
New Approach to Variable Selection for Nonparametric Nonlinear
Systems*

Xiaotao Ren1, Wenxiao Zhao1 and Jinwu Gao2

Abstract— Let the observation {uk, yk} be generated by
yk+1 = f(yk, · · · , yk+1−p, uk, · · · , uk+1−q)+εk+1, where (p, q)
are the system orders, εk is the system noise, and f(·) is
an unknown nonlinear function. A new method for variable
selection of f(·) at any interested points is introduced. In
contrast to most of the existing results, the new method is
not based on optimizing a certain criterion, and estimates from
the variable selection algorithm given in this paper are easy
to update computationally in comparison with the criterion-
optimization-based methods when new data arrive. Under
reasonable conditions the estimates are proved to converge to
the true contributing variables with probability one.

I. INTRODUCTION

Due to the complexity of practical systems in nature, iden-
tification of nonlinear systems has received much attention
in recent years [1][2][3][4][5][6]. A classical approach for
nonlinear system identification is known as the model on
demand approach, for which the values of the nonlinear
function within the system at interested points are to be
estimated[1][3][6]. Other types of nonparametric identifica-
tion methods include the Gaussian random field approach [2],
the reproducing kernel Hilbert spaces (RKHSs) method [7],
etc. In this paper, following the idea of the model on demand
approach, we consider the nonparametric identification of
the nonlinear autoregressive system with exogenous inputs
(NARX),

yk+1 = f(yk, · · · , yk+1−p, uk, · · · , uk+1−q) + εk+1 (1)

where uk, yk, and εk are the system input, output and driven
noise, respectively.

Note that almost all of the model on demand approaches
for nonparametric identification, c.f.,[1][3][6], are in some
form of weighted local average. That is, weights are assigned
to the observed data according to their distances to the
fixed point and only those data that are near to the fixed
point take effective roles. This often leads to the problem
of curse of dimensionality if the system dimension (p, q)
is high[8][9]. Thus, for nonparametric identification, it is of
importance to have an estimate not only for the dimension of
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[yk, · · · , yk+1−p, uk, · · · , uk+1−q]
T but also the contributing

variables among [yk, · · · , yk+1−p, uk, · · · , uk+1−q]
T at the

point of interest ϕ∗ ∈ Rp+q , since this will lead to a
more concise model which suffers less from the dimension
problem.

In fact, the variable selection of nonparametric nonlinear
systems has been investigated in systems and control litera-
ture, for example, the averaging derivative method in [10],
the kernel-based Lasso-type convex optimization algorithm
in [11][20], the linearisation sub-region division procedure in
[12], the additive nonparametric model in [13], the inverse
and contour regression approach in [14], etc. There are
also concerns from areas of statistics and machine learning,
see, e.g., [15][16]. To the authors’ knowledge, although the
algorithm design in the above literature is different from
each other, a common feature lies in that, after collecting
a number N of data, these algorithms find a set of possible
contributing variables by optimization or computation of a
certain objective function, and when data length N changes,
one has to re-optimize the objective function to obtain new
estimates. This is time-consuming for dynamic systems and
online estimation.

The contributions of the paper are summarized as follows.
First, based on the idea of local linear approximation and
the kernel-based local linear estimator (LLE) [6][8], we
propose a new method for variable selection of system (1)
at the point of interest, which is not based on optimizing a
certain criterion, and estimates from the variable selection
algorithm are easy to update computationally in comparison
with the criterion-optimization-based methods when new
data arrive. Second, we prove that estimates generated from
the proposed algorithm correctly identify the contributing
variables with probability one. As a byproduct, the strong
consistency of LLE as well as the convergence rate are
established in the paper by using the Bernsteins inequality
for ϕ-mixing processes [17] and the estimation theorem for
double array martingales [18]. To the authors’ knowledge,
only convergence in probability or in mean square sense of
LLE is established in existing literature, see, e.g., [6][8][19].

The rest of the paper is organized as follows. The problem
formulation and the variable selection algorithm are given in
Section II. The theoretical results are presented in Section
III. A numerical example is given in section IV, and some
conclusion remarks are provided in section V.
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II. VARIABLE SELECTION ALGORITHM FOR
NONLINEAR NONPARAMETRIC SYSTEMS

Denote ϕk , [yk, · · · , yk+1−p, uk, · · · , uk+1−q]
T ∈

Rp+q and the observed data set by {ϕk, yk+1}Nk=1. Denote by
ϕ∗ = [y∗1 , · · · , y∗p , u∗1, · · · , u∗q ] ∈ Rp+q the point of interest.

Definition 1: ([20][11]) Assume that f(·) is differentiable
at the given point ϕ∗. If some partial differentials ∂f

∂y∗i
or

∂f
∂u∗j

, i = 1, · · · , p, j = 1, · · · , q, are nonzero at ϕ∗, then
yk+1−i and uk+1−j are said to be the contributing variables
of system (1) at ϕ∗.

Algorithm 1 Nonparametric Variable Selection Algorithm
Initialization: Observations {ϕk, yk+1}Nk=1, constants α ∈
(0, 1) and η > 1, a positive sequence {bk}Nk=1 tending to
zero as N → ∞ and a probability density function (pdf)
w(·) : Rp+q → R.
Step 1. Local linear estimator of f(·) at ϕ∗
Define the kernel function wk,N (ϕ∗)

wk,N (ϕ∗) =
1

bp+qN

w(
ϕk − ϕ∗

bN
), k = 1, · · · , N. (2)

Compute the local linear estimates of f(·) at ϕ∗

θN+1 = [θ0,N+1, θ
T
1,N+1]T

, argmin
θ0∈R,θ1∈Rp+q

N∑
k=1

wk,N (ϕ∗)(yk+1 − θ0 − θT1 (ϕk − ϕ∗))2.

(3)

Step 2. Variable selection of f(·) at ϕ∗
Denote θ1,N+1 , [θ1,N+1(1), · · · , θ1,N+1(p + q)]T , define
the decision numbers

Qj,N+1 ,
|θ1,N+1(j)|+ bαN

bαN
, j = 1, · · · , p+ q, (4)

and compute the estimates for variable selection

θ̃N+1(j) ,

{
θ1,N+1(j), if Qj,N+1 ≥ η,
0, if Qj,N+1 < η.

(5)

Remark 1: Denote the gradient of f(·) at ϕ∗ by ∇f(ϕ∗),
if it exists. The estimates θ0,N+1 ∈ R and θ1,N+1 ∈ Rp+q
generated from (3) serve as the estimate of f(ϕ∗) and
∇f(ϕ∗), respectively. In the following we will prove that
‖θ1,N+1 − ∇f(ϕ∗)‖ = O(bN ) almost surely and hence
Qj,N+1 will diverge to ∞ if the j-th entry of ∇f(ϕ∗)
is nonzero and will converge 1 otherwise, by noting that
bN → 0 as N → ∞ and α ∈ (0, 1). Then θ̃1,N+1(j), j =
1, · · · , p+q by (5) generate consistent estimates for variable
selection of f(·) at ϕ∗ as well as values of the nonzero entries
in ∇f(ϕ∗). In contrast to the existing nonparametric variable
selection algorithm, see, e.g., the penalized convex optimiza-
tion algorithm in [20] and [11], algorithm (4)–(5) is not based
on optimizing a certain criterion, and estimates from (4)–(5)
are easy to update computationally in comparison with the
criterion-optimization-based methods when new data arrive.

Remark 2: The estimate θN+1 by (3) can be formulated
by

θN+1 =

(
N∑
k=1

wk,N (ϕ∗)ϕkϕ
T
k

)−1( N∑
k=1

wk,N (ϕ∗)ϕkyk+1

)
(6)

provided that the matrix
∑N
k=1 wk,N (ϕ∗)ϕkϕ

T
k is invert-

ible. The local linear estimator (LLE) (2)–(3) is a classi-
cal nonparametric identification algorithm widely studied in
statistics as well as systems and control. To the authors’
knowledge, for LLE only convergence in probability or in
mean square sense is reported in literature, see, e.g., [6][8]
and references therein. However, such kinds of results are
insufficient for almost sure convergence of algorithm (4)–(5)
and the strong consistency of LLE will be investigated in
this paper.

III. THEORETICAL PROPERTIES OF ALGORITHM
Set Θ∗ , ∇f(ϕ∗) = [Θ∗(1), · · · ,Θ∗(p + q)]T . Without

losing generality, we assume that there are d(≤ p + q)
contributing variables of f(·) at ϕ∗ and Θ∗(i) 6= 0, i =
1, · · · , d,Θ∗(j) = 0, j = d+ 1, · · · , p+ q.

We first introduce assumptions to be used in the paper.
A1) The pdf w(·) in (2) satisfies w(x) = O(ρ‖x‖) for

some 0 < ρ < 1 as ‖x‖ → ∞ and the integral∫
Rp+q w(x)xxT dx > 0. The bandwidth bN satisfies
bN → 0 and Nb

4(p+q+2)
N ≥ c1N

σ → ∞ for some
c1 > 0 and 0 < σ < 1.

A2) The noise sequence {εk}k≥0 is iid with Eεk =
0, E|εk|2 <∞ and with a pdf, denoted by fε(·), which
is positive and uniformly continuous on R. εk+1 is
independent of ϕk for each k ≥ 0.

A3) The observation sequence {ϕk}k≥0 is φ-mixing and
stationary with mixing coefficients {φk}k≥0 satisfying
φk ≤ c2ρ

k, k ≥ 0 for some c2 > 0 and 0 < ρ < 1.
Further, {ϕk}k≥0 is with a pdf p(·) which is bounded
on Rp+q and continuous and positive at ϕ∗.

A4) The function f(·) in (1) is measurable, continuous at
ϕ∗ and |f(s)| ≤ c3(‖s‖m + 1),∀s ∈ Rp+q for some
constant c3 > 0 and m > 0.

A5) f(·) and p(·) have second order derivatives which are
continuous at ϕ∗.

Denote the Hessian matrices of f(·) and p(·) at ϕ∗ by
∂2f

∂ϕ∗2
and ∂2p

∂ϕ∗2
, respectively.

Remark 3: For w(·) applied in the kernel function, A1)
includes the Gaussian pdf, the uniformly distributed pdf
as special cases. In A3), the mixing property of {ϕk}k≥0
indicates that ϕk and ϕk+h are asymptotically independent as
the time interval h increases. If {ϕk}k≥0 is an iid sequence,
then the mixing property of {ϕk}k≥0 follows directly.

There have been many studies on the asymptotical prop-
erties of the kernel function wk,N (ϕ∗), most of which are
given with convergence in probability or in mean square
sense, see [6][8] and references therein. For the almost sure
convergence of the kernel, we have the following lemmas
and theorem.
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Lemma 1: Assume that A1)–A5) hold. Then

Ewk,N (ϕ∗) = p(ϕ∗) +O(b2N ), (7)
Ewk,N (ϕ∗)(ϕk − ϕ∗)

= b2N

∫
Rp+q

w(s)ssTds · ∇p(ϕ∗) + o(b2N ), (8)

Ewk,N (ϕ∗)(ϕk − ϕ∗)(ϕk − ϕ∗)T

= b2Np(ϕ
∗)

∫
Rp+q

w(s)ssTds+ o(b2N ), (9)

Ewk,N (ϕ∗)[f(ϕk)− f(ϕ∗)−∇f(ϕ∗)T (ϕk − ϕ∗)]

=
1

2
b2Np(ϕ

∗)

∫
Rp+q

w(s)sT
∂2f

∂ϕ∗2
sds+ o(b2N ), (10)

Ewk,N (ϕ∗)(ϕk − ϕ∗)[f(ϕk)− f(ϕ∗)−∇f(ϕ∗)T (ϕk − ϕ∗)]

=
1

2
b3Np(ϕ

∗)

∫
Rp+q

w(s)ssT
∂2f

∂ϕ∗2
sds+ o(b3N ). (11)

and

1

N

N∑
k=1

wk,N (ϕ∗) = p(ϕ∗) + o

(
1

Nκb
κ(p+q)
N

)
+O(b2N ) a.s.,

(12)

1

N

N∑
k=1

wk,N (ϕ∗)(ϕk − ϕ∗) = b2N

∫
Rp+q

w(s)ssTds · ∇p(ϕ∗)

+ o

(
1

Nκb
κ(p+q−1)
N

)
+ o(b2N ) a.s., (13)

1

N

N∑
k=1

wk,N (ϕ∗)(ϕk − ϕ∗)(ϕk − ϕ∗)T

= b2Np(ϕ
∗)

∫
Rp+q

w(s)ssTds+ o

(
1

Nκb
κ(p+q−2)
N

)
+ o(b2N ) a.s., (14)

1

N

N∑
k=1

wk,N (ϕ∗)[f(ϕk)− f(ϕ∗)−∇fT (ϕ∗)(ϕk − ϕ∗)]

=
1

2
b2Np(ϕ

∗)

∫
Rp+q

w(s)sT
∂2f

∂ϕ∗2
sds

+ o

(
1

Nκb
κ(p+q)
N

)
+ o(b2N ) a.s., (15)

1

N

N∑
k=1

wk,N (ϕ∗)(ϕk−ϕ∗)[f(ϕk)−f(ϕ∗)−∇fT (ϕ∗)(ϕk−ϕ∗)]

=
1

2
b3Np(ϕ

∗)

∫
Rp+q

w(s)ssT
∂2f

∂ϕ∗2
sds

+ o

(
1

Nκb
κ(p+q−1)
N

)
+ o(b3N ) a.s. (16)

for any κ ∈
(

1
p+q+3 ,

1
2

)
.

Proof: Due to space limitation, here we only prove
(15) and the others can be treated similarly. The proofs are
based on the Bernstein’s inequality for φ-mixing processes
[17, Lemma 1] and the Borel-Cantelli Lemma. The details
are given in Appendix.

Lemma 2: Assume that A1)–A5) hold. Then

1

N

N∑
k=1

wk,N (ϕ∗)εk+1 = o

(
1

N
1
4−εbp+qN

)
a.s., (17)

1

N

N∑
k=1

(ϕk − ϕ∗)wk,N (ϕ∗)εk+1 = o

(
1

N
1
4−εbp+q−1N

)
a.s.

(18)

for any ε ∈ (0, 14 ).
Proof: By applying the estimation theorem for double

array martingales [18, Theorem 2.9], we can obtain the
results. The detailed proofs are given in Appendix.

The strong consistency of LLE as well as the convergence
rate can be derived immediately by the following theorem.

Theorem 1: Assume that A1)–A5) hold. Then for
LLE, θN+1 converges almost surely to the true value
[f(ϕ∗),∇fT (ϕ∗)]T with the convergence rate[

θ0,N+1

θ1,N+1

]
−
[
f(ϕ∗)
∇f(ϕ∗)

]
=

[
O(b2N )
O(bN )

]
a.s. (19)

with bN specified in A1).
Proof: Set θ0 = [f(ϕ∗),∇fT (ϕ∗)]T . Then from (6)

we have
θN+1 − θ0 =

[
bN 0
0 I

]
A−1N BN , (20)

where

AN =

[
AN (1, 1) AN (1, 2)
AN (2, 1) AN (2, 2)

]
, BN =

[
BN (1)
BN (2)

]
,

AN (1, 1) =
1

N

N∑
k=1

wk,N (ϕ∗),

AN (1, 2) = AN (2, 1)T =
1

NbN

N∑
k=1

wk,N (ϕ∗)(ϕk − ϕ∗)T ,

AN (2, 2) =
1

Nb2N

N∑
k=1

wk,N (ϕ∗)(ϕk − ϕ∗)(ϕk − ϕ∗)T ,

and

BN (1) =
1

NbN

N∑
k=1

wk,N (ϕ∗)[f(ϕk)− f(ϕ∗)

−∇fT (ϕ∗)(ϕk − ϕ∗) + εk+1],

BN (2) =
1

Nb2N

N∑
k=1

wk,N (ϕ∗)(ϕk − ϕ∗)[f(ϕk)− f(ϕ∗)

−∇fT (ϕ∗)(ϕk − ϕ∗) + εk+1].

Noting A1) that Nb4(p+q+2)
N ≥ c1N

σ , for 0 < ε < σ
4 we

have

1

NbN

N∑
k=1

wk,N (ϕ∗)εk+1 = o

(
1

N
1
4−εbp+q+1

N

)
= o(bN ) a.s.

(21)
and

1

Nb2N

N∑
k=1

wk,N (ϕ∗)(ϕk − ϕ∗)εk+1
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= o

(
1

N
1
4−εbp+q+1

N

)
= o(bN ) a.s. (22)

Combining (21)–(22) with Lemma 1, we obtain that

AN −−−−→
N→∞

p(ϕ∗)

[
1 0
0
∫
Rp+q w(s)ssTds

]
> 0 a.s. (23)

BN (1) =
1

2
bNp(ϕ

∗)

∫
Rp+q

w(s)sT
∂2f

∂ϕ∗2
sds+ o(bN ) a.s.,

(24)

and

BN (2) =
1

2
bNp(ϕ

∗)

∫
Rp+q

w(s)ssT
∂2f

∂ϕ∗2
sds+ o(bN ) a.s.

(25)
Based on (20)–(25), we have

‖θN+1−θ0‖=

[
bN 0
0 I

]
·O(1) ·

[
O(bN )
O(bN )

]
=

[
O(b2N )
O(bN )

]
.

(26)

For consistency of the variable selection algorithm, we
have the following result.

Theorem 2: Assume that A1)–A5) hold. Then for
{θ̃N+1(j), j = 1, · · · , p + q} generated by (5), there exists
an ω-set Ω0 with Pr(Ω0) = 1 such that for any ω ∈ Ω0,
there exists an integer N0(ω) such that

θ̃N+1(d+1) = · · · = θ̃N+1(p+q) = 0 N ≥ N0(ω), (27)

and

[θ̃N+1(1), · · · , θ̃N+1(d)] −−−−→
N→∞

[θ1(1), · · · , θ1(d)]. (28)

Proof: Since the results in Lemmas 1, 2 and Theorem 1
hold almost surely, there exists an ω-set Ω0 with Pr(Ω0) = 1
such that Lemmas 1, 2 and Theorem 1 hold for any ω ∈ Ω0.
In the following, we consider a fixed sample path ω ∈ Ω0.

By Theorem 1 and noting that the parameter α in Algo-
rithm 1 is chosen as α ∈ (0, 1), we have ‖θ1,N+1(j)−θ∗1 (j)‖

bαN
=

o(1), j = 1, · · · , p + q. This combining with the definition
of Qj,N+1 in (4) leads to

lim
N→∞

Qj,N+1 =

{
∞, if θ1(j) 6= 0,

1, if θ1(j) = 0,
(29)

for j = 1, · · · , p+ q.

By noting that Θ∗ = ∇f(ϕ∗), Θ∗(i) 6= 0, i =
1, · · · , d, Θ∗(j) = 0, j = d + 1, · · · , p + q and the value
of η being bigger than 1, from (29) we know that there
exists a positive integer N0 such that for all N > N0,
Qj,N+1 ≥ η, j = 1, · · · , d and Qj,N+1 < η, j =
d + 1, · · · , p + q. By the definition of θ̃N+1(j) in (5), we
have θ̃N+1(j) = 0, j = d+1, · · · , p+q for all N ≥ N0 and
θ̃N+1(j) −→

N→∞
θ1(j), j = 1, · · · , d. This finishes the proof.

IV. SIMULATION

Consider the following nonlinear system ([11]):

yk+1 = α1 sin(u1,ku2,k) + α2(u3,k − 0.5)2

+ α3u4,k + α4u5,k + α5u6,ku7,k + α6u
2
7,k

+ α7 cos(u6,ku8,k) + α8 exp{−|u8,k|}+ εk+1,
(30)

with α1 = α5 = α6 = α7 = α8 = 0, a2 = 2, a3 = 1 and
α4 = 0 if u5,k ≤ 0, while α4 = 1 if u5,k > 0.

The test point ϕ∗ is chosen as ϕ∗ = [0 0 0 0 0.5 0 0 0]T . It
can be directly verified that u3,k, u4,k and u5,k are contribut-
ing variables at ϕ∗ since ∂f

∂u3,k

∣∣
u3,k=0

= −2, ∂f
∂u4,k

∣∣
u4,k=0

=

1, and ∂f
∂u5,k

∣∣
u5,k=0

= 1. In simulation, the input {uk}k≥1
is chosen as iid variables uniformly distributed over[-1,1],
and {εk}k≥1 is a sequence of iid Gaussian random variables
with distribution N (0, 0.12). The simulation is performed on
a Lenovo desktop with an Intel 1.30GHz i7-CPU.

For Algorithm 1, we choose bN = N−0.024, α = 1
2 ,

and η = 2 and perform 100 simulations. Table 1 shows
the estimates for values of the contributing variables from
one of the simulations. It can be found that as the number
of data N increases, the estimates converge to the true
values. To further testify the performance of the algorithm,
we compare the performance of Algorithm 1 with the Lasso-
type optimization-based variable selection algorithm in [20]
through their correct rates and computation time. To be
specific, Fig.1 shows the rates of the 100 simulations that the
contributing variables are correctly identified as a function of
the data length N and Table 2 lists the computation time of
100 simulations as data length N increases. It can be found
that as N increases, both the correct rates of Algorithm 1
and the algorithm in [20] converge to 100%. On the other
hand, as data length N increases, algorithm in [20] requires
much more computation time to obtain the estimates.

TABLE I
ESTIMATES FOR VALUES OF CONTRIBUTING VARIABLES

True values -2.0000 1.0000 1.0000

N=200 -1.8381 0.8485 0.8839
N=1000 -1.9781 0.9755 1.0312
N=2000 -1.9824 1.0301 1.0297
N=3000 -2.0110 0.9937 1.0226

Fig. 1. Rates that Contributing Variables Being Correctly Identified
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TABLE II
COMPUTATION TIME OF ALGORITHM 1 AND ALGORITHM IN [20] (UNIT:

SECOND)

Algorithm 1 algorithm in [20]

N=200 0.4178 3.2171
N=1000 1.4382 20.8815
N=2000 3.2841 69.1936
N=3000 5.5861 187.7395

V. CONCLUSION

In this paper, variable selection of the nonparametric
nonlinear systems is considered and the strongly consistent
estimates for variable selection as well as values of contribut-
ing variables are established. Compared with the criterion-
optimization-based algorithms, the algorithms proposed in
this paper is easy to update when new observed data are
available. As a byproduct, the almost sure convergence
and the convergence rate of the local linear estimator are
established, which, to the authors’ knowledge, have been not
reported in literature.

For future research, it is of interest to consider the global
variable selection for nonlinear systems. It is also of interest
to combine the compressive sensing technology with the
variable selection of dynamic systems.

APPENDIX

We first introduce the result on the estimation of double
array martingales.

Lemma 3: [18, Theorem 2.9] Let {ωt,Ft}t≥0 be an
m-dimensional martingale difference sequence satisfying
‖ωt‖ = o(ϕ(t)), where ϕ(x) is a positive, deterministic and
nondecreasing function that satisfiessupk ϕ(ek+1)/ϕ(ek) <
∞. Consider the p × m-dimensional double array random
matrix sequence {ft(k), k = 1, 2, · · · }, t ≥ 1 and suppose
that {ft(k), k = 1, 2, · · · , } is Ft-measurable and for some
A > 0,‖ft(k)‖ ≤ A < ∞ a.s. for all t, k. Then for
hn = O([log n]α) with α > 0, as n→∞ it holds

max
1≤k≤hn

max
1≤i≤n

∥∥∥∥∥∥
i∑

j=1

fj(k)ωj+1

∥∥∥∥∥∥
= O

 max
1≤k≤hn

n∑
j=1

‖fj(k)‖2
+ o(ϕ(n) log log n) a.s.

(31)

provided thatsupj E(‖ωj+1‖2 |Fj) <∞ a.s. Besides, if hn
is only assumed to satisfy hn = O(nα) with α > 0, then
(31) with “ log log n” replaced by “ log n” still holds.

A. Proof of Lemma 1

Denote

∆k,N (ϕ∗)

,
1

NrN

(
wk,N (ϕ∗)[f(ϕk)− f(ϕ∗)−∇fT (ϕ∗)(ϕk − ϕ∗)]

− E
[
wk,N (ϕ∗)[f(ϕk)− f(ϕ∗)−∇fT (ϕ∗)(ϕk − ϕ∗)]

])
(32)

where rN = 1

Nκb
κ(p+q)
N

with any fixed κ ∈ ( 1
p+q+3 ,

1
2 ).

We first show that
N∑
k=1

∆k,N (ϕ∗)
a.s.−−−−→

N→∞
0. (33)

It is direct to verify that

E∆k,N (ϕ∗) = 0 (34)

and by assumption A4)∥∥∥wk,N (ϕ∗)
[
f(ϕk)− f(ϕ∗)−∇fT (ϕ∗)(ϕk − ϕ∗)

]∥∥∥
≤ 1

bp+qN

w

(
ϕk − ϕ∗

bN

)
×
[
‖f(ϕk)‖+ ‖f(ϕ∗)‖+ ‖∇f(ϕ∗)‖ · ‖ϕk − ϕ∗‖

]
≤ c

bp+qN

w

(
ϕk − ϕ∗

bN

)
×
[
‖ϕk‖m + ‖ϕ∗‖m +

∥∥∥∥ϕk − ϕ∗bN

∥∥∥∥ bN + 1

]
≤ c

bp+qN

w

(
ϕk − ϕ∗

bN

)
×
[∥∥∥∥ϕk − ϕ∗bN

∥∥∥∥m bmN + ‖ϕ∗‖m +

∥∥∥∥ϕk − ϕ∗bN

∥∥∥∥ bN + 1

]
≤ c

bp+qN
(35)

for some c > 0 which may change among different inequali-
ties, where for the last inequality the assumption w(s) = ρ‖s‖

as ‖s‖ → ∞ is applied.
From (35) and (10), we obtain that for some c > 0

‖∆k,N (ϕ∗)‖ ≤ c

NrNb
p+q
N

+
c

NrN
≤ c

NrNb
p+q
N

, d(N)

(36)
and

E ‖∆k,N (ϕ∗)‖ ≤ cb2N
NrN

, δ(N). (37)

We now consider E ‖∆k,N (ϕ∗)‖2. It follows that

Ew2
k,N (ϕ∗)[f(ϕk)− f(ϕ∗)−∇fT (ϕ∗)(ϕk − ϕ∗)]2

=

∫
Rp+q

1

b
2(p+q)
N

w2(
x− ϕ∗

bN
)[f(x)− f(ϕ∗)

−∇fT (ϕ∗)(x− ϕ∗)]2p(x)dx

=

∫
Rp+q

1

bp+qN

w2(s)[f(bNs+ ϕ∗)− f(ϕ∗)−∇fT (ϕ∗)bNs]
2
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× p(bNs+ ϕ∗)dx

≤ c

bp+q−2N

(38)

where for the last inequality assumption A1) is applied and
hence

E ‖∆k,N (ϕ∗)‖2 ≤ c

N2r2Nb
p+q−2
N

, D(N). (39)

By the Bernstein’s inequality for φ-mixing processes [17,
Lemma 1], for any fixed ε > 0 it holds that

Pr

[∥∥∥∥∥
N∑
k=1

∆k,N (ϕ∗)

∥∥∥∥∥ > ε

]
≤ C1e

−αε+α2NC2 (40)

where C1, C2, and α are positive constants depending on N
such that

C1 = 2e3
√
eNφmN /mN , (41)

C2 = 6[D(N) + 4δ(N)d(N)φ̃mN ], (42)

mN is any number in {1, · · · , N}, {φk}k≥0 is the sequence
of mixing coefficients of {ϕk}k≥0, φ̃mN =

∑mN
k=1 φk and α

can be any positive number such that

α ·mN · d(N) ≤ 1

4
. (43)

Set mN = [N
1
2 b

p+q
2

N ]. By the definition of rN (see
the definition below (32)), it can be directly verified that
b2N

mNrN
→ 0,

NrNb
p+q
N

mN logN → ∞ and rN
b2N
→ 0 as N → ∞.

By noticing (36)–(39) and assumption A3) that the mixing
coefficients {φk}k≥0 satisfy φk ≤ cρk, 0 < ρ < 1, we have
C1 = O(1) and for some constant c > 0

C2≤c

[
1

N2r2Nb
p+q−2
N

+
b2N
NrN

· 1

NrNb
p+q
N

]
≤ c

N2r2Nb
p+q−2
N

.

(44)
Let ε > 0 be such that εc < 1/4 where c is the constant

in (36) and set α = ε
NrNb

p+q
N

mN
. It follows that

α ·mN · d(N) ≤ ε
NrNb

p+q
N

mN
·mN ·

c

NrNb
p+q
N

= εc ≤ 1

4
,

(45)
from which and by (44),

−αε+ α2NC2

≤− ε2
NrNb

p+q
N

mN
+ ε2

(NrNb
p+q
N )2

m2
N

·N · c

N2r2Nb
p+q−2
N

≤− ε2
NrNb

p+q
N

mN
+ ε2

Nbp+qN

mN
· cb

2
N

mN

=− ε2
NrNb

p+q
N

mN
(1− cb2N

mNrN
)

≤− 1

2
ε2
NrNb

p+q
N

mN
, (46)

where for the last inequality b2N
mNrN

→ 0 is applied.

Hence by setting βN ,
NrNb

p+q
N

mN logN which goes to +∞ as
N →∞, we have

Pr

[∥∥∥∥∥
N∑
k=1

∆k,N (ϕ∗)

∥∥∥∥∥ > ε

]
≤ ce−

1
2 ε

2 NrNb
p+q
N

mN = cN−
1
2 ε

2βN

(47)
and
∞∑
N=1

Pr

[∥∥∥∥∥
N∑
k=1

∆k,N (ϕ∗)

∥∥∥∥∥ > ε

]
≤ c

∞∑
N=1

N−
1
2 ε

2βN <∞.

(48)
By using the Borel-Cantelli Lemma, we know that (33)

takes place and

1

N

[ N∑
k=1

wk,N (ϕ∗)[f(ϕk)− f(ϕ∗)−∇fT (ϕ∗)(ϕk − ϕ∗)]

− E
N∑
k=1

wk,N (ϕ∗)[f(ϕk)− f(ϕ∗)−∇fT (ϕ∗)(ϕk − ϕ∗)]
]

= o

(
1

Nκb
κ(p+q)
N

)
a.s. (49)

Combining (49) and (10), we know that (15) holds. �

B. Proof of Lemma 2

Define ϕ(k) , k
1
2+δ

′
, k ≥ 1 with fixed δ′ ∈ (0, 14 )

and fk(N) , ϕk−ϕ∗

N
1
4 bN

w(ϕk−ϕ
∗

bN
), k = 1, · · · , N . It is direct

to check that {ϕ(k)}k≥1 is a positive and nondecreasing
sequence satisfying supk ϕ(ek+1)/ϕ(ek) = e

1
2+δ

′
<∞.

From assumption A1), we know that ‖s‖w(s) = O(1) and
hence

‖fk(N)‖ = O

(
1

N
1
4

)
. (50)

By assumption A2) and Chebyshev inequality, we have

Pr {|εk| ≥ ϕ(k)} ≤ Eε2k
ϕ(k)2

≤ supiEε
2
i

k1+2δ′

and hence ∞∑
k=1

Pr {‖εk‖ ≥ ϕ(k)} <∞. (51)

By using the Borel-Cantelli Lemma, we have

‖εk‖ = o(ϕ(k)) a.s. (52)

Define the sequence of σ-algebras Fk ,
σ{u1, ε1, · · · , uk, εk}, k ≥ 1. We know that {εk,Fk}k≥1 a
martingale difference sequence and for any fixed N ≥ 1,
fk(N), k = 1, · · · , N are Fk-measurable. Then by Lemma
3, we have for any ε′ > 0,∥∥∥∥∥ 1

N

N∑
k=1

(ϕk − ϕ∗)wk,N (ϕ∗)εk+1

∥∥∥∥∥
=

1

N
3
4 bp+q−1N

∥∥∥∥∥
N∑
k=1

1

N
1
4

ϕk − ϕ∗

bN
w(
ϕk − ϕ∗

bN
)εk+1

∥∥∥∥∥
=

1

N
3
4 bp+q−1N

∥∥∥∥∥
N∑
k=1

fk(N)εk+1

∥∥∥∥∥
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≤ 1

N
3
4 bp+q−1N

max
1≤i≤N

∥∥∥∥∥
i∑

k=1

fk(N)εk+1

∥∥∥∥∥
=

1

N
3
4 bp+q−1N

[
O

(
N∑
k=1

f2k (N)

)
+ o(N

1
2+δ

′+ε′)

]
=

1

N
3
4 bp+q−1N

[
O
(
N

1
2

)
+ o(N

1
2+δ

′+ε′)
]

= o

(
1

N
1
4−εbp+q−1N

)
(53)

where 0 < ε , δ′ + ε′ < 1
4 can be arbitrarily small. This

finishes the proof of (18) and (17) can be proved similarly.
�
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