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Abstract— Safe and efficient operation of lithium-ion bat-
teries requires an accurate estimation of the internal states.
One approach is to design an observer based on an electro-
chemical model of the battery internal dynamics. However,
electrochemical models, and their associated observers, typically
require a high dimension to generate accurate variables. In this
paper, we explain how to alleviate this limitation by correcting
the lithium concentrations generated by a finite-dimensional
electrochemical model derived from the spatial discretizations
of partial differential equations (PDE). We show that the
corrected concentrations asymptotically match those generated
by the original PDEs for constant input currents, irrespectively
of the order of the considered finite-dimensional model. We
then exploit this fact to derive a new state space model for
which we design an observer, whose global, robust convergence
is supported by a Lyapunov analysis provided a linear ma-
trix inequality holds. The estimated concentrations are then
corrected to asymptotically match those of the original PDEs
in absence of disturbances for constant currents. Simulation
results show improvements both in terms of modeling and
estimation accuracy as a result of the proposed corrections.

I. INTRODUCTION

Lithium-ion batteries present many advantages in terms
of volume capacity, weight, power density, as well as the
absence of memory effect. Nevertheless, this type of batteries
require a battery management system (BMS) to make them
safe, reliable and efficient. The BMS needs to be fed with
accurate information on the state of the battery for this
purpose. Unfortunately, some key battery variables cannot
be measured directly with sensors, which means that they
have to be estimated.

A popular method to estimate the internal state of a
lithium-ion battery consists in designing an observer based
on a mathematical model of the battery internal dynamics.
Several types of battery models are available in the literature
for this purpose, see e.g., [11], [15]. The simplest ones
consist in representing the battery dynamics by an equivalent
circuit model made of few resistors and capacitors, see e.g.,
[1], [2]. This apparent simplicity has a price nevertheless:
the model requires a non-trivial parameterization to provide
accurate data in general, see e.g., [14]. An alternative is
based on electrochemical models, which locally describe the
physics of lithium-ion cell operation using partial differential
equations (PDE), see e.g., [8], [10]. Electrochemical models
often rely on the assumption that the particles within an
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electrode behave like an average particle, we talk of single
particle models (SPM) as in e.g., [4]–[7], [16], [17]. The cor-
responding infinite-dimensional model can then be spatially
discretized to obtain a finite-dimensional model, which is
convenient to design and implement a state observer. Finite-
dimensional models typically require a high dimension to
generate accurate battery variables, as the latter are affected
by the errors resulting from the spatial discretization of
the original PDEs. This may be problematic as the derived
observer may then be of high dimension, which may make
its design numerically challenging and may be an obstacle
for its implementation.

In this work, we present a method to alleviate the need
for finite-dimensional models of high dimension to generate
accurate variables. We consider for this purpose the finite-
dimensional model of [5], whose dimension is directly
related to the number of samples of the PDEs and can
therefore be freely selected. We then present a technique to
systematically correct the concentrations generated by this
model so that these asymptotically match the concentrations
given by the original PDEs for constant currents. Hence, for
any given model order, the corrected concentrations from the
finite-dimensional model asymptotically tend to the actual
concentrations of the original infinite-dimensional model
for constant inputs thereby asymptotically eliminating the
errors induced by spatial discretization. Although the purpose
of these corrections is to eliminate asymptotic errors for
constant inputs, the provided simulation results show that
significant improvements are also obtained for short time
horizons with a rapidly changing current profile. We then
exploit these corrected concentrations to derive a new output
voltage equation, which leads to a new state space model.

Afterwards, we design an observer for this new model. We
present a method for this purpose based on polytopic and
Lyapunov-based tools similarly to e.g., [4], [9], [19]. This
method guarantees the robust convergence of the state esti-
mates generated by the observer to the actual battery states
provided a linear matrix inequality holds. We then explain
how to correct the estimated concentrations to asymptotically
track those of the original PDEs in absence of disturbances
and for constant inputs. Simulation results are presented to
illustrate the improvements brought by the corrected model
and the associated estimation scheme. The definitions and
numerical values of all the parameters, as well as all the
proofs are given in the extended version of this work in [12].
Notation. Let R be the set of real numbers, R>0 := (0,∞),
R≥0 := [0,∞), R<0 := (−∞,0), Z be the set of integers,
Z>0 := {1,2,3, ...}. We use In to denote the identity matrix
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of dimension n and 1n×m the matrix of Rn×m whose elements
are all equal to 1, with n,m ∈ Z>0. Given square matrices
A1, ...,An, diag(A1, ...,An) is the block diagonal matrix, whose
block diagonal components are A1, ...,An and diag(A1, ...,An)

(diag(A1, ...,An)) is the lower (upper) block diagonal ma-
trix, whose lower (upper) block diagonal components are
A1, ...,An. Given a vector x ∈ Rn, x⊤ denotes the transpose
of x. Given x ∈ Rn and y ∈ Rm with n,m ∈ Z>0, we use the
notation (x,y) to denote (x⊤,y⊤)⊤. Given f : R→ Rn with
n ∈ Z>0, ( f )∞ stands for limt→∞ f (t) when it exists. For a
vector x ∈ RN , |x| denotes its Euclidean norm. For a matrix
A ∈ Rn×m, ∥A∥ stands for its 2-induced norm and for any
i ∈ Rn, j ∈ Rm, (A)i j represents the j-th element of the i-th
row of matrix A. Let f : R≥0 → RN ,∥ f∥L2,[0,t) denotes the
L2 norm of f on the interval [0, t), where t ∈ [0,∞]. We write
f ∈ L2, when ∥ f∥L2,[0,∞) < ∞.

II. BATTERY MODEL

We recall the SPM model in [5], and we explain how to
correct its lithium concentrations. Those concentrations are
then exploited to derive a new output equation and the new
model is finally given in a state space form.

A. Preliminaries on the model in [5]

We first briefly recall the main elements of a lithium-
ion cell, namely: the positive electrode, the separator and
the negative electrode, which are all immersed in the elec-
trolyte, and two current collectors. The electrolyte is an ionic
solution that ensures ion transport within the battery. The
porous separator is an electrical insulator that does not allow
electrons to flow between the two electrodes. However, being
porous, it allows the passage of ions via the electrolyte. The
positive and negative electrodes consist of almost spherical
particles of porous materials. The electrodes structure creates
a surface of contact between the electrodes and the elec-
trolyte producing electrochemical couples between them and
thus introducing a potential difference between the positive
and negative electrode.

The considered electrochemical model relies on the next
assumption.

Standing Assumption 1 (SA1): The following holds: (i)
lithium insertion or de-insertion reactions are homogeneous
along the thickness of each electrode; (ii) the electrolyte
dynamics is neglected; (iii) the temperature of the cell is
constant and homogeneous. □
Item (i) implies that each electrode can be reduced to a
single particle, whose size is equal to the average size of
all the particles that compose the actual electrode, we talk of
SPM assumption, see e.g., [4]–[7], [16], [17]. As customarily
done in electrochemical modeling of lithium-ion batteries,
electrodes material particles are supposed spherical. In item
(ii), we ignore the electrolyte dynamics, which is reasonable
for moderate currents and moderate temperatures. For high
current rates and/or low temperatures, item (ii) can be relaxed
and electrolyte dynamics can be added to the presented
model and observer by applying the results of [3]. In item
(iii), we suppose that the temperature is constant however,

when the temperature varies, and is measured we can adapt
the model and the developed observer of Section III.A to take
into account the temperature variation like in [4], [17]. As
for the temperature homogeneity assumption, it is reasonable
at moderate and high temperatures. For low temperatures,
it may become invalid and be interpreted as a parametric
uncertainty, which can be handled by the observer of Section
III.A if the uncertainty is small enough, see [17].

Given SA1, the main dynamical phenomenon is the
lithium diffusion in the electrodes active particles. This
phenomenon is described using the next PDEs (see [8]),
for any t ≥ 0 and r ∈ [0,Rs], where Rs > 0 is the radius
of the particle in electrode s ∈ {neg,pos}, with neg and pos
denoting the negative and positive electrode, respectively,

ϕs(r, t) = −Ds
∂cs(r,t)

∂ r
∂cs(r,t)

∂ t = 1
r2

∂

∂ r

(
Dsr2 ∂cs(r,t)

∂ r

)
,

(1)

where cs is the local concentration of lithium, ϕs is the
lithium flux density and Ds > 0 is the diffusion coefficient of
lithium, along with two boundary conditions ϕs(0, t) = 0 and
ϕs(Rs, t) =

jLi
s

asF , where jLi
s ∈R is the electrochemical reaction

rate, as := 3εs
Rs

is the active surface per volume unit, εs > 0 is
the volume fraction of the active material particle and F > 0
is Faraday’s constant.

To derive a set of ordinary differential equations (ODE)
from (1), a spatial discretization with uniform volume is
performed. In particular, each particle is discretized into
Ns ∈ Z>0 samples each having the same volume, where
s ∈ {neg,pos}. A zero-order approximation is made, i.e., we
assume that the lithium concentration in each sample, cs,n
for n ∈ {1, ...,Ns} and s ∈ {neg,pos}, is homogeneous. From
the obtained set of ODEs, we derive the next state space
equation, with the index s ∈ {neg,pos}

ẋs = Asxs +Bsms, (2)

where xs := (cs,1, . . . ,cs,Ns) ∈ RNs is the concatenation of
the concentrations in electrode s and ms := − jLi

s
εsF ∈ R is

the input. The matrices As ∈ RNs×Ns and Bs ∈ RNs×1 are
defined as As := diag(−µs

1,−υs
2, . . . ,−υs

Ns−1,−µ̃s
Ns
) +

diag(µ̃s
2, . . . , µ̃

s
Ns
) + diag(µs

1, . . . ,µ
s
Ns−1), Bs :=(

0 . . . 0 Ns
)⊤, where µs

i := Ss
i

rs
i+1−rs

i

Ds
Vs

for any

i ∈ {1, . . . ,Ns − 1}, µ̃s
i :=

Ss
i−1

rs
i −rs

i−1

Ds
Vs

for any i ∈ {2, . . . ,Ns},

υs
i := µ̃s

i + µs
i for any i ∈ {2, . . . ,Ns − 1}, Vs := 1

Ns
4
3 πR3

s ,

rs
i :=

(
i

Ns

)1/3
Rs and Ss

i := 4π(rs
i )

2.

B. Concentrations correction

The spatial discretization of (1) to obtain (2) generates
errors on the concentrations given by (2). These errors
can be reduced by increasing the number of samples Ns,
s ∈ {neg,pos}, but this leads to a high-dimensional system
in (2), which may lead to computational issues, especially
when using the model in (2) for observer design. We present
in this section an alternative method to reduce these errors
by correcting the lithium concentrations generated by (2)
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so that they asymptotically match those given by (1) for
constant inputs, as formalized in the sequel. We can already
emphasize that, although these corrections are established
by considering the asymptotic behavior of (1) and (2) for
constant inputs, these allow improving the accuracy of the
concentrations given by (2) even for rapidly changing inputs
as illustrated in Section IV. In this section, we denote by
cs,(1) the lithium concentrations generated from the PDEs in
(1) and cs,(2) := xs the lithium concentrations generated by
model (2) for electrode s, with s ∈ {neg,pos}.

We denote the corrected lithium concentrations of model
(2) as cs,cor, which are defined by, for j ∈ {1, . . . ,Ns} and
s ∈ {neg,pos},

cs,cor, j := cs,mean −Ks
j(cs,mean − cs,(2), j), (3)

where cs,mean := 1
Ns

∑
Ns
n=1 cs,(2),n is the lithium-ion mean con-

centration in electrode s given by model (2) and Ks
j ∈ R is

a static correction coefficient given in [12, (4)].
We present the next result on the error between the

corrected concentrations of model (2) and the original con-
centrations of the PDEs in (1) when time tends to infinity
for constant inputs.

Theorem 1: For a constant input ms and an initial uniform
profile for cs,(1), in the sense that there exists c0 ∈R≥0 such
that for any r ∈ [0,Rs] cs,(1)(r,0) = c0, any corresponding
solution cs,(1) to (1) and cs,(2) to (2) with cs,(2)(0) = 1Ns×1c0
satisfy for any j ∈ {1, . . . ,Ns} and s ∈ {neg,pos}

(cs,cor, j − cs,(1)(r
s
j, ·))∞ = 0, (4)

where cs,cor is defined in (3). □
Theorem 1 implies that, as times tends to infinity, the

corrected concentrations defined in (3) match those generated
by the PDEs in (1) when the input is constant and cs,(1)(·,0)
is uniform. It is important to note that Theorem 1 imposes no
conditions on the number of samples with which the PDEs in
(1) are discretized, and thus no conditions on the dimension
of (2) for (4) to hold.

Remark 1: In Theorem 1, the lithium concentrations cs,(1)
have an initial uniform profile. We claim that this is not
restrictive as there are always periods of time in the life of a
lithium-ion battery where cs,(1) is homogeneous in electrode
s, with s ∈ {neg,pos}. □

C. Towards a state space model

Before we present the new output equation derived from
(3), we recall the relation between ms in (2) and the cell
current Icell and we perform a model reduction, which is
essential to ensure the system detectability. Given SA1,
the electrochemical reaction rate is homogeneous within
each electrode. Therefore, a proportional relationship can be
established between Icell and jLi

s in particular jLi
neg := Icell

Acelldneg

and jLi
pos := − Icell

Acelldpos
, where Icell is in generator convention

(i.e., Icell > 0 in discharge), Acell is the electrode surface and
ds is the thickness of electrode s. On the other hand, we
have ms := − jLi

s
εsF . Hence, we obtain mneg := − Icell

εnegAcelldnegF

and mpos := Icell
εposAcelldposF .

On the other hand, model (2) is reduced just like in e.g.,
[5], [13], [17] by adopting the next assumption, which is
essential later for the observer convergence.

Standing Assumption 2 (SA2): The quantity of lithium in-
serted in battery electrodes is constant and known. □
SA2 is reasonable over short periods of time. Factors such as
cell degradation or side reactions can cause capacity loss over
time, resulting in a reduction in the total quantity of lithium
and the violation of SA2. In this case, if there is a small
uncertainty regarding the quantity of lithium, the battery state
and its estimation would exhibit asymptotic small errors.
Conversely, if the uncertainty is big and thus the quantity
of lithium needs to be estimated, state of health estimation
algorithms may be employed. SA2 allows to write a lithium
mass conservation. Hence, the quantity of lithium is defined
as

Q := αneg

Nneg

∑
i=1

cneg,iVneg +αpos

Npos

∑
i=1

cpos,iVpos, (5)

and is constant over time, where αs := F
3600

εsAcellds
V total

s
and

V total
s := NsVs is the volume of the particle of electrode s.

From (5), we express the lithium concentration at the center
of the negative electrode cneg,1 as a linear combination of all
the other sampled concentration in solid phase

cneg,1 = K −
Nneg

∑
i=2

cneg,i −
αposVpos

αnegVneg

Npos

∑
i=1

cpos,i, (6)

where K := Q
αnegVneg

.
In view of (6), cneg,1 is no longer needed in the state

space representation as it can be recovered from the other
concentrations.

D. Corrected output equation

We are ready to present the new output voltage equation.
The output equation of model (2) is obtained by decompo-
sition of the cell voltage Vcell. The main components of Vcell
are the potential differences between the electrodes and the
electrolyte called open circuit voltages (OCV) denoted OCVs
for s ∈ {neg,pos}, which depend on the surface insertion
rates ζs defined by ζs := cs,Ns

cs
max

for s ∈ {neg,pos}, where cs
max

is the maximum lithium concentration of electrode s and cs,Ns

is the surface concentration generated by model (2). Given
the lithium concentrations correction made in Section II.B,
instead of using cs,Ns to define the surface insertion rates,
we use the corrected surface concentration cs,cor,Ns defined
in (3) to derive the corrected surface insertion rates ζs,cor. As
a result, we obtain the output equation for y :=Vcell

y = OCVpos(ζpos,cor)−OCVneg(ζneg,cor)+g(u), (7)

where ζs,cor := cs,cor,Ns
cs

max
and g(u) := −ηr,pos(u) −

ηpos(u) − ηneg(u) − ηr,neg(u) − ηr,sep(u) for any
u := Icell ∈ R, where ηs(u) := 2 RT

F asinh
(

Rs
6εs js0Acellds

u
)

,

ηr,s(u) := 1
2Acell

(
ds

σs,eff
+ ds

κs

)
u, ηr,sep(u) := 1

Acell

dsep
κsep

u,

κs := κeε1.5
e,s , σs,eff := σsεs, κsep := κeε1.5

e,sep, with R, T , js
0,

κe, εe,s, εe,sep, εs and σs defined in [12, Table I].
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E. State space form

We present the overall state space representation.
We introduce for this purpose the state vector x :=
(cneg,2, ...,cneg,Nneg ,cpos,1, ...,cpos,Npos) ∈ RN with N := Nneg −
1+Npos, the input u = Icell ∈ R, the output y = Vcell ∈ R,
and w ∈ Rnw and v ∈ Rnv represent additive exogenous
perturbations and measurement noise respectively. We derive
the next state space equation{

ẋ = Ax+Bu+K +Ew
y = hcor(x)+g(u)+ v,

(8)

where the expressions of the matrices A ∈ RN×N , B ∈
RN×1 and K ∈ RN×1 are found after [12, (24)]. The
function hcor : RN → R is defined as, for any x ∈ RN ,
hcor(x) := OCVpos(Hpos,corx)− OCVneg(Hneg,corx + K1), such
as ζpos,cor := Hpos,corx and ζneg,cor := Hneg,corx + K1, with
Hs,cor ∈ R1×N and K1 are given in [12, (25)].

We are now ready to proceed with the observer design for
system (8).

III. STATE ESTIMATION

In this section, we first synthesize an observer for system
(8). Then, we correct the estimated concentrations generated
by the observer so that they match the concentrations given
by the PDEs in (1) asymptotically for constant inputs.

A. Polytopic approach

The proposed observer takes the form{
˙̂x = Ax̂+Bu+K +L(y− ŷ)
ŷ = hcor(x̂)+g(u),

(9)

where x̂ ∈ RN is the state vector estimate, L ∈ RN is the
observation matrix gain to be designed and ŷ is the estimated
(corrected) output.

We define the estimation error e := x− x̂. The dynamics
of the estimation error follows from (8) and (9),

ė = Ae+Ew−L(hcor(x)−hcor(x̂))−Lv. (10)

We make the next assumption on the OCVs as in e.g., [4],
[9], [17].

Assumption 1: For any s∈ {neg,pos}, there exist constant
matrices Cs,1,Cs,2 ∈ R such as for any z, z′ ∈ R,

OCVs(z)−OCVs(z′) =Cs(z,z′)(z− z′), (11)

where Cs(z,z′) := λ s
1(z,z

′)Cs,1 +λ s
2(z,z

′)Cs,2 with λ s
i (z,z

′) ∈
[0,1] for i ∈ {1,2} and λ s

1(z,z
′)+λ s

2(z,z
′) = 1. □

Assumption 1 means that each OCVs lies in a polytope de-
fined by Cs,1,Cs,2 with s ∈ {neg,pos}. This condition is often
verified in practice. Indeed, the OCVs are generally defined
on the interval [0,1] and are typically well-approximated
by a piecewise continuously differentiable and thus globally
Lipschitz function. Then, it suffices to extrapolate the OCVs
on [1,∞) (resp. on (−∞,0]) by using zero order or first order
approximations based on the value of the OCVs at 1 (resp.
at 0) for Assumption 1 to hold. Then, Cs,1 and Cs,2 represent
the minimum and maximum slopes of OCVs, respectively.

Assumption 1 implies that hcor, defined in Section II.E,
satisfies the next property.

Lemma 1: Suppose Assumption 1 holds and consider hcor
as defined in Section II.E, we have for any x,x′ ∈ RN

hcor(x)−hcor(x′) =C(x,x′)(x− x′), (12)

where C(x,x′) := ∑
4
i=1 Λi(x,x′)Ci, with Ci ∈ RN defined

in [12, (41)], Λi(x,x′) ∈ [0,1] for i ∈ {1,2,3,4} and
∑

4
i=1 Λi(x,x′) = 1. □
Lemma 1 implies that hcor lies in a polytope defined by

the vertices Ci with i ∈ {1,2,3,4}.
In view of (12), the estimation error dynamics can be

written as
ė = (A−LC(x, x̂))e+Ew−Lv. (13)

The next theorem provides a sufficient condition to design
gain L ∈ RN under which e = 0 is globally exponentially
stable in absence of noise v and disturbance w, and satisfies
L2-stability properties when the latter are non-zero.

Theorem 2: Suppose Assumption 1 holds and there exist
ε,µw,µv ∈ R>0, L ∈ RN and P ∈ RN×N symmetric and
positive definite such that for any i ∈ {1, ...,4}Hi + εIN PE −PL

E⊤P −µwInw 0
−L⊤P 0 −µvInv

≤ 0, (14)

with Hi := (A − LCi)
T P + P(A − LCi) then the following

hold.
• System (8), (9) is L2-stable from (w,v) to e with

gain less or equal to
√

µw
ε

and
√

µv
ε

, respectively, in
particular, there exist c ≥ 0 such that for w,v ∈L2, any
solution (x,e) to (8), (13) with u a Lebesgue measurable,
locally essentially bounded input satisfies ∥e∥L2,[0,t) ≤
c|e(0)|+

√
µw
ε
∥w∥L2,[0,t)+

√
µv
ε
∥v∥L2,[0,t) for any t ≥ 0.

• {(x,e) : e= 0} is uniformly globally exponentially stable
when w=0 and v=0, i.e., there exist γ1 ≥ 1,γ2 > 0 such
that for any solution (x,e) to (8), (13) with u a Lebesgue
measurable, locally essentially bounded input satisfies
|e(t)| ≤ γ1|e(0)|e−γ2t for any t ≥ 0. □

The matrix inequality in (14) is not linear, however
it becomes linear after a standard change of variables,
namely W = PL. Condition (14) can be easily tested given
the model parameters. Also, the order reduction performed
in Section II.C appears to be essential for its feasibil-
ity. From x̂, which represents the concatenation of the
estimated concentrations generated by observer (9) x̂ :=
(ĉneg,2, . . . , ĉneg,Nneg , ĉpos,1, . . . , ĉpos,Npos), we can retrieve ĉneg,1
by replacing the concentrations in (6) by their estimates.

B. Corrected estimated concentrations

Observer (9) generates estimated lithium concentrations,
which can also be corrected along with ĉneg,1 so that they
asymptotically match the concentrations of the PDEs in
(1) for constant input currents as seen in Section II.B. We
denote in the following cs,(1) the concentrations generated
by the PDEs in (1) as in Section II.B and ĉs the estimated
concentrations of electrode s, with s ∈ {pos,neg}.
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We denote the corrected estimated concentrations as ĉs,cor,
which are given by, for j ∈ {1, . . . ,Ns} and s ∈ {neg,pos},

ĉs,cor,j := ĉs,mean −Ks
j(ĉs,mean − ĉs, j), (15)

where ĉs,mean := 1
Ns

∑
Ns
i=1 ĉs,i and Ks

j as defined in (3).
The next theorem states an asymptotic property of the

error between the corrected estimated concentrations and the
concentrations generated by the original PDEs in (1) when
time tends to infinity for constant inputs.

Theorem 3: Consider system (8) and its observer (9) and
suppose e = x− x̂ = 0 is globally exponentially stable when
w = 0 and v = 0. Then, for any constant input current Icell
and any c0 ∈R≥0 such that cs,(1)(r,0) = c0 for all r ∈ [0,Rs],
any corresponding solution x̂ to (9) and cs,(1) to (1) satisfy

(ĉcor − c(1))∞ = 0, (16)

where ĉcor := (ĉneg,cor,1, ĉneg,cor,2, . . . , ĉneg,cor,Nneg , ĉpos,cor,1, . . . ,
ĉpos,cor,Npos) is the vector of the cor-
rected estimated concentrations and c(1) :=
(cneg,(1)(r

neg
1 , ·),cneg,(1)(r

neg
2 , ·), . . . ,cneg,(1)(r

neg
Nneg

, ·),cpos,(1)(r
pos
1 ,

·), . . . ,cpos,(1)(r
pos
Npos

, ·)). □
Theorem 3 implies that, under the conditions of Theorem

2, the estimated corrected lithium concentrations asymptoti-
cally match the lithium concentrations of (1) in absence of
noise and disturbance provided that a constant input current
is applied and cs,(1)(r,0) is uniform for all r ∈ [0,Rs].

IV. NUMERICAL CASE STUDY

We simulate model (8) and the model in [5] with the
parameters values given in [12, Table I]. We assume that
there is no measurement noise and no perturbation. The
considered OCVs curves are given in Figure 1, which satisfy
Assumption 1. The used input current u is a Plug-in Hybrid
Electrical Vehicle (PHEV) discharge current on the time
interval [0,1800], a PHEV charge current on [1800,3600]
and 0 on [3600,4500], as illustrated in Figure 2. The current
profile is thus rapidly varying on [0,3600], during which we
will see that improvements are obtained with the corrections
presented in Section II.B. We initialize both models at
equilibrium, meaning that all the initial concentrations within
the same electrode are equal, with a state of charge (SOC)
equal to 100%. The SOC is defined by for s ∈ {pos, neg}

SOCs := 100
cs,mean − cs

0
cs

100 − cs
0

, (17)

where cs
0, cs

100 are the lithium concentration of electrode s at
SOC equal 0% and 100%, respectively. Given that SOCpos
and SOCneg are equal, we use the notation SOC instead. As
for the reference model, it is obtained by solving the PDEs
of (1) using a finite elements method and simulated with the
parameters given in [12, Table I], see [18] for details.

We have compared the surface concentrations cs,surf and
the output voltages Vcell generated by the model in [5] and
model (8), with those generated by the reference infinite-
dimensional model over the whole interval of time [0,4500]
as well as [0,3600] where the current is rapidly varying
in Table I. We have computed the mean absolute error

Fig. 1. OCVs curves.

Fig. 2. Input current profile.

(MAE) and the root mean square error (RMSE) of the
voltage error eVcell between Vcell generated by (1) and Vcell
generated by the model in [5] and by (8), respectively and the
normalized surface concentrations error ecs,surf between the
surface concentrations generated by (1) and those generated
by the model in [5] and model (8), respectively. We see
significant improvement of the output voltage and the surface
concentrations given by model (8) compared to the one in [5]
on the interval [0,4500] and particularly on [0,3600], when
the current is rapidly varying.

MAE RMSE MAE RMSE
[0,4500] [0,4500] [0,3600] [0,3600]

eVcell : model in [5] [mV] 12.1 17.8 14.6 19.8
eVcell : model (8) [mV] 5.1 8.3 6.1 9.2
Improvement [%] 57.85 53.37 58.22 53.54
ecpos,surf : model in [5] [%] 2.05 3.01 2.48 3.36
ecpos,surf : model (8) [%] 0.95 1.53 1.15 1.71
Improvement [%] 53.66 49.17 53.63 49.11
ecneg,surf : model in [5] [%] 8.51 11.79 9.93 13.10
ecneg,surf : model (8) [%] 5.48 7.79 6.24 8.62
Improvement [%] 35.60 33.93 37.16 34.20

TABLE I
MAE AND RMSE OF THE OUTPUT VOLTAGE AND THE SURFACE

CONCENTRATIONS ERRORS GIVEN BY MODEL IN [5] AND MODEL (8).

We have then designed an observer for system (8) and
one for the system in [5] by applying the results of Section
III.A. We have been able to obtain the same observer gain
L in both cases so that the only difference between the two
observers is the output equation used to synthesize them.
In particular, L = 104(3.2354,3.5397,3.3862,-5.0338,-5.7366,
-5.3258,-5.4284). We have initialized both observers such
that all estimated concentrations within the same particle are
equal and correspond to a SOC estimate, denoted ŜOC, of
0%. We note that ŜOC is obtained by replacing cs,mean in
(17) by its estimate ĉs,mean. Both observers are fed by the
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voltage output generated by the reference model in [18].
Figure 3 reports the actual SOC given by the infinite-

dimensional model and the estimated ones, as well as the cor-
responding norm of the estimation errors on the SOC eSOC =
SOC − ŜOC obtained with the observer in [4], observer
(9) and observer (9) with the correction of its estimated
concentrations ĉ := (ĉ1

neg, x̂) as done in Theorem 3. We see
that observer (9) based on the corrected model (8) provides
a more accurate SOC. This improvement is quantified by
computing the MAE and the RMSE of the SOC estimation
errors eSOC for the observer in [4], observer (9) and observer
(9) with ĉcor, respectively, averaged over 20 simulations
for initial SOC estimates ranging from {0%,5%, ...,100%}.
The results are given in Table II. We see that observer (9)
generates more accurate results in terms of SOC estimation
and this improvement is of the order of percent, which is
significant for lithium-ion batteries.

We have also computed in Table II the average MAE
and the average RMSE over the same 20 scenarios, of the
norm of the normalized estimated concentrations error ecs

for s ∈ {pos,neg} for the observer in [4], for observer (9)
and for observer (9) with ĉcor. More accurate estimated
concentrations are obtained as a result of the correction of
the estimated concentrations.

MAE RMSE
eSOC: observer in [4] [%] 1.92 2.76
eSOC: observer (9) [%] 0.81 1.34
eSOC: observer (9) + ĉcor [%] 1.59 2.28
ecpos : observer in [4] [%] 1.16 1.87
ecpos : observer (9) [%] 1.78 2.35
ecpos : observer (9) + ĉcor [%] 1.02 1.64
ecneg : observer in [4] [%] 5.82 6.51
ecneg : observer (9) [%] 7.28 8.19
ecneg : observer (9) + ĉcor [%] 4.99 5.58

TABLE II
AVERAGE MAE AND RMSE OVER 20 SIMULATIONS OF THE SOC
ESTIMATION AND OF THE ESTIMATED CONCENTRATIONS ERRORS.

V. CONCLUSION

We have designed an observer based on a finite-
dimensional electrochemical model, for which we corrected
its lithium concentrations to asymptotically eliminate the er-
rors induced by the PDE discretization for constant currents.
Simulations results show the improvement of the model and
the state estimates as a result of the proposed corrections.
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for advanced battery management systems — Part II: SOH identifi-
cation. In Amer. Control Conf., pages 566–571, Montréal, Canada,
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