9)

Thus, the matrix Ã can be calculated in the KDMD
algorithm by

Ã =
(
Σ+V †) (X†X ′) (V Σ+

)
(10)

instead of 2) in the DMD algorithm. Here,
(
Σ+V †) ∈

Cr×M ,
(
X†X ′) ∈ CM×M , (V Σ+) ∈ CM×r and Σ, V

are calculated by the eigendecomposition of the M ×M
matrix V Σ2 =

(
X†X

)
V . Therefore, the computational

cost is determined by the length M of the collected data
rather than the dimension N of the system, resulting in
reduced computational cost when N ≫M .

In general, instead of using X and X ′, we
introduce the set of feature vectors ψ(x) =
[ψ1(x), ψ2(x), · · · , ψN ′(x)]T ∈ CN ′×1 and use the data
matrices Y = [ψ(x1),ψ(x2), · · · ,ψ(xM−1)], Y ′ =
[ψ(y1),ψ(y2), · · · ,ψ(yM−1)], where yk = F (xk). In this
setup,

(
Y †Y ′) can be calculated by using the kernel

trick for the kernel function f(x,y) = ψ(x)†ψ(y) defined
from the set of chosen feature vectors ψ.

III. Kernerl DMD for Liouvillian spectral analysis of
oepn quantum systems

First, we propose KDMD for the spectral analysis of
the Liouville superoperator for open quantum systems.

A. Open quantum systems
We consider general open quantum systems subjected

to quantum dissipation arising from interactions with
reservoirs, i.e., environmental quantum systems [33], [34].
Under the assumption that interactions of the system
with the reservoirs are instantaneous and Markovian
approximation can be employed, the time evolution of
the system’s density operator ρ is described by the
quantum master equation

ρ̇ = Lρ = −i[H, ρ] +
L∑

l=1

D[Cl]ρ, (11)

where L is a Liouville superoperator, H represents a
system Hamiltonian, Cl represents a coupling operator
between the system and lth reservoir (l = 1, 2, . . . , L),
[A,B] = AB−BA represents the commutator, D[C]ρ =
CρC†− (ρC†C+C†Cρ)/2 represents the Lindblad form,
and the reduced Planck’s constant is set as ~ = 1.

We consider an infinite-dimensional open quantum
system whose density operator is represented by the
number-state basis, i.e., ρ =

∑
i,j ρij |i⟩⟨j| (i, j =

1, 2, · · · ), such as quantum optical systems or quantum
optomechanical systems. We can approximately describe
the density operator ρ by a n×n density matrix ρn that
is represented by the number-state basis up to n levels,
by taking a sufficiently large number n with which ρn is
trace preserving and positive with sufficient precision.

Then, the system dynamics is approximately described
by

ρ̇n = Lnρn, (12)

where Ln is the truncated Liouville superoperator L up
to n levels. Using the transformation

AρnB ↔
(
A⊗BT

)
|ρn⟩⟩, (13)

the system dynamics in Eq. (12) is expressed in the
vector representation as

d

dt
|ρn⟩⟩ = Ln|ρn⟩⟩, (14)

where |ρn⟩⟩ ∈ Cn2×1 is a n2-dimensional vector form of
ρn and Ln is a representation of Ln by a n2×n2 matrix.

B. Kernerl DMD for Liouvillian spectral analysis
The DMD method can be used for a data-driven spec-

tral analysis of the Liouvillie superoperator. We assume
that we can collect time-series data xk = |ρn(k∆t)⟩⟩
of the system state via quantum state tomography (see
Ref. [32] for an example of experimental setups). By
performing DMD, we can reconstruct the matrix A in
Eq. (5) as

X′ = AX, A = exp(Ln∆t). (15)

Therefore, we can perform an eigendecomposition of
Ln, where the eigenvalues of Ln are obtained as λj =
ln(Λj)/∆t from the eigenvalues Λj of A, and the eigen-
operator Uj of L with the eigenvalue λj is approximately
obtained from the eigenvector of Ln.

Instead of DMD, we can also use KDMD for reducing
the computational cost because, in quantum state to-
mography, the length M of the collected data needs to
be small for reducing the number of experimental real-
izations whereas the dimension N = n×n of the sampled
state sometimes becomes large, i.e., N ≫M . In this case,
the kernel function f(xk,xl) = ⟨⟨ρn(k∆t)|ρn(l∆t)⟩⟩ =
Tr [ρn(k∆t)ρn(l∆t)] defined from the feature vector |ρn⟩⟩
can be employed, which is a truncated version of the
quantum kernel [35], [36], and the proposed KDMD
method can be seen as a DMD method with reproducing
kernels [37]. Though not discussed in this paper, it should
be stressed that the proposed method can also be applied
to finite-dimensional systems for which quantum state
tomography can be performed, e.g., spins in silicon [38].
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Fig. 2. Results of Kernel DMD for a quantum van der Pol oscillator
with Kerr effect in the semiclassical regime. (a) Eigenvalues of L
near the imaginary axis. (b,c) Time evolution of the mean value ⟨a⟩.
(b) Re⟨a⟩. (c) Im⟨a⟩. (d, e) Eigenfunction R0 for the zero eigenvalue
λ0. (f, g) Phase Θ1 and (h, i) amplitude R1 of the eigenfunction
for the eigenvalue λ1 with the smallest decay rate. (d, f, h) True
eigenfunctions. (e, g, i) Reconstructed eigenfunctions. In (f), (g),
(x, p) = (Re α, Im α) = (2.296, 0) is chosen as the phase origin.

C. Numerical results
As an example, we consider a quantum van der Pol

oscillator (also called quantum Stuart-landau oscillator
[39] recently) with Kerr effect, which is a quantum
nonlinear oscillator possessing a limit-cycle solution in
the classical limit [40]–[42]. The system is described by
a quantum master equation

ρ̇ = −i [H, ρ] + γ1D[a†]ρ+ γ2D[a2]ρ, (16)

where a and a† represent the annihilation and creation
operators, H = ω0a

†a +Ka†2a2 is the Hamiltonian, ω0

represents the frequency parameter of the oscillator, K
represents the Kerr parameter, and γ1 and γ2 represent
the decay rates for negative damping and nonlinear
damping, respectively. Note that this system cannot
be described as a finite-dimensional linear dynamical
quantum system [43].

First, we consider the semiclassical regime with param-
eters (ω0,K, γ1, γ2) = (0.1, 0.025, 1, 0.05). We collected
the time-series data of the sampled system with n =
40 (N = 402 = 1600) levels for M = 90 time steps with
the interval ∆ = 2/3 for 0 ≤ t ≤ 60 from a pure initial
coherent state ρ = |α0⟩⟨α0| with α0 = 1. We used r = 20
for the SVD calculation.

Figure 2(a) compares the true and reconstructed
eigenvalues of the Liouvillie superoperator. It can be seen
that more than 10 dominant eigenvalues are correctly
reconstructed. Figures 2(b) and 2(c) compare the time
evolution of the real and imaginary parts of the mean
value ⟨a⟩, respectively, which are calculated from the

true and reconstructed density operators. It can be seen
that KDMD correctly reproduces the time evolution
of these quantities. In Figs. 2(d-i), we compare the
true and reconstructed eigenoperators. To evaluate the
eigenoperator Uj , we use the quantity uj(α) = ⟨α|Uj |α⟩,
which is an eigenfunction of the time-shift operator in
the P representation of the system [41], [42]. Figures 2(d,
e) show R0 = u0 with the zero eigenvalue, λ0 = 0,
which corresponds to the steady-state of the system, and
Figs. 2(f, g) and Figs. 2(h, i) show the phase Θ1 = arg u1
and amplitude R1 = |u1| of the slowest eigenfunction u1
for the eigenvalue λ1 = −γ1+iΩ1 with the smallest decay
rate γ1 (we choose Ω1 < 0), respectively. It can be seen
that these eigenoperators are also correctly reproduced
by KDMD.

Next, we consider the strong quantum regime with
parameters (ω0,K, γ1, γ2) = (30, 10, 0.1, 0.4). We col-
lected the time-series data of the sampled system with
n = 40 (N = 402 = 1600) for M = 500 steps with
the interval ∆ = 0.1 for 0 ≤ t ≤ 50 from a pure initial
coherent state ρ = |α0⟩⟨α0| with α0 = 1. We used r = 30
for the SVD calculation.

Figure 3(a) shows the true and reconstructed eigen-
values of the Liouvillie superoperator. In the strong
quantum regime, several dominant eigenmodes arise
due to the strong Kerr effect. These eigenvalues are
approximately given by λ̃m = i[−ω0 − 2(m − 1)K] −
1
2{γ1(2m + 1) + 2γ2(m − 1)2 (m = 1, 2, . . .) [40]–[42],
which are indicated by the dotted lines in Fig. 3(a). As
can be seen in the figure, KDMD can correctly reproduce
the eigenvalues of the zero and the slowest eigenmodes,
but it cannot reproduce the other dominant eigenvalues.
Figures 3(b) and 3(c) show the time evolution of the
mean values Re ⟨a⟩ and Im ⟨a⟩, respectively. Although
the KDMD correctly reproduces the collected time-series
data, the linearly interpolated data points show a zigzag
time evolution. This is because the quick rotating motion
arising from several dominant eigenmodes associated
with eigenvalues with large imaginary parts cannot be
captured with the large sampling interval used here; it
is also the reason for the failure of capturing several
dominant eigenvalues in Fig. 3(a). This problem may
be solved by collecting data with a smaller sampling
interval, but it requires a larger number of experimental
realizations in the data collection as we need the entire
time series until the system converges to the steady state
for reconstructing the other eigenmodes accurately.

Figures 3(d-i) compare the true and reconstructed
eigenoperators, where R0, Φ1, and R1 are shown in
Figs. 3(d-e), Figs. 3(f-g), and Figs. 3(h-i), respectively.
We can see that these eigenoperators are correctly
reconstructed.

IV. DMD for Liouvillian parameter estimation for
open quantum systems

KDMD used in the previous section is a model-free
method and does not require prior knowledge of the
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Fig. 3. Results of Kernel DMD for a quantum van der Pol oscillator
with Kerr effect in the strong quantum regime. (a) Eigenvalues of L
near the imaginary axis. (b,c) Time evolution of the mean value ⟨a⟩.
(b) Re⟨a⟩. (c) Im⟨a⟩. (d, e) Eigenfunction R0 for the zero eigenvalue
λ0. (f, g) Phase Θ1 and (h, i) amplitude R1 of the eigenfunction
for the eigenvalue λ1 with the smallest decay rate. (d, f, h) True
eigenfunctions. (e, g, i) Reconstructed eigenfunctions. In (f), (g),
(x, p) = (Re α, Im α) = (1.786, 0) is chosen as the phase origin.

model structure of the system dynamics. In quantum
systems, we sometimes consider the cases where the
model structure of the system dynamics is known and
only its parameters are unknown, e.g., in considering
experimental setups of quantum optical systems. In this
section, we propose a method for estimating the parame-
ters of the Liouvillie superoperator that incorporates the
prior knowledge of the model structure into DMD.
A. Open quantum system with unknown parameters

We consider an open quantum system described by 
ρ̇ = L(p)ρ, (17)

where the structure of the Liouvillie superoperator L(p) is
known, but its parameters p = {p1, p2, . . .} are unknown.

As in the previous section, we consider an infinite-
dimensional open quantum system whose density oper-
ator is represented in the number-state basis. Taking
a sufficiently large number n, we can approximately
describe the density operator ρ by a n×n density matrix
ρn with respect to the number-state basis up to n levels.

The system dynamics are then approximately de-
scribed by

ρ̇n = L(p)
n ρn, (18)

where L(p)
n is the truncation of the Liouville superop-

erator L(p) up to n levels. Using the transformation in
Eq. (13), the system dynamics in Eq. (18) is reformulated
in the vector representation

d

dt
|ρn⟩⟩ = L(p)

n |ρn⟩⟩, (19)
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Fig. 4. Results of DMD-based parameter estimation for a quantum
van der Pol oscillator with Kerr effect in the semiclassical regime.
(a) Eigenvalues of L near the imaginary axis. (b,c) Time evolution
of the mean value ⟨a⟩. (b) Re⟨a⟩. (c) Im⟨a⟩. (d, e) Eigenfunction R0

for the zero eigenvalue λ0. (f, g) Phase Θ1 and (h, i) amplitude R1 of
the eigenfunction for the eigenvalue λ1 with the smallest decay rate.
(d, f, h) True eigenfunctions. (e, g, i) Reconstructed eigenfunctions.
In (f), (g), (x, p) = (Re α, Im α) = (2.296, 0) is chosen as the phase
origin. Figures 4(d,f,h) are the same as Figs. 2(d,f,h).

where L(p)
n is the n2 × n2 dimensional matrix represen-

tation of L(p)
n .

B. DMD for Liouvillian parameter estimation
As in the previous section, we assume that we collect

the time-series data xk = |ρn(k∆t)⟩⟩ of the system via
quantum state tomography. When performing DMD, we
reconstruct the matrix A in Eq. (5) as

X′ = AX, A = exp(L(p)
n ∆t). (20)

Further, projecting X on the r SVD modes gives

X̃′ = ÃX̃, Ã = exp(L̃(p)
n ∆t), (21)

where X̃′ = U †X′, X̃ = U †X, and L̃(p)
n = U †L

(p)
n U .

This indicates that the unknown parameters p can be
estimated by solving the following optimization problem:

pest = arg min
p

∥∥∥X̃′ − exp(L̃(p)
n ∆t)X̃

∥∥∥
F
. (22)

Using the estimated parameters pest, we can also recon-
struct the Liouvillie superoperator as L(pest).

It should be noted that the proposed method can be
seen as a counterpart of the DMD-based method for the
Fokker-Planck operator of stochastic dynamical systems
[24].

In this study, we use the scipy.optimize.minimize
toolbox with the Limited-memory BFGS-B (L-BFGS-
B) method for Python [44] to solve the optimization
problem in Eq. (22). As the problem is non-convex, we
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Fig. 5. Results of the DMD-based parameter estimation for a
quantum van der Pol oscillator with Kerr effect in the strong
quantum regime. (a) Eigenvalues of L near the imaginary axis.
(b,c) Time evolution of the mean value ⟨a⟩. (b) Re⟨a⟩. (c) Im⟨a⟩.
(d, e) Eigenfunction R0 for the zero eigenvalue λ0. (f, g) Phase Θ1

and (h, i) amplitude R1 of the eigenfunction for the eigenvalue λ1

with the smallest decay rate. (d, f, h) True eigenfunctions. (e, g, i)
Reconstructed eigenfunctions. In (f), (g), (x, p) = (Re α, Im α) =
(1.786, 0) is chosen as the phase origin. Figures 5(d,f,h) are the
same as Figs. 3(d,f,h).

need to use multiple initial guesses to find the optimal
solution.

C. Numerical results
As an example, we consider a quantum van der Pol os-

cillator with Kerr effect described by the quantum mas-
ter equation (16) whose parameters p = (ω0,K, γ1, γ2)
are unknown. In numerical simulations, we set the range
of the parameters as ω0 ∈ [−∞,∞],K, γ1, γ2 ∈ [0,∞].

First, we consider the semiclassical regime with the
parameters (ω0,K, γ1, γ2) = (0.1, 0.025, 1, 0.05). We col-
lected the time-series data of the sampled system with
n = 40 (N = 402 = 1600) for M = 8 steps with the
interval ∆ = 5/8 for 0 ≤ t ≤ 5 from a pure initial
coherent state ρ = |α0⟩⟨α0| with α0 = 1. We used
r =M = 8 for the SVD calculation.

Solving the optimization problem in Eq. (22),
we estimated the parameters as pest =
(0.103, 0.0248, 1.001, 0.0501), which are sufficiently
accurate, and reconstructed the Liouvillie superoperator
as L(pest).

Figure 4(a) shows the eigenvalues of the true and re-
constructed Liouvillie superoperator. It can be seen that
all eigenvalues are correctly reproduced. Figures 4(b)
and 4(c) show the time evolution of the mean values
Re ⟨a⟩ and Im ⟨a⟩, respectively. It can be seen that
the time evolution of these quantities are also correctly
reproduced.

Figures 4(d-i) compare the true and reconstructed

eigenoperators, where R0, Φ1, and R1 are shown in
Figs. 4(d-e), Figs. 4(f-g), and Figs. 4(h-i), respectively.
We can see that these eigenoperators are correctly
reconstructed. Here, it is remarkable that we need only
M = 8 time steps of the collected data for estimating
the parameters correctly.

Next, we consider the strong quantum regime with
the parameters (ω0,K, γ1, γ2) = (30, 10, 0.1, 0.4). We
collected the time-series data of the sampled system with
n = 40 (N = 402 = 1600) for M = 40 steps with
the interval ∆ = 1/400 for 0 ≤ t ≤ 0.1 from a pure
initial coherent state ρ = |α0⟩⟨α0| with α0 = 1. We used
r =M = 40 for the SVD calculation.

Solving the optimization problem in Eq. (22), we
could accurately estimate the parameters as pest =
(30.0, 10.0, 0.101, 0.391) and reconstruct the Liouvillie
superoperator as L(pest).

Figure 5(a) shows the eigenvalues of the true and
reconstructed Liouvillie superoperator. It can be seen
that all eigenvalues, including the several dominant
eigenvalues indicated by the dotted lines, are accurately
reproduced. Figures 5(b) and 5(c) show the time evolu-
tion of the mean values Re ⟨a⟩ and Im ⟨a⟩, respectively.
The time evolution of these quantities are also correctly
reproduced.

Figures 5(d-i) compare the true and reconstructed
eigenoperators, where R0, Φ1, and R1 are shown in
Figs. 5(d-e), Figs. 5(f-g), and Figs. 5(h-i), respectively.
We can confirm that these eigenoperators are correctly
reconstructed.

In the present parameter estimation, we can also
reconstruct the adjoint Liouvillie superoperator L∗ with
respect to an inner product ⟨X,Y ⟩tr = Tr [X†Y ] for
linear operators X and Y , i.e., ⟨L∗X,Y ⟩tr = ⟨X,LY ⟩tr,
by using the estimated parameter as (L(pest))∗. Since
the adjoint Liouvillie superoperator L∗ corresponds to
the infinitesimal generator of the Koopman operator for
open quantum systems [41], [42], the eigenoprator Vj
with the eigenvalue λj corresponds to the jth Koopman
eigenfunction of the system.

Figure 6 compares Φm(α) = arg⟨α|Vm|α⟩ obtained
from the true adjoint Liouvillie superoperator L∗ with
those obtained from the reconstructed adjoint operator
(L(pest))∗ for dominant eigenvalues λ̃m (m = 1, 2, 3, 4);
these quantities characterize the quantum asymptotic
phases of a quantum nonlinear oscillator [41], [42]. We
can confirm that the asymptotic phases are correctly
reconstructed by the present method.

V. Conclusion
We proposed two DMD methods applicable to infinite-

dimensional open quantum systems; a KDMD method
for data-driven spectral analysis and a DMD-based
parameter estimation method for the Liouville super-
operator.

In this study, we only consider an example of a quan-
tum nonlinear oscillator. In future works, it is important

5911



0

2π

3π/2

π

π/2

Φ1
p

x
-5 -2.5 0 2.5 5

-5

-2.5

0

2.5

5
(a) (b)

p
x

-5 -2.5 0 2.5 5
-5

-2.5

0

2.5

5
Φ2 Φ3(c)

p

x
-5 -2.5 0 2.5 5

-5

-2.5

0

2.5

5
Φ4(d)

p

x
-5 -2.5 0 2.5 5

-5

-2.5

0

2.5

5

p

x
-5 -2.5 0 2.5 5

-5

-2.5

0

2.5

5
p

x
-5 -2.5 0 2.5 5

-5

-2.5

0

2.5

5

p

x
-5 -2.5 0 2.5 5

-5

-2.5

0

2.5

5

p

x
-5 -2.5 0 2.5 5

-5

-2.5

0

2.5

5
(e) (f) (g) (h)

Fig. 6. Quantum asymptotic phases of the quantum van der
Pol oscillator with Kerr effect in the strong quantum regime.
(a, e) Φ1, (b, f) Φ2, (c, g) Φ3, and (d, h) Φ4. (a, b, c, d)
True functions. (e,f,g,h) Reconstructed functions. In all figures,
(x, p) = (Re α, Im α) = (2.5, 0) is chosen as the phase origin where
Φm = 0 (m = 1, 2, 3, 4).

to discuss the applicability of the proposed methods to
more complex quantum networked systems. Compared
to the other system identification methods, the proposed
methods are expected to produce a better performance
when the system exhibits coherent dynamics and is
approximately described by a few dominant variables.
However, even in such cases, the dimensionality of
the system can still become large, and reducing the
computational cost of the proposed methods is a future
work.

We can also apply the proposed methods to finite-
dimensional quantum spin systems for which quantum
process tomography can be performed [38]. We can also
formulate a DMD framework and compare with the other
system identification methods for finite-dimensional lin-
ear dynamical quantum systems [43].

It is also interesting to discuss the data-driven recon-
struction of decoherence-free subspaces [45], [46] by using
DMD [28], which may also be used in the time-series
analysis of electromagnetically induced transparency
(EIT) [47], [48] for designing dark states of the quantum
system. It is also important to discuss the effect of noisy
measurement on the proposed methods [8], [9].

Other variants of the DMD method can also be applied
for quantum system identification. For example, it would
also be possible to extend the proposed DMD methods
to include control input [22] in a similar manner to
the bilinear DMD [27] and model predictive control
[49] for quantum spin systems, which may be useful
for data-driven quantum control of infinite-dimensional
open quantum systems.

The DMD is a useful framework for data-driven
estimation, prediction, and control of nonlinear complex
dynamical systems [13]. The DMD framework may play
important roles in analyzing and controlling complex
nonlinear quantum many-body systems in the growing
field of quantum science and technology.
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