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Abstract— The paper investigates fully distributed coopera-
tive control for discrete-time multi-train systems, focusing on
managing transient constraints on position differences between
neighboring trains, as well as on individual train velocities and
inputs. Existing research on this topic is limited and typically
requires a linear network structure, with each train having
access to network structural information, such as the Laplacian
matrix. However, travel routes may vary significantly, and the
network structure is prone to change. Consequently, this study
introduces a fully distributed control law that solely relies on
relative position information from neighboring trains, offering
adaptability to changes in the network structure of actual multi-
train systems. Technically, the paper ingeniously converts both
position and velocity constraints into input constraints, guiding
the controller design to achieve the objectives of transient
constraints.

I. INTRODUCTION

Trains have become a popular choice for travel due to
their safety and comfort. To accommodate the continuously
increasing number of passengers, enhancing the carrying
capacity of railway systems is both necessary and urgent.
Cooperative control of multiple trains, while ensuring safety,
can reduce the operational distance between adjacent trains.
It has been demonstrated to effectively increase the capacity
of existing railway systems, as documented in references [1],
[2]. Therefore, research on the cooperative control of multi-
ple trains has garnered widespread attention.

In the continuous-time domain, significant progress has
been made in the cooperative control of multi-train systems.
Reference [1] introduces a cooperative control method for
multi-train systems under the context of the moving block
signaling system, along with corresponding stability criteria.
Reference [3] proposes a distributed cooperative control
scheme for trains with a rear fence communication topology.
To ensure the robustness of train operations: [4] investigates
robust distributed control problems under external distur-
bances; [5] studies distributed fault-tolerant control problems
in the case of local actuator failures; [6] explores cooperative
control strategies for trains under denial-of-service attacks.
Addressing the physical constraints inherent in trains: [5]
considers the issue of input saturation; [7] investigates prob-
lems where both velocity and input are constrained. To pre-
vent train collisions: [8] explores tracking and anti-collision
issues; [2] delves into cooperative predefined performance
control problems.
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On the contrary, research on cooperative control of train
systems in the discrete-time domain is notably lacking. Due
to the widespread use of digital circuits in train systems,
both control signals and sensor signals are predominantly
in digital form. Therefore, research in the continuous-time
domain need be discretized before being applied to real
systems, which inevitably introduces numerical errors. While
these errors may be tolerable for some linear systems,
they pose high risks for trains with complex nonlinear
characteristics and stringent safety requirements. This could
potentially lead to system instability or significant accidents.
To seamlessly apply control strategies to train systems,
researchers consider studying discrete-time train models. In
this regard, [9], [10] address the tracking control problem
with velocity and input constraints in discrete-time train
systems, proposing a distributed cooperative tracking control
algorithm. However, [9], [10] only consider a single particle
train model. Building upon this, [11] extends the afore-
mentioned research to a multi-particle train model, which
includes nonlinear coupling between different compartments
within a single train. Nevertheless, the above studies do not
address collision avoidance, which is crucial for ensuring
the safe operation of trains. In addressing this concern, [12]
incorporates considerations for collision avoidance among
trains based on the aforementioned research.

In the discrete-time domain, although research on coop-
erative control in multi-train systems has addressed multi-
ple control tasks, several significant issues persist. Firstly,
only collision avoidance between trains has been achieved,
overlooking situations where trains are too far apart to
communicate effectively due to limitations of communication
devices. This necessitates constraining the position difference
between neighboring trains within upper and lower bounds,
a task currently only accomplished in the continuous-time
domain, as demonstrated in [2], [13]. Secondly, only re-
search [12] has achieved collision avoidance between adja-
cent trains in the discrete-time domain. However, [12] relies
solely on the braking of the rear train to prevent collisions
when the distance between adjacent trains is too close, which
may result in energy waste. Clearly, allowing the front train
to increase the distance from the rear train by accelerating
can enhance the flexibility of adjusting inter-train distances to
ensure position difference constraints. Finally, the majority of
studies, such as [9]–[12], require the communication network
of multi-train systems to be linear and fixed, with each
train having access to global network structural information.
However, as the operational routes of different trains may
vary, the network in a multi-train system is susceptible to
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changes, and newly added trains may struggle to promptly
acquire global network information.

In addressing to the aforementioned issues, this paper
achieves cooperative control in the discrete-time domain
for a multi-train system. It encompasses three specific ob-
jectives: 1) maintaining the distances between neighboring
trains within predetermined bounds; 2) ensuring that the
velocity and input of each train remain within predefined
constraints; 3) achieving the convergence of the distance
between neighboring trains to the desired distance, with the
velocity of each train converging to the reference velocity.
Innovations in this paper are threefold:

1) The paper introduces a fully distributed control law de-
sign, exclusively leveraging relative positional informa-
tion among neighboring trains. This design eliminates
the need for global network topology information and
avoids imposing a linear network structure, which is
required in the studies of [9]–[12].

2) The paper simultaneously considers upper and lower
bounds constraints on position difference, velocity, and
inputs, with independent and mutually unknown con-
straint boundaries for different trains. This aspect is
either partially addressed or not addressed in existing
research on discrete-time domains for trains, such as
[9]–[12].

3) An ingeniously transformation of position difference
and velocity constraints into input constraints, guiding
the design of the controller to simultaneously satisfy the
aforementioned triple constraints.

II. PROBLEM FORMULATION

Consider a multi-train system composed of N trains. The
dynamics of each train are represented as follows:

xi(k + 1) =xi(k) + vi(k)T

vi(k + 1) =vi(k) + ui(k)T − fi(k)T, i = 1, · · · , N, (1)

where xi(k), vi(k) and ui(k) ∈ R denote the position,
velocity, and input of the i-th train, respectively. T is the
sampling period, and fi(k) represents the base resistance.
Assuming the neglect of the length of train, each train is
treated as a particle. The base resistance is typically given
in the following form:

fi(k) = ai + bivi(k) + civ
2
i (k),

where the coefficients ai, bi, and ci are empirical parameters
obtained from actual train operation data.

From (1), the multi-train system can be regarded as a
multi-agent system, where each train is considered as a
subsystem. Communication among these subsystems occurs
through a predefined network. Below, we establish rules
and symbols governing the topology network. In this paper,
we assume that the network topology among the agents is
described by a fixed undirected weighted graph G = (V, E),
where V = {1, · · · , N} denotes the set of indices of each
agent, and E = {(i, j) ∈ V × V} is the set of edges
connecting two distinct agents. The connectivity matrix A =

[aij ] ∈ RN×N of G is defined such that aij = aji = 1 if
(i, j) ∈ E , and aij = aji = 0 if (i, j) /∈ E . Additionally,
we ensure that aii = 0 to disallow self-edges (i, i). In this
context, we refer to agent j as a neighbor of agent i if
aij = aji = 1; otherwise, j is not considered a neighbor
of i. The set of all neighbors of agent i is denoted by
Ni = {j ∈ V | (i, j) ∈ E}. The degree of the i-th agent
in the graph G, denoted by |Ni|, represents the number of
neighbors of the i-th agent, where | · | denotes the cardinality
of a set.

Assumption 2.1: The undirected graph G is connected.
Each agent can only access the relative position information
of its neighboring agents and cannot obtain the global
network information represented by the connectivity matrix
A.

The state of an actual multi-train system is subject to
physical constraints. For instance, to avoid collisions, for
two adjacent trains, the position of the trailing train must
consistently remain behind the position of the leading train;
due to communication equipment limitations, the distance
between adjacent trains must consistently be less than the
maximum effective communication distance to ensure sta-
ble communication. Additionally, during operation, due to
constraints imposed by different operational states and track
conditions, the velocity of trains often needs to be further
restricted within specific constraint sets. For example, there
may be a minimum velocity requirement for trains in electri-
fied neutral sections. Furthermore, due to the inherent torque
limitations of motor outputs, the dynamic model of trains
exhibits natural input saturation constraints.

Under the Assumption 2.1, to address the constraints
imposed on the practical train system mentioned above, our
focus is on designing a fully distributed controller ui(k) to
achieve the following three objectives.
O1: Ensure that the position difference xij(k) = xi(k) −

xj(k) between neighboring trains remains within a spe-
cific constraint range throughout the entire operational
process, i.e.,

γ
ij
≤ xij(k) ≤ γij , ∀k ≥ 0, (i, j) ∈ E . (2)

O2: Ensure that the velocity and input of each train remain
within specific constraint ranges throughout the entire
operational process, i.e.,

ρ
i
≤ vi(k) ≤ ρi, µi ≤ ui(k) ≤ µi, ∀k ≥ 0, i ∈ V.

(3)

for constants ρ
i
< ρi and µ

i
< µi.

O3: Achieve the asymptotic convergence of the position
difference xij(k) to a desired distance dij , with the
train velocity vi(k) asymptotically tracking a reference
velocity vr, i.e.,

lim
k→∞

xij(k) = dij

lim
k→∞

vi(k) = vr, ∀(i, j) ∈ E , i ∈ V. (4)

Assumption 2.2: For all (i, j) ∈ E , γ
ij
< dij < γij ,

dij = −dji and γ
ij

= −γji. The distance dij satisfies
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transitivity in the multi-agent system, i.e., dij = dil + dlj ,
∀(i, j), (i, l), (l, j) ∈ E .

Assumption 2.3: For all i ∈ V , ρ
i
< vr < ρi, vr is known

for all trains to ensure safety.
Assumption 2.4: Defining f

i
= minvi(k)∈[ρ

i
,ρi]
{fi(k)}

and f i = maxvi(k)∈[ρ
i
,ρi]
{fi(k)}, for all i ∈ V , µ

i
< f

i
and

f i < µi, [vr − ρi]/T > µ
i
− f

i
and [vr − ρi]/T < µi − f i.

Remark 2.1: Assumptions 2.2 and 2.3 are foundational,
established to ensure the simultaneous achievement of ob-
jectives O1, O2 and O3 without contradiction. The Assump-
tion 2.4 postulates that the input ui(k) of train is signifi-
cantly greater than the foundational resistance fi(k). This
assumption is deemed reasonable and has also been utilized
in other rail research, as evidenced in [12]. Additionally,
the Assumption 2.4 dictates the relationship between input
constraints and velocity constraints, a requirement similar
to those widely applied in other studies simultaneously
considering input constraints and velocity constraints, as
demonstrated in [12], [14], [15].

III. MAIN RESULTS

Given the transitivity property of the distance dij , as
known from Assumption 2.1, there exists a set of constant di,
1, · · · , N such that dij = di−dj , ∀(i, j) ∈ E . Therefore, we
introduce a coordinate transformation: yi(k) = xi(k) − di.
To facilitate controller design, we further introduce the fol-
lowing transformations: yi(k) = yi(k)− vrkT and vi(k) =
vi(k) − vr, and ui(k) = ui(k) − fi(k). The system (1) is
then equivalent to:

yi(k + 1) =yi(k) + vi(k)T

vi(k + 1) =vi(k) + ui(k)T, i = 1, · · · , N. (5)

Correspondingly, the objectives O1, O2, and O3 are rewritten
as the following three objectives:
O′1: Defining yij(k) = yi(k) − yj(k), then objective O1 is

equivalent to:

γ
ij
− dij ≤ yij(k) ≤ γij − dij , ∀k ≥ 0, (i, j) ∈ E .

(6)

O′2: Under Assumption 2.4, the objective O2 can be
achieved when the following conditions hold:

ρ
i
− vr ≤ vi(k) ≤ ρi − vr,

µ
i
− f

i
≤ ui(k) ≤ µi − f i, ∀k ≥ 0, i ∈ V. (7)

O′3: Based on the above coordinate transformation, the ob-
jective O3 is equivalent to:

lim
k→∞

yij(k) = 0

lim
k→∞

vi(k) = 0, ∀(i, j) ∈ E , i ∈ V. (8)

Furthermore, for analytical convenience, system (5) can
be equivalently represented as:

yi(k + 2) =yi(k + 1) + vi(k + 1)T

vi(k + 1) =vi(k) + ui(k)T, i = 1, · · · , N. (9)

Let y = [y1, · · · , yN ]T. Before designing the controller,
we make the following definitions:

αi(y(k + 1)) = max
j∈Ni

{
−
yij(k + 1)− (γ

ij
− dij)

2

}

αi(y(k + 1)) = min
j∈Ni

{
γij − dij − yij(k + 1)

2

}
β
i

=(ρ
i
− vr)T

βi =(ρi − vr)T
η
i

=ρiT + (µ
i
− f

i
)T 2 − vrT

ηi =ρ
i
T + (µi − f i)T 2 − vrT

δi(y(k + 1)) = max{αi(y(k + 1)), β
i
, η
i
}

δi(y(k + 1)) = min{αi(y(k + 1)), βi, ηi}

Gi(y(k + 1)) =− 1

2|Ni|
∑
j∈Ni

yij(k + 1). (10)

Slightly abusing the notation, we employ δi = δi(y(k+ 1)),
δi = δi(y(k + 1)), and Gi = Gi(y(k + 1)) in the following
sections. Next, we denote vij(k) = vi(k)− vj(k) and define
a saturation function as:

sat(ξ, ξ, g) =


ξ, if g ≥ ξ
g, if ξ < g < ξ

ξ, if g ≤ ξ

for ξ ≤ ξ. Let ω = 1/T .
The controller for each agent can be designed as:

ui(k) = −ωvi(k) + ω2 sat(δi, δi, Gi) (11)

for i ∈ V . Substituting (11) into (9), we have:

yi(k + 2) = yi(k + 1) + sat(δi, δi, Gi), i = 1, · · · , N.
(12)

Now, it is ready to state the main result in the following
theorem.

Theorem 1: Consider the multi-train system (1) with con-
troller ui(k) = ui(k) + fi(k), where ui(k) is given by (11).
Under Assumptions 2.1 to 2.4, and with the initial state
satisfying

γ
ij
≤ xij(0) + vij(0)T ≤ γij

ρ
i
≤ vi(0) ≤ ρi, ∀(i, j) ∈ E , i ∈ V, (13)

the objectives O1, O2 and O3 can be achieved in the sense
of (2), (3) and (4), respectively.

Proof: To establish the objectives O1 and O2, we can
do so by proving the objectives O′1 and O′2. From the initial
state of system (1) satisfying (13), we can infer that the initial
state of (9) has:

γ
ij
− dij ≤ yij(1) ≤ γij − dij

ρ
i
− vr ≤ vi(0) ≤ ρi − vr, ∀(i, j) ∈ E , i ∈ V.

Next, in order to prove objectives O′1 and O′2, we demon-
strate the following implications hold for all k ≥ 0, (i, j) ∈
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E , i ∈ V:{
γ
ij
− dij ≤ yij(k + 1) ≤ γij − dij

ρ
i
− vr ≤ vi(k) ≤ ρi − vr

=⇒
γ
ij
− dij ≤ yij(k + 2) ≤ γij − dij

ρ
i
− vr ≤ vi(k + 1) ≤ ρi − vr

µ
i
− f

i
≤ ui(k) ≤ µi − f i

.

Due to γ
ij
−dij ≤ yij(k+1) ≤ γij−dij , we have αi(y(k+

1)) ≤ 0 ≤ αi(y(k+ 1)). From Assumptions 2.3 and 2.4, we
can verify that β

i
, η
i
< 0 and βi, ηi > 0. Therefore, we have

δi ≤ 0 and δi ≥ 0. Then, it can be obtained from (10) that

αi(y(k + 1)) ≤ δi ≤ sat(δi, δi, Gi)

αi(y(k + 1)) ≥ δi ≥ sat(δi, δi, Gi).

Noting yij = −yji, ∀(i, j) ∈ E , from (12) and Assump-
tion 2.2, we have:

yij(k + 2) =yij(k + 1) + sat(δi, δi, Gi)− sat(δj , δj , Gj)

≥yij(k + 1)−
yij(k + 1)− (γ

ij
− dij)

2

−
γji − dji − yji(k + 1)

2
≥γ

ij
− dij .

Similarly, we have yij(k + 2) ≤ γij − dij .
From (12), we deduce that

β
i
≤ yi(k + 2)− yi(k + 1) ≤ βi.

Therefore, we have vi(k+1) = (yi(k+2)−yi(k+1))/T ≥
ρ
i
− vr. Similarly, we know that vi(k + 1) ≤ ρi − vr.
From (12), we know that

η
i
≤ yi(k + 2)− yi(k + 1) ≤ ηi.

Therefore, we have

ui(k) =
vi(k + 1)− vi(k)

T

≥yi(k + 2)− yi(k + 1)

T 2
− ρi − vr

T

≥
ρiT + (µ

i
− f

i
)T 2 − vrT

T 2
− ρi − vr

T
≥µ

i
− f

i
.

Similarly, we can deduce that ui(k) ≤ µi − f i. Therefore,
the objectives O1 and O2 have been demonstrated.

To prove the objective O3, we can establish the validity
of objective O′3. We make the following definitions:

ymin(k) = min
i∈V
{yi(k)}

ymax(k) = max
i∈V
{yi(k)}

φ(k) ={i ∈ V | yi(k) = ymin(k)}
ψ(k) ={i ∈ V | yi(k) > ymin(k)}
V (k) =ymax(k)− ymin(k)

∆V (k) =V (k + 1)− V (k).

Below, we divide the proof of objective O′3 into four steps.
Step 1: ∀k ≥ k0 + 1 and k0 ≥ 0, we have ymin(k) ≥
ymin(k0 + 1) and ymax(k) ≤ ymax(k0 + 1). If yi(k0 + 1) >
ymin(k0 + 1), then yi(k) > ymin(k0 + 1), ∀k ≥ k0 + 1. If
yi(k0 + 1) < ymax(k0 + 1), then yi(k) < ymax(k0 + 1),
∀k ≥ k0 + 1.

From (12), we deduce that

yi(k + 2) =yi(k + 1) + sat(δi, δi, Gi)

≥yi(k + 1)− 1

2|Ni|
|Ni|[yi(k + 1)− ymin(k + 1)]

≥1

2
[yi(k + 1) + ymin(k + 1)]

≥ymin(k + 1).

Through iteration, we know that ymin(k) ≥ ymin(k0 + 1),
∀k ≥ k0 + 1. Based on a similar analysis, we know that
ymax(k) ≤ ymax(k0 + 1), ∀k ≥ k0 + 1. If yi(k + 1) >
ymin(k + 1), we can deduce:

yi(k + 2) ≥ 1

2
[yi(k + 1) + ymin(k + 1)] > ymin(k + 1).

Due to yi(k0 + 1) > ymin(k0 + 1), through iteration, we
can deduce yi(k) > ymin(k0 + 1), ∀k ≥ k0 + 1. Using a
similar analytical approach, we can infer that if yi(k0+1) <
ymax(k0 + 1), then yi(k) < ymax(k0 + 1), ∀k ≥ k0 + 1.

Define the function: W (y(k + 1)) > 0 if ymin(k + 1) <
ymax(k+1); W (y(k+1)) = 0 if ymin(k+1) = ymax(k+1).
Step 2: ∀k0 ≥ 0, ∆V (k0 + 1) ≤ 0. If ∆V (k0 + 1) < 0, then
∆V (k0 + 1) ≤ −W (y(k0 + 1)). If ∆V (k0 + 1) = 0 and
ymin(k0 + 1) < ymax(k0 + 1), there exists 1 ≤ k1 ≤ N − 1
such that ∆V (k0 + 1 + k1) ≤ −W (y(k0 + 1 + k1).

From Step 1, it is evident that ∆V (k0 + 1) ≤ 0. It
is easy to verify that the system described in (12) is an
autonomous system. Therefore, if ∆V (k0 +1) < 0, we have
∆V (k0 + 1) ≤ −W (y(k0 + 1)). If ∆V (k0 + 1) = 0, then
both ymin(k0 + 2) = ymin(k0 + 1) and ymax(k0 + 2) =
ymax(k0 + 1). Considering agent i, it satisfies i ∈ φ(k0 + 1)
and Ni ∩ ψ(k0 + 1) 6= ∅. From the definition of (10),
it is evident that Gi(y(k0 + 1)) > 0. Due to yij(k0 +
1) ≤ 0, ∀j ∈ Ni, it follows that αi(y(k0 + 1)) > 0,
and furthermore, δi(y(k0 + 1)) > 0. From (12), we know
that yi(k0 + 2) > yi(k0 + 1). According to Step 1, we
know that yi(k + 2) > ymin(k0 + 1), ∀k ≥ k0. Due to
|φ(k)| ≤ N − 1, there exists 1 ≤ k1 ≤ N − 1 such
that ymin(k0 + 2 + k1) > ymin(k0 + 1 + k1), implying
∆V (k0+1+k1) < 0. Based on the aforementioned inference,
it follows that ∆V (k0 + 1 + k1) ≤ −W (y(k0 + 1 + k1).
Step 3: lim

k→∞
V (k) = 0.

Since V (k) ≥ 0 and ∆V (k) ≤ 0, we have lim
k→∞

V (k) =

V ∗ for some constant V ∗ ≥ 0. The following employs proof
by contradiction to establish V ∗ = 0.

Assuming V ∗ > 0, we have W (y(k + 1)) ≥ w(V ∗) > 0,
where w(V ∗) is a constant related to V ∗. If ∆V (k) < 0, then
∆V (k) ≤ −w(V ∗), which contradicts lim

k→∞
V (k) = V ∗. If

∆V (k) = 0, according to Step 2, there exists an 1 ≤ k1 ≤
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Fig. 1. Multi-train system example: We consider the distributed cooperative
control of a multi-train system on Track 1. At time ka, the multi-train system
on Track 1 is composed of Trains 1, 2, 3, 4, and 6. Due to changes in the
train routes, at time ka + 1, Train 2 moves from Track 1 to Track 3, and
Train 5 moves from Track 2 to Track 1. Consequently, the composition of
the multi-train system on Track 1 becomes Trains 1, 3, 4, 5, and 6.

Fig. 2. The communication network corresponding to the multi-train system
in Fig. 1, where the topology network changes from topology (a) to topology
(b) at time ka.

N − 1 such that ∆V (k+ k1) ≤ −w(V ∗), which contradicts
lim
k→∞

V (k) = V ∗. Therefore, we can conclude that V ∗ = 0.

Step 4: The objective O′3 can be achieved in the sense of (8).
Since lim

k→∞
V (k) = 0 from Step 3, it is evi-

dent that limk→∞ yij(k) = 0, ∀(i, j) ∈ E ; further-
more, limk→∞Gi(y(k + 1)) = 0. Then, we know that
limk→∞ ui(k) = −ωvi(k) from (11). Substituting ui(k)
into (9), we have limk→∞ vi(k) = 0, ∀i ∈ V . Hence,
objective O′3 has been proven, implying the verification of
objective O3 as well. Therefore, the proof is complete.

IV. NUMERICAL SIMULATION

In this section, we present a numerical simulation to
validate the effectiveness of the controller scheme proposed
in Theorem 1. We use an example of a multi-train system
with changing communication networks as a simulation
scenario, denoted as Fig. 1. Fig. 2 represents the commu-
nication network of the multi-train system corresponding
to the example in Fig. 1. In Fig. 2, due to changes in
the train communication network, the controller schemes
based on global topology network information or requiring a
linear network, as proposed in [12], are no longer applicable.
Fortunately, the fully distributed control scheme proposed in
this paper is independent of network information and can
seamlessly achieve control for general network systems.

The network change depicted in Fig. 2 occurs at time
ka = 1000s. The dynamic model of each train is (1), with
the sampling period T = 1s, and the coefficients of fi(k)
are specified as: ai = 1.176 × 10−2N/kg, bi = 7.7616 ×
10−4N s/(m kg), and ci = 1.6 × 10−5N s2/(m2 kg). The
constraints for the objective O1 are set as: γ

i−1,i = 100m,
γi−1,i = 10000m, i = 2, · · · , 6, and γ

j−1,j+1
= 5100m,

γj−1,j+1 = 15000m, j = 2, 5. Similarly, the constraints
for the objective O2 are set as: ρ

i
= 75m/s, ρi = 85m/s

and µ
i

= −11m/s2, µi = 11m/s2, i = 1, · · · , 6. In the
objective O3, the desired distance and reference velocity
are respectively set as: di−1,i = 5000m, i = 2, · · · , 6,
dj−1,j+1 = 10000m, j = 2, 5, and vr = 80m/s. Certainly,
it is clear that Assumptions 2.1 to 2.4 are all satisfied.
Taking the initial position and velocity as: x1(0) = 24000m,
x2(0) = 21000m, x3(0) = 13000m, x4(0) = 12000m,
x5(1000) = 89000m, x6(0) = 0m, v1(0) = 85m/s, v2(0) =
82m/s, v3(0) = 81m/s, v4(0) = 81m/s, v5(1000) = 80m/s
and v6(0) = 76m/s. Clearly, the requirements for the initial
state specified in (13) are also fulfilled.

Fig. 3 and 4 depict the evolution trajectories of train
positions and position differences. Note that the position
differences between neighboring trains are within the con-
straint range throughout the entire operation, validating the
achievement of objective O1. Fig. 5 and 6 illustrate the
evolution trajectories of train velocities and inputs. The
velocity and input of each train remain within the constraint
range throughout the entire operation, confirming the accom-
plishment of objective O2. As observed from Fig. 4 and 5,
the neighboring position differences and velocities of the
trains converge to the desired values, providing evidence of
the realization of objective O3. The simulation results align
precisely with the anticipated outcomes, demonstrating the
remarkable efficacy of the control scheme proposed in this
paper.

V. CONCLUSION

In this paper, we have successfully addressed the fully
distributed cooperative control problem of discrete-time
multi-train systems, where the position difference between
neighboring trains, as well as the velocities and inputs of
each train, are subject to transient constraints. The paper
explores a fully distributed control law that only relies on the
relative position information of neighboring trains, providing
flexibility to adapt to the network structural changes in actual
multi-train systems. Future research may explore extending
this approach to tackle increasingly complex scenarios and
handle more intricate discrete-time systems.
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