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Abstract— This paper deals with the design of a generalized
dynamic observer for a class of Nonlinear Parameter-Varying
(NLPV) systems. The primary goal is to formulate a less
conservative Linear Matrix Inequality (LMI) condition than
the existing ones, ensuring the exponential stability of the error
dynamics in the proposed observer. Through the incorporation
of the reformulated Lipschitz property, Young’s inequalities and
a generalized matrix multiplier, two new LMI conditions are
established. Due to the deliberate use of these mathematical
tools, the obtained LMI conditions contain a larger number of
decision variables than existing LMI conditions. As a result,
these LMIs have enhanced feasibility than the one presented
in the literature. The effectiveness of the newly designed LMI-
based generalized dynamic observer is highlighted through a
numerical example.

I. INTRODUCTION

Over the past few decades, Linear Parameter-Varying
(LPV) systems have been deployed to model the dynamic
nature of nonlinear systems [1]. Though this approach is
beneficial in the system analysis, it has several limitations, as
follows: 1) The linearization of the nonlinear systems leads
to a diminution of the overall generality of the systems. 2)
One can not employ this method if the nonlinearities of the
systems are not known. One of the potential solutions for this
issue is to consider a certain amount of nonlinearities inside
system dynamics. It facilitates the mitigation of the loss of
generality and yields realistic results. This idea resulted in
the establishment of a new system class known as Nonlinear
Parameter-Varying (NLPV) systems [2].

In the literature, the topic of observer design for LPV
systems has been extensively investigated [3], [4]. Among
these various observer techniques, the generalized dynamic
observer approach presented in [4] is considered in this
article. Recently, the development of observers for Nonlinear
Parameter-Varying (NLPV) systems has garnered significant
attention from researchers in control system engineering [5].
The authors of [6] employed the standard Lipschitz prop-
erty to handle nonlinearities, while a reformulated Lipschitz
property was used in [7] for the same task. In this paper,
a nonlinear generalized dynamic observer based on the
reformulated Lipschitz property is established.

Due to the advancement in computation technology, LMI-
based methods are widely used in the control system domain
for observer synthesis purposes [6], [8]. Though all these
approaches provide an efficient solution for the state estima-
tions, there is a scope for further enhancements. Recently, the
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authors of [9] introduced a new matrix-multiplier-based LMI
technique for nonlinear observer design. This letter aims to
establish a novel LMI-based proportional observer method-
ology for a class of NLPV systems which is motivated by the
methods presented in [9]. Through the judicious deployment
of a more generalized matrix multiplier, Young inequalities
and the well-known LPV approach, two new LMI conditions
are derived in this article. These developed LMIs contain
more degrees of freedom from a feasibility point of view
and are less conservative than the existing ones [6], [7].

The remainder of the paper is structured as follows:
Section II consists of the prerequisites related to LMI-based
observer design. The problem statement of this article is
illustrated in Section III. Further, in Section IV, the synthesis
of the two novel LMI conditions is showcased. Section V
emphasises the effectiveness of the proposed methodology
with a numerical example. Some conclusions and future per-
spectives related to this research are outlined in Section VI.

II. NOTATIONS AND PRELIMINARIES

A. Nomenclature

Throughout the paper, we have utilised the following
notations: The initial value of e(t) at t = 0 is symbolised
by e0. A vector of the canonical basis of Rs is described as:

es(i) = (0, . . . ,0,
ith︷︸︸︷
1 ,0, . . . ,0︸ ︷︷ ︸

s components

)⊤ ∈Rs, s≥ 1. The terms I and

O depict the identity matrix and the null matrix, respectively.
A⊤ and A† denote the transpose and generalized inverse of
matrix A, respectively. A ∈ Sn implies that A = A⊤ ∈ Rn×n.
The symbol (⋆) is used within a symmetric matrix to signify
the repeated blocks. For the aforementioned matrix A, A > 0
(A < 0) indicates that it is a positive definite matrix (a
negative definite matrix). Similarly, a positive semi-definite
matrix (a negative semi-definite matrix) is showcased by
A ≥ 0 (A ≤ 0). A = block-diag(A1, . . . ,An) depicts a block-
diagonal matrix having elements A1, . . . ,An in the diagonal.

B. Prerequisites

In this section, we have provided the fundamental math-
ematical tools and background results related to the LMI-
based observer design.

Lemma 1 (Young’s Inequalities): If there exist two vec-
tors X ,Y ∈ Rn and a matrix Z > 0 ∈ Sn. Then, the ensuing
matrix inequalities are true:

X⊤Y +Y⊤X ≤ X⊤Z−1X +Y⊤ZY, (1)

X⊤Y +Y⊤X ≤ (X +ZY )⊤(2Z)−1(X +ZY ). (2)
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The inequality (1) is known as Standard Young’s inequality.
Further, the new variant of Young’s inequality is represented
by (2).

Lemma 2 ([10]): Let us consider

X⊤ =
[
a1In a2In . . . anIn

]
, (3)

Y⊤ =
[
b1In b2In . . . bnIn

]
, (4)

along with

Z =


Z1 Za2

1
. . . Zan

1

⋆ Z2 . . . Zan
2

⋆ ⋆
. . .

...
⋆ ⋆ . . . Zn

 , (5)

where 0 ≤ ai ≤ bi ∀i ∈ {1, . . . ,n} and Zi > 0 ∈ Sn, Za j
i
≥ 0 ∈

Sn ∀ i ∈ {1, . . . ,n}, j ∈ {2, . . . ,n} so that Z > 0. Then, the
subsequent inequality is fulfilled:

X⊤ZX−Y⊤ZY≤ 0. (6)
In sequel, we have illustrated the problem formulation and
main results of the article.

III. ARTICULATING THE PROBLEM STATEMENT

For enhanced comprehensibility, we have divided this
section into two parts. The first segment is concentrated on
depicting the form of NLPV systems, and the structure of
the generalized dynamic observer. In the second part, we
showcased the parameterization of the gain matrices.

A. System and observer structure

We have considered the subsequent NLPV systems for the
purpose of observer design:

ẋ = A(θ(t))x+B(θ(t))u+G(θ(t)) f (x),

y =Cx,
(7)

where x ∈ Rn depicts the states of the systems, u ∈ Rs

represents the input and y ∈Rp denotes the system’s output.
The θ(t) ∈ Rθ̄ is a vector of time-varying parameters, and
assumed to be known and bounded, i.e., it holds:

θk̄min
≤ θk̄ ≤ θk̄max

,∀k̄ = {1, . . . , θ̄}. (8)

The matrices A(·), B(·), G(·) are fixed function of the vector
θ(t). C is a constant matrix of appropriate dimension. The
nonlinear function inside the system dynamics is symbolized
by f (x). We have presumed that f (x) is a global Lipschitz
function. Further, it can be expressed in the following man-
ner:

f (x) =


f1(H1x︸︷︷︸

ν1

))

...
fm(νm)

 , (9)

where Hi ∈ Rn̄×n.
From (8), the parameter varying matrices of (7) can be

represented in the subsequent form:

X (θ) = X0 +
nθ

∑
k̄=1

θk̄Xk̄, (10)

where X ∈ {A,B,G}. The matrices Xk̄ ∈ Rn×n,∀k̄ =
{0, . . . ,nθ} are known and constant. It implies that system (7)
can be reformulated as a polytopic system. The coordinates
of this polytopic system are denoted by ρ(θ(t)) and vary
into the following convex set:

Vρ =
{

ρ(θ(t)) ∈ R2θ̄

,ρ(θ(t)) =
[
ρ1(θ(t)) · · · ρ2θ̄ (θ(t))

]⊤
,

ρk(θ(t))≥ 0,
2θ̄

∑
k=1

ρk(θ(t)) = 1
}
.

From [4], the system (7) is written in the following polytopic
representation form:

ẋ =
2θ̄

∑
k=1

ρk(θ(t))
(
Akx+Bku+Gk f (x)

)
,

y =Cx,

(11)

where ρk(θ(t)) ∈ Vρ . In addition to this, ρk(θ(t)) =
Π

nθ

k̄=1ρ i
k̄(θk̄(t)), X̄k = X0 +∑

nθ

k̄=1 θ i
k̄Xk̄, where X̄ ∈ {A,B,G}

and i is equal to 1 or 2 depending on the partition of the jth

parameter (ρ1
j or ρ2

j ).
For state estimation of (11), the generalized dynamic

observer is used and it is described as:

η̇(t) =
2θ̄

∑
k=1

ρk(θ(t))
(
Mkη(t)+Xkζ (t)+Qky

+TBku+TGk f (x̂(t))
)
,

(12a)

ζ̇ (t) =
2θ̄

∑
k=1

ρk(θ(t))
(
Nkη(t)+Ykζ (t)+Sky

)
, (12b)

x̂(t) = Pη(t)+Ly, (12c)

where η(t) ∈ Ro1 , ζ (t) ∈ Ro2 and x̂(t) ∈ Rn are
the state vectors, an auxiliary vector, and the esti-
mated states of the observer, respectively. The terms
Mk, Xk, Qk, T, Nk, Yk, Sk, L and P are unknown matrices
of appropriate dimension which needs to be calculated such
that the estimation error x̃ = x̂− x converges exponentially
towards zero.

Let us define the transformation error for the earlier-
mentioned observer (12) as e = η −Tx. Then, from (12)
and (11), one can deduce:

ė =
2θ̄

∑
k=1

ρk(θ(t))
(
Mke+(MkT+QkC−TAk)x

+Xkζ (t)+TGk( f (x̂(t))− f (x))
)
,

(13a)

ζ̇ (t) =
2θ̄

∑
i=k

ρk(θ(t))
(
Nke+Ykζ +(NkT+SkC)x

)
, (13b)

x̃ = Pe+(PT+LC− I)x. (13c)

If the following matrix equalities are satisfied
MkT+QkC−TAk = 0, (14a)

NkT+SkC = 0, (14b)

PT+LC = I, (14c)

then, we can reformulate the system (13) into the subsequent
form:

ė =
2θ̄

∑
k=1

ρk(θ(t))
[
Mke+Xkζ (t)+TGk( f (x̂(t))− f (x))

]
, (15a)

ζ̇ (t) =
2θ̄

∑
i=k

ρk(θ(t))
(
Nke+Ykζ

)
, (15b)

x̃ = Pe. (15c)
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From [11, Lemma 7], one can express f (x)− f (x̂) in the
following form:

f (x)− f (x̂) =
m,n̄

∑
i, j=1

fi jHi jHi x̃, (16)

where Hi j = em(i)e⊤n̄ ( j) and fi j ≜ fi j(θ
θ̂i, j−1
i ,θ

θ̂i, j
i ). The

functions fi j : Rn̄ ×Rn̄ → R fulfills fai j ≤ fi j ≤ fbi j , where
fai j and fbi j are constants. Without loss of generality, let us
assume that fai j = 0. Hence,

0 ≤ fi j ≤ fbi j . (17)

Through the use of (16), we can rewrite (15) as:

˙̃e =
2θ̄

∑
k=1

ρk(θ(t))

([
Mk +∑

m,n̄
i, j=1 fi jTGkHi jHiP Xk

Nk Yk

]
ẽ

)
, (18a)

x̃ =
[
P O

]
ẽ, (18b)

where ẽ =
[
e⊤ ζ⊤]⊤.

B. Parameterization of the observer matrices

In this section, we present the parameterization of the
algebraic constraint (14a)-(14c), which aids in mitigating the
complexity during the computation of the observer’s gain
matrices.

Let us consider a full-row rank matrix E∈Ro1×n such that[
E
C

]
is a full-column matrix.

Further, the constraint (14c) is expressed in the following
manner: [

P L
][T

C

]
= In. (19)

It implies that the rank of
[
T
C

]
= n. Thus, we can introduce

two arbitrary matrices T ∈Ro1×n and K ∈Ro1×p so that we
can obtain: [

T K
][In

C

]
= E. (20)

From solution of (20), one can deduce:

T= E
[
In
C

]† [In
O

]
, (21a)

and K= E
[
In
C

]† [O
Ip

]
. (21b)

Later on, the substitution of (20), i.e., E=T+KC, into (14a)
leads to [

Mk Ωk
][E

C

]
= TAk, (22)

where
Ωk =−MkK+Qk. (23)

By using (21a) along with the solution of (22) and (23), one
can obtain:

Mk = TAk

[
E
C

]† [Io1
O

]
︸ ︷︷ ︸

M1k

−Y2k

(
Io1+p −

[
E
C

][
E
C

]†
)[

Io1
O

]
︸ ︷︷ ︸

M30

, (24a)

Ωk = TAk

[
E
C

]† [O
Ip

]
︸ ︷︷ ︸

Ω1k

−Y2k

(
Io1+p −

[
E
C

][
E
C

]†)[O
Ip

]
︸ ︷︷ ︸

Ω30

, (24b)

where Y2k are arbitrary matrices.
Now, we can rewrite (14b) and (14c) in the following
compact form: [

Nk Sk
P L

][
T
C

]
=

[
O
In

]
. (25)

Later on, from T= E−KC, we achieve:[
T
C

]
=

[
Io1 −K
O Ip

][
E
C

]
(26)

Through the utilisation of (26) and (25), we deduce:

Nk =−Y3kM30 , (27a)

Sk =−Y3k

(
Io1+p −

[
E
C

][
E
C

]†)[K
Ip

]
︸ ︷︷ ︸

S30

, (27b)

P=

[
E
C

]† [Io1
O

]
, (27c)

L=

[
E
C

]† [K
Ip

]
. (27d)

Through the deployment of (24a), (27a) and (27b), the
system (18a) is altered as:

˙̃e =
2θ̄

∑
k=1

ρk(θ(t))
(
(Āk −LkC)ẽ

)
, (28)

where Āk =

[
(M1k +∑

m,n̄
i, j=1 fi jTGkHi jHiP O

O O

]
, Lk =[

Y2k Xk
Y3k Yk

]
and C =

[
M30 O
O −Io2

]
.

From (18b), the convergence of the estimation error (e)
towards zero relies on the stability of the error dynamic (28).
Thus, the objective of this letter is to determine the observer
parameters such that the system (28) is exponentially stable.

In the sequel, the computation of the observer parameters
through a new LMI approach is illustrated.

IV. MAIN RESULT

In this section, the essential conditions for ensuring the
exponential convergence of the system (28) is developed.
For the simplicity of the presentation, we have divided this
section as follows: First, the Lyapunov-based stability of (28)
is studied. Further, two new LMI conditions are derived.

A. Stability analysis

Let us consider the following quadratic Lyapunov function
for the error dynamic (28):

V (ẽ) = ẽ⊤Pẽ, where P =

[
P1 P2
P2 P2

]
> 0. (30)

From (28), one can deduce:

V̇ (ẽ) = ẽ⊤
( 2θ̄

∑
k=1

ρk(θ(t))
(
P(Āk −LkC)+(Āk −LkC)⊤P)

)
ẽ. (31)

The system (28) is exponentially stable if the Lyapunov
function (30) fulfils

V̇ (ẽ)≤−σV (ẽ), where σ > 0. (32)
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Z=


Z1 Zb1

2
. . . Zb1m

⋆ Z2 . . . Zb2m

⋆ ⋆
. . .

...
⋆ ⋆ . . . Zm

 ,where Zi =


Zi1 Za1

i2
. . . Za1

in̄
⋆ Zi2 . . . Za2

in̄

⋆ ⋆
. . .

...
⋆ ⋆ . . . Zin̄

 ,Z
b j
i
=



Z
b j1
i1

Z
b j1
i2

. . . Z
b j1

in̄
Z

b j2
i1

Z
b j2
i2

. . . Z
b j2

in̄
...

...
. . .

...
Z

b jn̄
i1

Z
b jn̄
i2

. . . Z
b jn̄
in̄

 , (29)

where Zi j,Zak
i j
∈ Sn̄∀i,k ∈ {1, . . . ,m},& j ∈ {1, . . . , n̄}; Z

bk j
i j
∈ Sn̄,∀i ∈ {2, . . . ,m},k ∈ {1, . . . ,m−1},& j ∈ {1, . . . , n̄} such that Z> 0.

Through the use of (31) and (32), we get

P(Āk −LkC)+(Āk −LkC)⊤P+σP ≤ 0. (33)

Furthermore, we can express the inequality (33) in the
following manner:

Σk +Nk ≤ 0, (34)
where

Nk =
m,n̄

∑
i, j=1

(
P
[
TGkHi j

O

])
︸ ︷︷ ︸

U⊤
i jk

(
fi j

Hi︷ ︸︸ ︷[
HiP O

])
︸ ︷︷ ︸

Vi j

+V⊤
i j Ui jk ,

Σk =PAk+A⊤
k P−R⊤

k C−C⊤Rk+σP, Ak =

[
M1k O
O O

]
and

R⊤
k = PLk.
In the literature, numerous methodologies have been estab-

lished to address Lipschitz nonlinearities, denoted as the term
Nk, for example, [12], [6], [13], and so on. These approaches
are developed from various mathematical tools, such as
Schur’s lemma [14], Algebraic Riccati Equations [15], and
Young inequalities [16], [13]. In this paper, we have used
a new technique to address nonlinearities, inspired by the
methods introduced in [10].

From [10], one can rewrite the term Nk as:

Nk = (Uk)
⊤(HΦ)+Φ

⊤H⊤(Uk), (35)
where

Uk =
[
(Uk11)

⊤ · · · (Uk1n̄)
⊤ · · · (Ukmn̄)

⊤
]⊤

, (36)

H = block-diag{H1, . . . ,H1︸ ︷︷ ︸
n̄ times

, . . . ,Hm, . . . ,Hm︸ ︷︷ ︸
n̄ times

}, (37)

Φ =
[

f11I · · · f1n̄I · · · fm1I · · · fmn̄I
]⊤

. (38)

Through the utilisation of (34) and (35), the condition
described in (32) is satisfied if

Σk +(Uk)
⊤(HΦ)+Φ

⊤H⊤(Uk)≤ 0, (39)

B. LMI approach 1: exploiting Lemma 2

In this part, the development of an LMI criterion through
the employment of the standard Young’s inequality and
Lemma 2 is illustrated.

The implementation of the inequality (1) on (35) leads to

(Uk)
⊤(HΦ)+Φ

⊤H⊤(Uk)≤ (Uk)
⊤(Z)−1Uk +Φ

⊤H⊤ZHΦ, (40)

where the considered matrix Z is illustrated in (29).
Let us consider a new matrix:

Φm =
[

fb11I . . . fb1n̄I . . . fbm1I . . . fbmn̄I
]⊤

. (41)
where fbi j are specified in (17).
Through the deployment of Lemma 2, we get

Φ
⊤H⊤ZHΦ ≤ Φ

⊤
mH⊤ZHΦm. (42)

From (40) and (42), the inequality (39) holds if

Σk +(Uk)
⊤Z−1(Uk)+Φ

⊤
mH⊤ZHΦm ≤ 0. (43)

Now, we are ready to state the following theorem.
Theorem 1: If there exist a matrix Z under the form

described by (29) along with the matrices P1 > 0 ∈ So1 , P2 >
0∈ So2 , Rk ∈R(o1+o2)×(o1+o2+p) and a positive scalar σ such
that the following LMI is feasible:Σk (Uk)

⊤ (ZHΦm)
⊤

⋆ −Z O
⋆ ⋆ −Z

< 0, ∀ k ∈ {1, . . . ,2θ̄ }, (44)

where Σk, Uk, H and Φm are described in (34), (36), (37)
and (41), respectively, then, the estimation error x̃ converges
exponentially to 0.

The matrix Lk is computed as Lk = P−1R⊤
k . Once we de-

termine the matrix Lk, other remaining observer parameters
are calculated through the use of the conditions specified in
Section III-B. We have provided a detailed algorithm related
to this at the end of this segment.

Proof: By implementing Schur’s lemma on the inequal-
ity (43), one can easily deduce LMI (44). The feasibility
of LMI (44) implies that the condition (33) is fulfilled. It
infers that the Lyapunov function (30) satisfies the condition
specified in (32). From (18b), it is easy to infer that the
estimation error x̃ is exponentially stable and converges
towards zero.

C. LMI approach 2: deploying LPV approach

In the last two decades, several LPV-based LMI techniques
have been proposed in the literature for nonlinear observer
design problems (see for example [17], [11], [9]). In this
section, a new LMI condition is developed by incorporating a
well-known LPV approach along with new matrix-multiplier-
based LMI techniques.

One can obtain the following inequality by applying (2)
on (35):

Nk ≤ (Uk +ZHΦ)⊤(2Z)−1(Uk +ZHΦ), (45)

The inequality (17) infers that all elements of Φ are bounded
and belong to a convex set whose vertices are defined as:

FHm =
{
{F11, . . . ,F1n̄, . . . ,Fm1, . . . ,Fmn̄} : Fi j ∈ [0, fbi j ]

}
.

From the convexity principle, we get

Nk ≤
[(
(Uk)+ZHΦ

)⊤
(2Z)−1((Uk)+ZHΦ

)]
Φ∈FHm

. (46)

From (46), the inequality (39) is true if

Σk +
[(
(Uk)+ZHΦ

)⊤
(2Z)−1((Uk)+ZHΦ

)]
Φ∈FHm

≤ 0. (47)

Theorem 2: Let us consider a matrix Z as specified
in (29) along with P1 > 0 ∈ So1 , P2 > 0 ∈ So2 , Rk ∈
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R(o1+o2)×(o1+o2+p) and a positive scalar σ . The estimation
error x̃ exponentially converges to zero if the following LMI
is feasible:[

Σk
(
Uk +ZHΦ

)⊤
⋆ −2Z

]
Φ∈FHm

< 0, ∀ k ∈ {1, . . . ,2θ̄}, (48)

where Φ is defined in (38) and other remaining variables
are described in Theorem 1. The computation of observer
parameters is identical to the one shown in Theorem 1.

Proof: Through the deployment of Schur’s lemma on
the inequality (47), LMI (48) is obtained. If LMI (48) is
feasible, then the condition specified in (33) is satisfied. It
infers that the Lyapunov function (30) holds the criterion
illustrated in (32). Thus, the system dynamic (28) is expo-
nentially stable.

Remark 1: The established LMI (48) is deduced by em-
ploying the well-known LPV approach. The authors of [10]
have demonstrated the effectiveness of the LPV-based LMI
approach, providing a superior optimal solution compared
to LMI (44). However, the LPV-based LMI method has a
drawback. The LMI presented therein encompasses a large
number of LMIs as compared to the one described in Theo-
rem 1. From a computation perspective, solving such a large
number of LMIs with any LMI solver can be challenging.
Since this parameter calculation is offline, one can deploy
this method at the cost of a heavy computation burden.

D. Comment about proposed LMI approach

In order to show the superiority of the established LMI
technique, the computation of the number of decision vari-
ables inside LMIs (44) and (48) is as follows:

D = 2θ̄ ·
(
(mn̄) · (mn̄+1)

2

)
·
(

n̄(n̄+1)
2

)
︸ ︷︷ ︸

D2

+

2θ̄ ·
(
(o1 +o2) · (o1 +o2 + p)+

o1(o1 +1)
2

+
o2(o2 +1)

2

)
︸ ︷︷ ︸

D1

,

(49)

where the terms D1 and D2 represent the number of decision
variables inside Σk and the proposed matrix multiplier Z,
respectively.

The number of decision variables inside the approaches
proposed in [6] and [7] are illustrated as

D̄1 = 2θ̄ ·
(

np+
n · (n+1)

2

)
, (50)

and D̄2 = (1+nθ ) ·np+
n(n+1)

2
+

(mn̄) · n̄(n̄+1)
2

, (51)

respectively. Since m, n, p, n̄, o1, o2 ∈ R+, we get: D̄1 <
D̄2 <D. Thus, the established dynamic observer method con-
tains more decision variables than the existing approaches.
These extra numbers of decision variables add extra degrees
of freedom in observer design, increase the accuracy of the
estimation and improve the robustness of the estimation.

The detailed procedure for computing the observer param-
eters is presented in Algorithm 1.

In the sequel, the efficiency of the proposed LMI-based
observers over existing approaches is emphasised through a
numerical example.

Algorithm 1 Computation of the generalized dynamic ob-
server (12) parameters

1: Step 1: Consider a full-row rank matrix E ∈ Ro1×n

2: Step 2: By using (21a), (24a), (27c), determine the
matrices T, T2, M1k , M30 and P

3: Step 3: Compute the values of Y2k , Y3k , Xk and Yk from
the solution of the LMI (44) or LMI (48).

4: Step 4: From (21a), (21b) and (24b), determine the
matrices T, K and Ωk, respectively.

5: Step 5: Deduce the remaining matrices Mk, Qk, Nk, Sk
and L by utilising (24a), (23), (27a), (27b) and (27d).

Fig. 1: L2 norm of estimation error in different cases

V. NUMERICAL EXAMPLE

This section is dedicated to highlighting the performance
of the established LMI-based generalized dynamic observer.

To illustrate the proposed methodology, we have con-
sidered the NLPV system in the form of (7) along with

the following parameters: A(θ) =

 0 1 0
0 0 1
−θ −3 −θ

, B(θ) =0
0
θ

, G(θ) =

θ 0
0 0
0 θ

 and C =

1
0
0

⊤

. The nonlinear func-

tion inside system dynamics is given by: f (x) =
[

sin(x1)
sin(x3)

]
.

The time-varying parameter θ(t) and input of system u(t)
are described as: θ(t) = 2+ sin(t) and u(t) = 3sin(t). The
initial values of x for this system is illustrated as x0 =[
2 −2 2

]⊤.
For the state estimation of the aforementioned system, the

generalized dynamic observer (12) is used. The parameters
of the observer are computed by using the Algorithm 1.
In order to compare the LMI performance, both LMIs are
solved by using the YALMIP toolbox, and gain parameters
are computed.

Through the use of the observer parameters, the es-
tablished observer is implemented in MATLAB for both
LMIs (44) and (48). Figure 1 depicts the plot of L2 norm
of estimation error achieved in both cases. The convergence
of estimation error in all cases is showcased in Figure 1. In
addition to this, one can also notice that the convergence rate
of x̃ is faster in the case of LMI (48) as compared to other
cases.

Further, the Root Mean Square values of estimation errors
(RMSE) are calculated in both cases and showcased in
Table I. To highlight the observer performance, we have
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TABLE I: Comparison of RMSE values of x̃ in several cases
for 5 ≤ t ≤ 10

x̃1 x̃2 x̃3
LMI (48) 1.0074×10−5 2.5885×10−4 4.7820×10−4

LMI (44) 1.6223×10−5 5.0291×10−4 0.0013
[7] 0.0186 0.0343 0.0524

[6, Theorem 1] LMI is infeasible

Fig. 2: L2 norm of x̃ in different cases for the case of systems
with parametric uncertainty

compared the obtained RMSE values of x̃ with the same
derived from the methods proposed in [7] and [6]. Table I
infers that the estimation accuracy is better in the case of
LMI (48) as compared to other cases. Thus, the efficiency
of the proposed LMI-based observer is emphasized.

Further, the performance of the proposed generalized
dynamic observer is evaluated in the presence of parametric
uncertainty. Let us consider the system dynamics (7) with
the matrix Anew = A+ 0.1 · I3 ·α(t), where α(t) = sin(10t)
depicts uncertainty factor. The dynamic observer (12) with
the aforementioned parameters is deployed in MATLAB
environment for the state estimation purpose.

Figure 2 represents the graph of estimation error obtained
in three aforementioned cases for the earlier-mentioned sys-
tem. Both figures showcase the exponential convergence of
estimation error with the optimal attenuation of uncertainty.
It infers that the established observer is robust to the sys-
tems with parameter uncertainty. Further, Table II represents
RMSE values of estimation error obtained in all cases for
the above-mentioned example in the presence of uncertainty.
It highlights that the proposed methodology mitigates the
impact of uncertainty on the estimated error more effectively
than the methods developed in the literature. Thus, through
the utilisation of this example, the superiority and robustness
of the developed observer are emphasised.
TABLE II: Comparison of RMSE values of x̃ for the case of
systems with parametric uncertainty (5 ≤ t ≤ 10 )

x̃1 x̃2 x̃3
LMI (48) 0.0070 0.0170 0.0200
LMI (44) 0.0082 0.0188 0.0209

[7] 0.0234 0.0395 0.0559
[6, Theorem 1] LMI is infeasible

VI. CONCLUSION

In this paper, the challenge of designing a generalized
dynamic observer for Nonlinear Parameter-Varying (NLPV)
systems is addressed. The issue is resolved through the
development of two new LMI conditions. These conditions
not only provide the necessary observer parameters but also
ensure the exponential stability of the estimation error of the

proposed observer. These LMI conditions are formulated by
using the polytopic method. By incorporating the reformu-
lated Lipschitz property, Young inequalities and well-known
LPV approach, the proposed matrix multiplier-based LMIs
are obtained. Notably, the developed LMIs involve a higher
number of decision variables compared to existing ones,
deliberately incorporating matrix multipliers. This intentional
inclusion leads to an enhancement in LMI feasibility. The
performance of the observer is verified through the use of a
numerical example.
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