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Abstract— Occlusions at intersections threaten the safety of
autonomous driving, especially in urban scenarios. Phantom
vehicles are usually considered to mitigate the risks associated
with the occlusions, and their states may be inferred from
observable vehicles. This paper extends these methods to deal
with multiple occlusions and multiple inferences. A multi-
occlusion aware model allows for the concerns of occluded areas
and the configuration of phantom vehicles. The evidence theory
fuses multiple estimations to enhance occlusion inferences. Sim-
ulations for intersection scenarios are conducted to demonstrate
the effectiveness of the proposed method for improving traffic
efficiency.

I. INTRODUCTION

Significant progress has been achieved in autonomous
vehicle planning in recent decades. However, challenges
persist due to uncertainties of driving scenarios, sensor range
limitations, and complex interactions with human drivers.
In some urban traffic scenarios, there are usually multiple
dynamic and static occlusion factors (such as buildings,
vehicles, etc.), and the ego vehicle cannot directly perceive
the positions and speeds of potential traffic participants in the
occluded areas. As shown in Fig. 1, when the ego vehicle
is about to turn left at an intersection, there are obstructions
such as parked cars and buildings around, blocking the view
of the ego vehicle. The dynamic vehicles in the occluded
areas may threaten the driving safety.

To deal with the uncertainty caused by occlusions, it is
necessary to establish an appropriate model to describe the
traffic situation in occluded area reasonably. A common
approach is to allocate phantom vehicles at the boundaries of
occluded areas, considering the worst-case. The study in [1]
considered the uncertainty of intentions of phantom vehicles
turning or going straight at intersections and searched for
the optimal longitudinal acceleration of the ego vehicle.
In [2], the configuration of phantom vehicles was refined
based on traffic rules and verified in various traffic scenarios.
References [3], [4] used the Partially Observable Markov
Decision Process (POMDP) to model the uncertainty caused
by occlusions at intersections, and described the distribution
of potential vehicles as a Poisson process using traffic flow
information. In addition to directly configuring phantom
vehicles, particle simulations can be used to describe the
potential positions of vehicles in occluded areas. The work in
[5] used a particle filter to generate a probability distribution
of blind spot risks and optimize safe trajectories. Reference
[6] proposed a set-based model of occlusion factors, which
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Fig. 1: The parked vehicle and buildings are occluded factors.
The ego vehicle (blue) can infer occlusions based on two
observed vehicles (yellow).

established a unified framework for potential traffic partic-
ipants. However, such overapproximation approaches may
lead to conservative planning trajectories.

In urban traffic scenarios with occlusions, behaviors of
observable traffic participants may contain traffic information
of occlusions. Therefore, some studies inferred the traffic
situation in occluded areas by analyzing the observable be-
haviors of surrounding vehicles [7]. The work in [8] proposed
a method for inferring the occupancy probability of grid
map based on human behaviors, learning the mapping from
different actions of human-driving vehicles to grid occu-
pancy probabilities. Reference [9] presented a learning-based
method of multimodal mapping from observable trajectories
of other vehicles to occupancy grids, and verified it in
multi-vehicle scenarios. Reference [10] used inverse planning
to generate the reward function of inverse reinforcement
learning for inferring occlusions. Reference [11] estimated
the probability distribution of occlusion configurations and
intentions of other vehicles by inverse planning. Various
methods have been proposed for occlusion inference by using
observable traffic participants as sensors, but these methods
are only applicable to single-occlusion scenarios. Reference
[9] provided a solution to dealing with multiple sensor
measurements. It fused the grid occupancy probabilities of
the front view of each observed vehicle with the evidence
theory. However, end-to-end inference methods based on
occupancy grid map have difficulty in fusing traffic rules and
cannot explicitly describe the types of traffic participants.

Inspired by [6] and [9], this paper proposes an occlusion
inference framework suitable for urban scenarios using social
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vehicles as sensors. The main contributions of this paper are
as follows:

• The proposed model is applicable to multiple occlu-
sions.

• The inference incorporates occluded area estimations
from multiple social vehicles.

• The occlusion inference is applied to improve traffic
efficiency.

The remaining sections are organized as follows: Section
II describes the multi-occlusion modeling method in detail.
Section III presents the process of multi-sensor inference
and integrates the inference into a POMDP module. Section
IV carries out simulations and the corresponding analyses.
Section V summarizes and outlooks the proposed method.

II. MULTI-OCCLUSION AWARE MODEL

Urban traffic scenarios usually involve multiple occlu-
sions. This paper proposes a multi-occlusion aware model,
which filters occluded areas of interest and reasonably con-
figures phantom vehicles in urban scenarios.

A. Environment Model

In this paper, the environment model updated at each time
step consists of the following elements.

1) FOV: The FOV is given by the upstream perception
module, and is related to the position and height of the oc-
clusion and the perception performance. This paper ignores
sensor noise and analyzes the occlusion areas centered on
the ego vehicle from a bird’s eye view.

2) Traffic Participants: All traffic participants in the en-
vironment at t are noted as pt ∈ Pt, pt := ⟨cp, spt , Qp⟩.
In driving scenarios with occlusions, the vehicles can be
divided into three categories, i.e. observed traffic participants,
phantom traffic participants and the ego vehicle. The type
is denoted by cp ∈ {′ob′,′ pht′,′ ego′}. The state spt :=
[xt, yt, vt, ϕt]

T contains the position, speed and yaw of the
traffic participant. And Qp is the parameters of each traffic
participant. In this paper, vehicles are considered as the
only type of traffic participants for simplicity, and other
participants such as bicycles and pedestrians can be modeled
similarly.

3) Road Topology: The road topology is based on lanelet
maps [12]. A road topology node consists of one lanelet cell
or multiple laterally adjacent lanelets. Each road topology
edge indicates the adjacency of nodes. The lanes in con-
nected nodes are longitudinally adjacent, and the direction of
the edge is the same as lanes. Each node represents a segment
of the lane physically, and there may exist overlapping areas
between different nodes. A road topology layer is illustrated
in Fig. 2(a).

B. Phantom Vehicle Model

This paper proposes a phantom vehicle model, which
provides a unified and explicit representation of potential
vehicles.
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(a) Road network of T-intersection.
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(b) Intention of the blue vehicle is unknown.
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(c) Intention of the blue vehicle is turning left.

Fig. 2: Road topology.

1) Positions of Phantom Vehicles: The driving corridor
is a sequence of lanes which a vehicle is likely to travel
through. The breadth-first search is performed on the road
topology layer for each vehicle to obtain its driving corridor.
The parameter bdir ∈ {′drivDir′,′ anyDir′} indicates the
constraint of the driving intention of the vehicle during
the search, as shown in Fig. 2(b) and Fig. 2(c). If the
driving corridors of two vehicles intersect, they are at risk
of potential conflict, and the intersecting part is called the
conflict area.

The occluded areas at current time can be obtained accord-
ing to the environment model Ω. The intersection points of
all lane midlines with the boundary of the occluded areas,
ζkt :=

(
xkt , y

k
t

)
, indicate the possible location of the kth

phantom vehicle. Configure the candidate phantom vehicles
at each ζkt , and check for potential conflicts between the
driving corridors of the ego vehicle and the candidate. The
candidates impossible to conflict with the ego vehicle will
be discarded. Since the model is updated in real time, among
all the candidates in the same lane and traveling in the same
direction, retain the one with the closest conflict area to the
ego vehicle. Then the set of locations of phantom vehicles
can be determined.

2) Speeds of Phantom Vehicles: This paper infers the
states of potential vehicles by observing surrounding so-
cial vehicles. Therefore, we instantiate the corresponding
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phantom vehicles for each observed vehicle. Essentially, the
behavior of an observed vehicle is affected by the estimated
time tob,phtc at which it could crash with a potential vehicle.
When there are no phantom vehicles in the occluded area, or
when it is impossible for potential vehicles to interact with
the observed vehicle, we have

tob,phtc = ∞ (1)

When the phantom vehicle is possible to interact with the
observed vehicle in the future:

tob,phtc =
ψob
c

vob
(2)

where ψob
c is the distance from the location of the observed

vehicle to the conflict area. Thus, for phantom vehicles with
determined locations in the previous section, their speeds
can be obtained by inverse extrapolation from their potential
conflict time with other vehicles as follows

vpht = min

(
ψpht
c

tob,phtc

, vmax

)
(3)

where ψpht
c denotes the distance from the location of the

phantom vehicle to the conflict point, and vmax is the
maximum speed limit set by traffic rules.

III. MULTI-SENSOR OCCLUSION INFERENCE

Using the behavior of social vehicles as sensors, au-
tonomous vehicles can infer the state of potential vehicles
in occluded areas. The proposed method consists of the
measurement of a single vehicle sensor and fusing all mea-
surements using the evidence theory.

A. Driver Sensor Model

Each phantom vehicle has two instantiations, i.e. the state
of presence or absence. We call a possible instantiation set of
all phantom vehicles an occlusion configuration, denoted by
z ∈ Z . The inverse-planning prediction method [13] is used
to conduct the inference. The aim is to estimate the belief
of each possible occlusion configuration, Pr(z|ŝi1:t), from an
observed vehicle i. This paper builds a rational driver model
to calculate a rational trajectory, s∗i1:end, for each hypothesis
of observed vehicles’ intention and occlusion configurations.
At each planning step, the historical trajectory ŝi1:t and the
predicted rational trajectory s∗it+1:end are put together as
ŝ+i
1:end. Though the trajectory similarity measurement func-

tion D(·), defined by the longest common subsequence, we
parameterize the likelihood of possible goals g and occlusion
configuration z as a Boltzmann distribution with temperature
β, i.e. [11]

L(g, z|ŝi1:t) = exp
(
β ·D(s∗i1:end, ŝ

+i
1:end)

)
(4)

The prior probabilities of occlusion configurations and
observed vehicle intentions are represented as p(z) and p(g),
then the probabilistic belief of the assumptions Pr(z|ŝi1:t) can
be obtained by Bayes’ rule

Pr(z|ŝi1:t) ∝
∑
g

L(g, z|ŝi1:t)p(g)
p(z)

(5)

B. Multi-Sensor Fusion
Urban traffic scenarios usually involve more than one

observable vehicle, which provides diverse information for
occlusion inference. The inference results from multiple
sensors need to be fused. In this paper, the evidence theory
[9] [14] is used to fuse multi-sensor information into Mego.
The evidence theory discriminates conflicting information
(e.g., two different sensor measurements) and thus deals
effectively with uncertainty inference. The hypothetical space
here is Z = {z1, z2, · · · }, which explicitly describes phan-
tom vehicles.

The sensor fusion process is started by heuristically
transforming the probabilities in Mi into belief mass for
occlusion measurement of the observed vehicle i:

mi ({zk}) = δMi = δPr(z|si1:t) (6)

where k is the identification of occlusion configurations. The
hyperparameter δ, representing the confidence of the sensor
information, is determined by the interaction between the
observed vehicle and potential vehicles

δ = α ·
(
1− Nnc

NG

)
(7)

where α = 0.95 is the confidence coefficient [9], NG is
the number of all possible driving corridors for the observed
vehicle, and Nnc is the number of driving corridors with-
out possible conflict. Thus, the uncertainty belief mass is
mi (Z) = 1− δ.

At each planning step, the belief mass is updated using
Dempster-Shafer’s rule [14]:

mego(z
′
1) = mego (z

′
1)⊕mi (z

′
1)

:=

∑
z′
2∩z′

3=z′
1

mego (z
′
2)mi (z

′
3)

1−
∑

z′
2∩z′

3=ϕ

mego (z′2)mi (z′3)

(8)

where z′1, z
′
2, z

′
3 ∈ 2Z . Initially, the ego vehicle is completely

unaware of the occlusion, which means mego (Z) = 1. We
can convert the belief to its probability by using Pignistic
transform [15]

Pr(z) = Mego(z)

=
∑

z′∈2Z

mego(z
′)
|z ∩ z′|
|z′|

(9)

where z ∈ Z , |·| represents the cardinality of a set.

C. Integrating Inference into Planning
The POMDP model [16] explores the optimal action se-

quences by constructing a search tree. The model defines the
state set, action set, observation set, transition probabilities
function, reward function and initial belief. It widely solves
trajectory planning problems in uncertain scenarios. In this
paper, the DESPOT solver in [17] is used to achieve the
optimal action of the ego vehicle along a reference path.

The state space S and observation space O are set accord-
ing to the model in Section II:

S = {sp, gp, z} (10)
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where p denotes each vehicle in the scenario, cp ∈
{′ego′,′ ob′,′ pht′}, g is the intention of each vehicle and
z is the occlusion configuration.

O = {sp} (11)

where cp ∈ {′ego′,′ ob′}.
The action space A consists of discrete sequences of

longitude accelerations and lateral speeds.
The states of vehicles under different beliefs are trans-

ferred by the rational driver model in Section III. The initial
belief b0 is updated in real time according to the multi-sensor
occlusion inference model.

The reward function includes the rewards of the the ego
vehicle’s speeds, accelerations and collision checks

R = Rv +Ra +Rc (12)

where Rv considers the speed limits and path curvatures, Ra

reflects the comfort, and Rc ensures the driving safety.

IV. SIMULATIONS AND EVALUATIONS

The proposed method is verified and evaluated by simu-
lations. The simulation scenario, as shown in Fig. 1, is an
unsignalized intersection where the ego vehicle will turn left
from the south. A perception range of 360 degrees and 100
meters is assumed for the ego vehicle. The path of the ego
vehicle is predefined based on the midline of the lane. The
priority of different traffic participants is not considered in
this paper.

The proposed method, named ‘MultiOc Planner’, was
compared with two baseline planners. The aggressive planner
had an optimistic estimate of the scenario, assuming that the
phantom vehicles in the occluded areas would not interact
with the ego vehicle. In other words, the scenario conforms
to the configuration where the potential conflict time of
the phantom vehicle is infinite. The conservative planner
in [2] considered the worst-case scenario, assuming that all
phantom vehicles in the occluded areas always exist and have
potential conflicts with the ego vehicle.

Fig. 3 presents configurations of phantom vehicles and
trajectories generated by the proposed planning framework.
The green rectangle represents the ego vehicle, the blue
vehicles can be observed, the purple vehicle is hidden behind
the occlusions. The rectangle with a dotted border indicates
the phantom vehicle configured for the current scenario. In
the presence of multiple occlusion areas, only one phantom
vehicle is configured in the position most likely to threaten
vehicle safety, and collisions can still be avoided.

When there are no vehicles in the occluded area, the
MultiOc planner selects a more aggressive action than the
conservative planner, as shown in Fig. 4. The traveled
distance of MultiOc planner is similar to that of the ag-
gressive planner, which indicates that the proposed method
can improve traffic efficiency. When there is an oncoming
vehicle in the occluded area, the MultiOc planner slows
down and avoid collisions, as shown in Fig. 5. In this case,
MultiOc planner achieves higher passing efficiency than both
baseline planners. Note that, it is caused by the aggressive

(a) t = 0 s (b) t = 2.5 s

(c) t = 5 s (d) t = 8 s

Fig. 3: Simulation results with the proposed framework.

planner’s braking when an oncoming vehicle in the occluded
area moves into the observable range. The average speed of
trajectory generated by MultiOc planner is 12.2% higher than
that of the method in [2].

V. CONCLUSIONS AND FUTURE WORKS

This paper discusses the challenges of autonomous ve-
hicles due to occlusions that threaten their safety in urban
scenarios. It presents a unified multi-occlusion aware model
configuring phantom vehicles in the areas of interest where
occlusions are complex. The proposed method employs the
evidence theory to fuse measurements, enhancing occlusion
inference. Simulations of an intersection scenario illustrated
that the proposed method can generate more efficient trajec-
tories for autonomous driving.

In the future, the model will be further improved by
referencing other types of traffic participants. Moreover, the
occlusion inference method will be extended to unstructured
scenarios.
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