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Abstract— This paper studies a class of strongly monotone
games involving non-cooperative agents that optimize their own
time-varying cost functions. We assume that the agents can
observe other agents’ historical actions and choose actions that
best respond to other agents’ previous actions; we call this a best
response scheme. We start by analyzing the convergence rate
of this best response scheme for standard time-invariant games.
Specifically, we provide a sufficient condition on the strong
monotonicity parameter of the time-invariant games under
which the proposed best response algorithm achieves exponential
convergence to the static Nash equilibrium. We further illustrate
that this best response algorithm may oscillate when the proposed
sufficient condition fails to hold, which indicates that this
condition is tight. Next, we analyze this best response algorithm
for time-varying games where the cost functions of each agent
change over time. Under similar conditions as for time-invariant
games, we show that the proposed best response algorithm stays
asymptotically close to the evolving equilibrium. We do so by
analyzing both the equilibrium tracking error and the dynamic
regret. Numerical experiments on economic market problems
are presented to validate our analysis.

I. INTRODUCTION

Online convex games study the interplay between game
theory and online learning, and find many applications ranging
from traffic routing [1] to economic market optimization [2],
[3]. In these games, agents simultaneously take actions to
minimize their loss functions, which depend on the other
agents’ actions.

Generally, every agent in an online convex game adapts its
actions to the actions of other agents in a dynamic manner
with the objective to minimize its regret, defined as the
cumulative difference in performance between the agent’s
online actions and the best single action in hindsight. An
algorithm is said to achieve no-regret learning if every agent’s
regret generated by this algorithm is sub-linear in the total
number of episodes. If the agents in an online game reach
a stationary point from which no agent has an incentive to
deviate, then we say the game has reached a Nash equilibrium.
There is a growing literature [4]–[8] that analyzes the Nash
equilibrium convergence in strongly monotone games which
admit a unique Nash equilibrium as shown in [9].
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In non-cooperative games, a common strategy used by
competitive agents that selfishly minimize their own cost
functions is the best response algorithm since it produces the
most favorable outcome given the other agents plays. The
best response algorithm has been shown to converge under a
spectral condition associated with the best-response map [10],
[11]. In general, best response algorithms have been studied
for several classes of games, including supermodular games
[12], potential games [13]–[15] and zero-sum games [16].
For example, [14] shows that in almost every potential game
with finite actions, the best response dynamics converges to
the unique Nash equilibrium with linear rate. Similarly, [16]
shows the convergence of several best response dynamics in
two-player zero-sum games.

In this paper, we study the regret and equilibrium tracking
error of the best response algorithm for time-varying games.
Specifically, we consider a class of strongly monotone games
[5], [9], which guarantee the uniqueness of the well-defined
Nash equilibrium. To the best of our knowledge, the best
response algorithm has not been explored in the literature for
time-varying games. Instead, time-varying games have been
analyzed using gradient-based algorithms for, e.g., strongly
monotone games [17] and zero-sum games [18]. Specifically,
[17] analyzes the Nash equilibrium convergence and the equi-
librium tracking properties of the mirror descent algorithm
for games that converge and diverge, respectively. In [18], a
gradient-type algorithm is proposed that achieves performance
guarantees under three different measures. As gradient-based
algorithms are fundamentally different compared to the best
response method, the techniques developed in these works
cannot be applied here to analyze the best response algorithm.

To address this challenge, we first start with time-invariant
games. Specifically, we assume games that satisfy the so-
called strong monotonicity condition with parameter m > 0,
which guarantees the uniqueness of the Nash equilibrium [9].
We provide a sufficient condition m > L

√
N − 1 under which

the best response algorithm achieves linear convergence to
the static Nash equilibrium, where L is the Lipschitz constant
related to the gradient of the individual loss functions and N
is the number of agents. Moreover, we show numerically that
when this condition fails to hold, the best response algorithm
may oscillate. Compared to [11], here we characterize the
convergence in terms of the strong monotonicity parameter.
For simple problems, we can show that our proposed condition
is equivalent to the spectral condition proposed in [11].
Then, we analyze the best response algorithm for time-
varying games where the Nash equilibrium evolves over time.
Specifically, under similar conditions as for time-invariant
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games, we show that the average distance from the evolving
equilibrium is bounded by the equilibrium variation. We also
show that the dynamic regret is bounded by the cumulative
variations of the loss functions.

The rest of the paper is organized as follows. In Section II,
we provide some preliminaries and formally define the
problem. In Section III, we present the regret and equilibrium
convergence of the best response algorithm for time-invariant
games. In Section IV, we extend our result to time-varying
games and analyze the equilibrium tracking error and the
dynamic regret. In Section V, numerical experiments on a
Cournot game are presented to verify our method. Finally, in
Section VI, we conclude the paper.

II. PRELIMINARIES AND PROBLEM DEFINITION

A. Online Convex Games

Consider an online convex game G with N agents, whose
goal is to learn their best individual actions that minimize their
local loss functions. For each agent i ∈ N = {1, . . . , N},
denote by Ci(xi, x−i) : X → R its individual loss function,
where xi ∈ Xi is the action of agent i, x−i are the actions
of all agents excluding agent i, and we define by X =
ΠN

i=1Xi the joint action space since each agent takes actions
independently. For ease of notation, we collect all agents’
actions in a vector x := (x1, . . . , xN ). We assume that Ci(x)
is convex in xi for all x−i ∈ X−i, where X−i is the joint
action space excluding agent i. The goal of every agent i is
to determine the action xi that minimizes its individual cost
function, i.e.,

min
xi∈Xi

Ci(xi, x−i). (1)

As shown in [9], convex games always have at least one
Nash equilibrium. In what follows, we denote by x∗ a Nash
equilibrium of the game (1). Then, for each agent i, we
have Ci(x∗) ≤ Ci(xi, x

∗
−i), ∀xi ∈ Xi, i ∈ N . At this Nash

equilibrium point, agents are strategically stable in the sense
that each agent lacks incentive to change its action. Since the
agents’ loss functions are convex, the Nash equilibrium can
also be characterized by the first-order optimality condition,
i.e., ⟨∇xi

Ci(x∗), xi − x∗
i ⟩ ≥ 0, ∀xi ∈ Xi, i ∈ N , where

∇xi
Ci(x) is the partial derivative of the loss function with

respect to each agent’s action. We write ∇iCi(x) instead of
∇xi

Ci(x) whenever it is clear from the context.
In general, it is not easy to show convergence to a Nash

equilibrium for games with multiple Nash Equilibria. For this
reason, recent studies often focus on games that are so-called
strongly monotone and are well-known to have a unique
Nash equilibrium [9]. The game (1) is said to be m-strongly
monotone if for ∀x, x′ ∈ X we have that

N∑
i=1

⟨∇iCi(x)−∇iCi(x′), xi − x′
i⟩ ≥ m ∥x− x′∥2 . (2)

The ability of the agents to efficiently learn their optimal
actions can be quantified using the notion of (static) regret
that captures the cumulative loss of the learned online actions

compared to the best actions in hindsight, and can be formally
defined as

SRi(T ) =

T∑
t=1

Ci(xt)−min
xi

T∑
t=1

Ci(xi, x−i,t), (3)

for sequences of actions {xi,t}Tt=1, i = 1, . . . , N . An algo-
rithm is said to be no-regret if the regret of each agent is
sub-linear in the total number of episodes T , i.e., SRi(T ) =
O(T a), a ∈ [0, 1), ∀i ∈ N .

B. Problem Definition
In this work, we consider the time-varying game Gt where

at episode t each agent aims to minimize its time-varying
cost function, i.e.,

min
xi∈Xi

Ci,t(xi, x−i). (4)

Then, we can define the best response algorithm for time-
varying games as

xi,t+1 = argmin
xi∈Xi

Ci,t(xi, x−i,t). (5)

To attain the best response action xi,t+1, for each agent i,
we assume the cost function Ci,t is known and all other
agents’ previous actions are provided. This is not a very
strong assumption. For example, in supply chain problems
[19], Ci,t can represent an agent’s local revenue model that
depends on all competitors’ actions and unknown market
demands. At the beginning of episode t+ 1, the agents may
not be able to observe the other agents’ actions and precisely
predict the market demands. However, previous actions and
demands can be obtained from public revenue reports. Thus,
it is reasonable to implement a strategy where the agents take
actions that best respond to the other agents’ actions from
the previous episode. In addition, we assume that at every
episode t, the time-varying game with the cost function Ci,t
is strongly monotone and thus has a unique Nash equilibrium,
which we denote by x∗

t . To analyze the performance of the
best response algorithm (5) for time-varying games, we define
the equilibrium tracking error

Err(T ) :=

T∑
t=1

∥xt − x∗
t ∥

2
, (6)

and the dynamic regret

DRi(T ) :=

T∑
t=1

(
Ci,t(xt)−min

yi

Ci,t(yi, x−i,t)
)
, (7)

where T is the total number of episodes. If the game Gt

changes significantly over time, it is reasonable to expect that
it may become impossible to track the evolving equilibrium.
The time-varying problem becomes meaningful only when
the variation of the game Gt is reasonably small. To capture
the effect of the variation of the game Gt on the performance
of the best response algorithm, we first define the equilibrium
variation

VT :=

T∑
t=1

∥∥x∗
t − x∗

t+1

∥∥2 , (8)
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which tracks the changes of Nash equilibria. It is possible that
the cost function Ci,t changes over time but the equilibrium
stays constant, i.e., VT = 0. To further capture the variations
of the cost functions, we define the function variation

Wi,T =

T∑
t=1

sup
x∈X

|Ci,t(x)− Ci,t+1(x)|. (9)

Our goal in this paper is to analyze the equilibrium tracking
error and the dynamic regret of the best response algorithm (5)
for time-varying games. To do so, we start with the analysis
of time-invariant games and then extend our results to the
time-varying case.

III. TIME-INVARIANT GAMES

In this section, we provide sufficient conditions for Nash
equilibrium convergence of the best response algorithm for
time-invariant games. The best response algorithm in this
case becomes

xi,t+1 = argmin
xi∈Xi

Ci(xi, x−i,t). (10)

Proposition 1. Suppose that the game G is m-strongly
monotone, and ∇iCi(xi, x−i) is L-Lipschitz continuous in
x−i for every xi ∈ Xi, with parameter m > L

√
N − 1. Then,

the best response algorithm (10) satisfies that

∥xT − x∗∥ ≤ ρT−1 ∥x1 − x∗∥ , (11)

where ρ := L
√
N−1
m .

Proof. Applying the first order optimality condition to the
cost function Ci at the optimal point xi,t+1 and using the
update rule (10), we have that

⟨∇iCi(xi,t+1, x−i,t), xi − xi,t+1⟩ ≥ 0, ∀xi ∈ Xi. (12)

Since the game is strongly monotone, we have that for all
xi ∈ Xi,

⟨∇iCi(xi, x−i,t)−∇iCi(xi,t+1, x−i,t), xi − xi,t+1⟩
≥ m ∥xi − xi,t+1∥2 , (13)

which follows from the definition (2) by setting x =
(xi, x−i,t) and x′ = (xi,t+1, x−i,t). Combining (13) with
(12) and replacing xi with x∗

i , we get

m ∥x∗
i − xi,t+1∥2 ≤ ⟨∇iCi(x∗

i , x−i,t), x
∗
i − xi,t+1⟩. (14)

Summing the both sides of inequality (14) over i = 1, . . . , N ,
we have that

∥xt+1 − x∗∥2 ≤ 1

m

∑
i

⟨∇iCi(x∗
i , x−i,t), x

∗
i − xi,t+1⟩

≤ 1

m

∑
i

⟨∇iCi(x∗
i , x−i,t)−∇iCi(x∗), x∗

i − xi,t+1⟩

≤ 1

m

∑
i

L
∥∥x−i,t − x∗

−i

∥∥ ∥x∗
i − xi,t+1∥

≤ L
√
N − 1

m
∥xt − x∗∥ ∥x∗ − xt+1∥ , (15)

where the second inequality follows from the Nash equilib-
rium condition ⟨∇iCi(x∗), xi − x∗

i ⟩ ≥ 0, ∀xi ∈ Xi and the
third inequality is due to the Lipschitz continuous property
of the function Ci in x−i. The last inequality follows from
the Cauchy-Schwarz inequality. Dividing the inequality (15)
by ∥xt+1 − x∗∥ yields

∥xt+1 − x∗∥ ≤ L
√
N − 1

m
∥xt − x∗∥ . (16)

Note, if ∥xt+1 − x∗∥ = 0, then (16) holds trivially. Applying
inequality (16) iteratively over t = 1, . . . , T − 1 completes
the proof.

In what follows, we provide some intuition and explain
the condition m > L

√
N − 1. First, suppose that L1 is the

Lipschitz constant of the function ∇iCi(x) with respect to
x. From its definitions we conclude that L ≤ L1. Therefore,
the Lipschitz constant L1 provides an upper bound on the
variation of the gradients and is always greater than the
strongly monotone parameter m which provides a lower
bound, i.e., m ≤ L1. However, it is still possible to have
m > L

√
N − 1. For example, if Ci only depends on xi, we

have that L = 0 and thus the condition naturally holds as
long as m > 0.

On the other hand, consider the condition m > L
√
N − 1

and rearrange the terms to get L < m√
N−1

. Recall that L

is the Lipschitz constant of the function ∇iCi(xi, x−i) with
respect to x−i, which can be interpreted as the maximum
influence of the other agents’ actions on agent i. The condition
L < m√

N−1
requires that this influence is small enough for

the game to converge. The presence of multiple agents (N
is large) reduces the upper bound on the influence of other
agents’ actions which , effectively, increases the difficulty of
the game.

Note that [11] also provides a sufficient condition for
convergence of the best response algorithm, that involves the
spectral norm of a matrix composed of parameters related
to the second-order partial derivative of the cost function.
In this work, we analyze the best response algorithm from
a different perspective that relies on strong monotonicity
to characterize convergence. In simple cases such as two-
player potential games, it is easy to show that our condition
is equivalent to the condition in [11]. However, in general,
strong monotonicity provides a more intuitive condition for
convergence. Finally, we experimentally show that when the
condition m > L

√
N − 1 does not hold, the best-response

algorithm may lead to cycles. This result further validates
the utility of the proposed condition.

Proposition 1 shows that the best response algorithm
converges to the Nash equilibrium at an exponential rate.
Indeed, it is a no-regret learning algorithm for each agent as
well, as shown in the following proposition.

Proposition 2. Suppose that the game G is m-strongly mono-
tone with parameter m > L

√
N − 1, the cost Ci(xi, x−i)

is L0-Lipschitz continuous in x−i for every xi ∈ Xi, and
the diameter of the convex set Xi is bounded by D, for all
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i = 1, . . . , N Then, the static regret of the best response
algorithm satisfies

SRi(T ) ≤
T∑

t=1

Ci(xt)−
T∑

t=1

min
xi

Ci(xi, x−i,t) = O(1).

Proof. The first inequality holds due to the fact that∑T
t=1 minxi

Ci(xi, x−i,t) ≤ minxi

∑T
t=1 Ci(xi, x−i,t). Ob-

serve that Ci(xi,t+1, x−i,t) = minxi Ci(xi, x−i,t) since
xi,t+1 = argminxi∈Xi

Ci(xi, x−i,t). Then, it follows that

SRi(T ) ≤
T∑

t=1

Ci(xt)−
T∑

t=1

min
xi

Ci(xi, x−i,t)

=

T∑
t=1

(
Ci(xt)− Ci(xt+1) + Ci(xt+1)− Ci(xi,t+1, x−i,t)

)
≤ Ci(x1) +

T∑
t=1

(
Ci(xt+1)− Ci(xi,t+1, x−i,t)

)
≤ Ci(x1) + L0

T∑
t=1

∥x−i,t+1 − x−i,t∥

≤ Ci(x1) + L0

T∑
t=1

∥xt+1 − xt∥ , (17)

where the second to the last inequality follows from the
Lipschitz continuous property of the function Ci in x. By
virtue of (11) in Proposition 1, we have

∥xt+1 − xt∥2 = ∥xt+1 − x∗ + x∗ − xt∥2

≤ 2 ∥xt+1 − x∗∥2 + 2 ∥x∗ − xt∥2 ≤ 2(ρ2 + 1) ∥xt − x∗∥2 .
(18)

Substituting the inequality (18) into (17), we have

SRi(T ) ≤Ci(x1) + L0

T∑
t=1

√
2(ρ2 + 1) ∥xt − x∗∥

≤Ci(x1) + L0

√
2(ρ2 + 1)

T∑
t=1

ρtD

≤Ci(x1) +
DL0

√
2(ρ2 + 1)

1− ρ
, (19)

which completes the proof.

Proposition 2 indeed provides a stronger bound than the
static regret defined in (3). Instead of comparing to a single
best action in hindsight, it compares with a sequence of
episode-wise best actions, which is equivalent to the dynamic
regret with time-invariant cost functions. This strong result
own itself to the best response algorithm.

IV. TIME-VARYING GAMES

In this section, we analyze time-varying games Gt where
the cost functions of the agents change over time. Since
the equilibrium of these games also varies, in what follows
we analyze the ability of the best response algorithm (5) to
generate actions that track the evolving equilibrium.

If the game Gt changes significantly, it is reasonable to
expect that it will be hard to track the evolving equilibrium.
Therefore, as in related literature [17], [18], we assume that
both the equilibrium variation VT in (8) and the function
variation Wi,T in (9) are sub-linear in T , for i = 1, . . . , N .

In what follows, we analyze the equilibrium tracking error
of the best response algorithm (5) in terms of the equilibrium
variation.

Theorem 1. Suppose that the time-varying game Gt is
mt-strongly monotone and ∇iCi,t(xi, x−i) is Lt-Lipschitz
continuous in x−i for every xi ∈ Xi with parameter mt >
Lt

√
N − 1, for ∀t. Then, the best response algorithm (5)

satisfies that

Err(T ) ≤ ∥x1 − x∗
1∥

2

1− ρm
+

VT

(1− ρm)2
= O (1 + VT ) , (20)

where ρm := maxt

{
Lt

√
N−1

mt

}
.

Proof. Applying the same arguments as in Proposition 1 to
the cost function Ci,t, we can obtain an inequality similar to
(16) as

∥xt+1 − x∗
t ∥ ≤ ρt ∥xt − x∗

t ∥ , (21)

where ρt :=
Lt

√
N−1

mt
. Observe that∥∥xt+1 − x∗

t+1

∥∥2 =
∥∥xt+1 − x∗

t + x∗
t − x∗

t+1

∥∥2
≤(1 + λ) ∥xt+1 − x∗

t ∥
2
+ (1 +

1

λ
)
∥∥x∗

t − x∗
t+1

∥∥2 ,
for ∀λ > 0. Setting λ = 1

ρt
− 1 > 0 yields∥∥xt+1 − x∗

t+1

∥∥2 ≤ 1

ρt
∥xt+1 − x∗

t ∥
2
+

1

1− ρt

∥∥x∗
t − x∗

t+1

∥∥2
≤ ρt ∥xt − x∗

t ∥
2
+

1

1− ρt

∥∥x∗
t − x∗

t+1

∥∥2
≤ ρm ∥xt − x∗

t ∥
2
+

1

1− ρm

∥∥x∗
t − x∗

t+1

∥∥2 , (22)

where the second inequality follows from (21) and the last
inequality is due to the fact that ρt ≤ ρm < 1. Rearranging
and summing (22) over t = 1, . . . , T , we have that

(1− ρm)

T∑
t=1

∥xt − x∗
t ∥

2

≤
T∑

t=1

(
∥xt − x∗

t ∥
2 −

∥∥xt+1 − x∗
t+1

∥∥2 + ∥∥x∗
t − x∗

t+1

∥∥2
1− ρm

)

≤∥x1 − x∗
1∥

2
+

1

1− ρm

T∑
t=1

∥∥x∗
t − x∗

t+1

∥∥2
≤∥x1 − x∗

1∥
2
+

1

1− ρm
VT .

Dividing both sides of the above inequality by (1 − ρm)
completes the proof.

Theorem 1 shows that VT dominates the equilibrium
tracking error. If VT is sub-linear in T , so is the equilibrium
tracking error. In what follows, we analyze the dynamic regret
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of each agent in terms of the equilibrium variation and the
function variation.

Theorem 2. Suppose that the time-varying game Gt is mt-
strongly monotone, ∇iCi,t(xi, x−i) is Lt-Lipschitz continuous
in x−i for every xi ∈ Xi with parameter mt > Lt

√
N − 1,

and the cost Ci,t(x) is L0-Lipschitz continuous in x−i for
every xi ∈ Xi for ∀t. Then, the dynamic regret of the best
response algorithm (5) satisfies

DRi(T ) = O
(
Wi,t +

√
TVT

)
, i = 1, . . . , N. (23)

Proof. Using the update rule of the best response algorithm
(5), we have

DRi(T ) =

T∑
t=1

(
Ci,t(xt)− Ci,t(xi,t+1, x−i,t)

)
=

T∑
t=1

(
Ci,t(xt)− Ci,t+1(xt+1) + Ci,t+1(xt+1)

− Ci,t(xt+1) + Ci,t(xt+1)− Ci,t(xi,t+1, x−i,t)
)

≤Ci,1(x1) +Wi,T +

T∑
t=1

(
Ci,t(xt+1)− Ci,t(xi,t+1, x−i,t)

)
≤Ci,1(x1) +Wi,T + L0

T∑
t=1

∥x−i,t+1 − x−i,t∥

≤Ci,1(x1) +Wi,T + L0

T∑
t=1

∥xt+1 − xt∥ . (24)

Using the inequality (21) and the fact that ρt ≤ ρm < 1, we
have

T∑
t=1

∥xt+1 − xt∥2 =

T∑
t=1

∥xt+1 − x∗
t + x∗

t − xt∥2

≤
T∑

t=1

(
(1 +

1

ρm
) ∥xt+1 − x∗

t ∥
2
+ (1 + ρm) ∥x∗

t − xt∥2
)

≤ (ρm + 1)2
T∑

t=1

∥xt − x∗
t ∥

2
,

which further yields

DRi(T )

≤Ci,1(x1) +Wi,T + L0

√
T

√√√√ T∑
t=1

∥xt+1 − xt∥2

≤Ci,1(x1) +Wi,T + L0

√
T

√√√√(ρm + 1)2
T∑

t=1

∥xt − x∗
t ∥

2

=O
(
Wi,t +

√
TVT

)
, (25)

where in the last inequality we use the results from Theorem 1.
The proof is complete.

Theorem 2 shows that the dynamic regret is sublinear in
T if the variation of the game satisfies Wi,T = O(T a) and
VT = O(T b) with a, b ∈ [0, 1).

0 3 6 9 12 15 18 21
episode t

10−9

10−7

10−5

10−3

10−1

101

||x
−
x*

||2

m< L√N− 1
m= L√N− 1
m> L√N− 1

Fig. 1. Convergence of the best response algorithm for time-invariant
games.

Remark 1. (Connection between dynamic regret and equi-
librium tracking error). In the single agent case, equilibrium
tracking error is equivalent to the dynamic regret. However,
this is not true for games involving multiple agents. This is
due to the fact that the function Ci,t(·, x−i,t) is time-varying
due to changes in the function Ci,t itself and changes in other
agents’ actions x−i,t. To see this, consider the class of time-
varying games with time-varying cost functions but constant
equilibrium, i.e., VT = 0, Wi,T = O(T a) for some a > 0. In
this case, we have Err(T ) = O(1) but DRi(T ) = O(T a).

V. NUMERICAL EXPERIMENTS

In this section, we validate our analysis on a Cournot game
for both time-invariant and time-varying losses.

A. Time-invariant game

We first focus on the time-invariant case. We consider a
Cournot game with two agents whose goal is to minimize
their local losses by appropriately setting the production
quantity xi, i = 1, 2. The loss function of each agent is given
by Ci(x) = xi(

aixi

2 + bix−i − ei) + 1, where ai > 0 , bi,
ei are constant parameters, and x−i denotes the production
quantity of the opponent of agent i. It is easy to show that
∇iCi(x) = aixi+bix−i−ei. Recalling that L is the Lipschitz
constant of the function ∇iCi(x) with respect to x−i, we have
L = max{|b1|, |b2|}. Define g(x) = (∇1C1(x),∇2C2(x))
and let G(x) denote the Jacobian of g(x), i.e., G(x) =
[a1, b1; b2, a2]. According to [9], the strong monotonicity
parameter m coincides with the smallest eigenvalue of the
matrix G(x)+G′(x)

2 .
We validate our methods for three different selections

of parameters θk := (ak1 , a
k
2 , b

k
1 , b

k
2 , e

k
1 , e

k
2) for k = 1, 2, 3.

Specifically, We select θ1 = (1, 1, 0.6,−0.5, 1.2, 0.8), θ2 =
(1, 1, 1,−1, 1.2, 0.8) and θ3 = (1, 1, 2,−1, 1.2, 0.8). It is
easy to verify that θ1, θ2 and θ3 correspond to the cases
m > L

√
N − 1, m = L

√
N − 1, and m < L

√
N − 1,

respectively. The convergence results are shown in Figure 1.
We observe that when m > L

√
N − 1, the best response

converges with exponential rate. When m ≤ L
√
N − 1, the

best response algorithm fails to converge, which indicates the
tightness of our theoretical results.
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Fig. 2. Equilibrium tracking error of the best response algorithm for time-
varying games.
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Fig. 3. Dynamic regret of the best response algorithm for time-varying
games.

B. Time-varying games

For the time-varying case, the loss function of agent i is
defined as Ci,t(x) = xi(

aixi

2 + bi,tx−i − ei,t) + 1, where
ai = 2, i = 1, 2, and bi,t, ei,t are time-varying parameters.
The time-varying parameters are selected as

bi,t =

{
0.3 + 0.1× (−1)t t ∈ [1, T 0.6]

0.3 t ∈ (T 0.6, T ]
,

ei,t =

{
0.4 t ∈ [1, T 0.6]

0.4 + 0.1× (−1)tt−1/4 t ∈ (T 0.6, T ]
.

We select T = 1000 and thus T 0.6 ≈ 63. It can be verified
that the selection of parameters yields mt ≥ Lt

√
N − 1 for

∀t, and VT = O(T 3/4), Wi,T = O(T 3/4), i = 1, 2. Figures
2–3 illustrate the equilibrium tracking error and the dynamic
regret of the best response algorithm, respectively. We observe
that, when t ∈ [1, T 0.6], both the equilibrium tracking error
and the dynamic regret grow rapidly due to the oscillations
of bi,t; when t ∈ (T 0.6, T ], they grow slowly since bi,t is
a constant and the variation of ei,t is decreasing over time.
Moreover, both the equilibrium tracking error and the dynamic
regret are sub-linear in the total number of episodes, which
supports our theoretical results.

VI. CONCLUSION

In this work, we analyzed the best response algorithm for
the class of strongly monotone games. We first considered

standard time-invariant games and obtained a sufficient
condition under which the best response algorithm converges
at an exponential rate. We provided numerical experiments
that showed the best response algorithm can diverge if this
condition fails to hold, which indicates that the condition is
tight. Subsequently, we analyzed the best response algorithm
for time-varying games with evolving equilibria. We showed
that the equilibrium tracking error and the dynamic regret
can be bounded in terms of the variations of evolving equi-
libria and loss functions. Moreover, we provided additional
numerical simulations to verify our results.
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