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Abstract— Control Barrier Functions and Quadratic Pro-
gramming are increasingly used for designing controllers that
consider critical safety constraints. However, like Artificial
Potential Fields, they can suffer from the stable spurious equi-
librium point problem, which can result in the controller failing
to reach the goal. To address this issue, we propose introduc-
ing circulation inequalities as a constraint. These inequalities
force the system to explicitly circulate the obstacle region
in configuration space, thus avoiding undesirable equilibria.
We conduct a theoretical analysis of the proposed framework
and demonstrate its efficacy through simulation studies. By
mitigating spurious equilibria, our approach enhances the
reliability of CBF-based controllers, making them more suitable
for real-world applications.

I. INTRODUCTION

Control barrier functions [1] (CBFs) have attracted much
interest in recent years in the field of automatic control, due
to the fact that they provide a convenient incorporation of
safety constraints as linear inequalities in the control input
[2]–[13]. These inequalities can be used into a Quadratic
Programming (QP) optimization problem, that is formulated
based on two objectives: making the resulting control action
as close as possible to a nominal controller, that solves the
task (e.g., navigating towards a goal location) if we disregard
all the constraints; ensuring that all the safety constraints are
satisfied. Solving this QP optimization problem provides a
control input that is able to maintain safety while driving the
robot to complete the task.

In the QP formulation, the constraints are linear in the
control input provided that we assume an affine dynamics
for the system. This linearity appears since we use local
information of the problem, namely the gradients of the dis-
tance and Lyapunov functions. This property of the approach
induces spurious equilibrium points into the system, and so
the closed loop system can become stuck in such a point.
Even worse, these spurious equilibrium points can even be
stable [14]. This problem also appears in other approaches
that use local information to navigate. A quintessential
example is using artificial potential functions (APF) [15],
in which a weighted sum of gradients of attractive and
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repulsive potentials are employed for navigation. The QP-
CBF formulation is qualitatively similar to the APF. In fact,
the Karush-Kuhn-Tucker conditions (KKT), the fact that
many of the CBF inequalities are generated using gradients
of distance functions and the fact that the nominal controller
is usually the negative gradient of a potential function, imply
that the CBF-QP controller can be seen as a sum of attractive
and repulsive vectors with a choice of weights that comes
from the optimization procedure.

Considering this local equilibrium issue, there are works
that aim to modify the traditional QP-CBFs/APF approaches
to circumvent it. For example, [14] introduces a new CBF
inequality into the original CBF formulation that can, in
the case that there is a single convex obstacle, remove the
equilibrium points in the boundary of the obstacle. In the
proposed approach in this paper, the spurious equilibrium
point problem is mitigated by introducing an inequality,
which we call a circulation inequality. This inequality forces
the configuration to circulate the obstacle when near it. This
is motivated by the observation that QP-CBF approaches
often fail in large/complex obstacles, specially when the
nominal controller is defined in terms of the gradient of
a simple potential function as, for example, the squared
distance between the configuration and the goal in the
configuration space. This is because the controller seeks to
decrease this potential function, and for large obstacles this
may be impossible to do in all situations: sometimes the
configuration must move around (i.e., circulate) the obstacle,
resulting in temporary increase of this function so as to
enable eventual reaching of the goal at a later time.

The idea of inducing circulation of obstacles appears
in other works as well. Early approaches for circulating
obstacles appear in the bug algorithm [16]. In order to
avoid obstacles, [17] proposes the addition of a circulation
term, called “gyroscopic force”, and [18], [19] propose the
addition of a circulation term based on magnetic fields.
Furthermore, in [20], the authors propose a modification of
the classic attractive/repulsive potential fields approach so
as to improve its “efficiency” while retaining the Lyapunov
stability analysis from traditional potential fields. The ap-
proach is motivated by the observation that if the attractive
and repulsive vectors conflict with each other - i.e., if the
cosine of the angle between them is less than 0 - then, within
a certain range of angles, the repulsive vector can be replaced
by a different vector that is orthogonal to the attractive vector
without violating the Lyapunov inequalities for the closed
loop system. This modification of the attractive/repulsive
potential fields approach allows the robot to move faster
towards the goal since the impact of the repulsive potential is
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reduced in the system. This modification of making (in some
circumstances) the repulsive and attractive fields orthogonal
can be seen as a way to generate a circulation behavior in
the controller. However, although this technique can remove
some spurious equilibrium points in some situations, it
cannot completely solve the problem. The “modification of
the repulsive/attractive vectors” philosophy is also employed
in this work, since the proposed optimization formulation is
conceptually similar to APF approaches. The difference is
that the modification is introduced in this paper by adding a
new constraint into the optimization problem. This proposed
strategy allows us to remove the spurious equilibrium points
in some circumstances, as shown in Figure 1.
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Fig. 1: Vector field generated by traditional CBF-QP for-
mulations (2) (left) and our formulation (3) (right), with a
nominal controller that points towards the goal. Note that
in the original formulation, there is a set of points (at the
left of the obstacle) such that if we start from this set, we
converge to spurious equilibria near the boundary of the
obstacle instead of converging towards the target.

The problem considered in [21], which is to track a
path while avoiding obstacles, is similar to the problem
addressed in this paper. To implement obstacle avoidance,
a “circulation mode”, based on the controller proposed in
[22], is initiated when the robot is near the obstacle until it
can return to navigating towards the target. This switching
between circulation and goal-directed navigation modes is
done by monitoring the sign of a variable and can produce
discontinuities in the vector field. Our proposal is similar
in the sense that we also enforce circulation when near an
obstacle, but the enforcing of this behavior is achieved by
imposing a circulation constraint, which gradually increases
in its effect as the robot approaches the obstacle, instead of
switching the vector fields in a discontinuous fashion. Since
our formulation is based on a strictly convex optimization
problem with continuous data, our proposed construction can
be shown to have continuity properties using classical theo-
rems on QPs. Finally, our previous work [23] also proposes
a circulation-like inequality for CBFs, but considering only
the planar case. So, our approach generalizes this result to
arbitrary dimensions and present theoretical guarantees.

In this paper, we extend the QP-CBF formulations with
a circulation constraint, providing certain theoretical results
(as characterization of the equilibrium points, feasibility, and

continuity). The major challenge is related to how to define
circulation in higher dimensions. In order to implement the
constraint, we need to specify precisely how to circulate the
obstacles. Clockwise or counter-clockwise can be used in
planar situations, but when we consider higher dimensions
the situation is more complex, in which topology may forbid
us to defining circulation in a continuous way.
Paper organization: The notations are summarized in Sec-
tion II. The proposed CCBF-QP (Circulation Control Barrier
Function Quadratic Program) approach and its properties are
discussed in Section III. Practical aspects in application of
the proposed approach are discussed in Section IV. Simu-
lation studies of the approach are presented in Section V.
Finally, concluding remarks are summarized in Section VI.

II. MATHEMATICAL NOTATION

We denote by R+ (R−) the set of nonnegative (nonpos-
itive) reals. All vectors are column vectors unless stated
otherwise, and for a vector v, vT denotes its transpose. If
f : Rn 7→ R, ∇f is its gradient, written as a column
vector. For a closed set C, we denote its boundary by ∂C and
Int(C) ≜ C−∂C its interior. We denote the identity matrix of
appropriate order by I . A square matrix is skew-symmetric
if ΩT = −Ω and orthonormal if ΩTΩ = I .

III. THE CCBF-QP FORMULATION AND ITS PROPERTIES

A. The CCBF-QP formulation

Our objective is to define a controller that reaches a goal
in the configuration space while avoiding obstacles. For this,
we will present assumptions and definitions that will allow
us to describe formally the problem and our solution.

Assumption 1. We assume the following:
1) The configuration space Q is an even-dimensional Eu-

clidean space, that is, Q ⊂ Rn, n even. Note that Q
can include forbidden configurations.

2) A single n-dimensional obstacle C ⊂ Rn is considered
in the configuration space modeled as a closed set.
Furthermore, a function D : Rn 7→ R+ is assumed that
computes a metric of “closeness” from the point q ∈ Q
and C. D is not required to be the Euclidean distance
between q and C, but

D(q) > 0 ⇒ q ̸∈ C. (1)

Furthermore, D is assumed to be differentiable (i.e.,
∇D(q) is continuous) everywhere in Rn − Int(C) and
∇D(q) ̸= 0 almost everywhere. Define the set W ≜
{q ∈ Rn | q ∈ Rn − Int(C) , ∇D(q) ̸= 0}. For
q ∈ W , we also define the normal vector N(q) ≜
∇D(q)/∥∇D(q)∥ .

3) A skew-symmetric orthonormal matrix is defined such
that Ω ∈ Rn×n. If q ∈ W , we define the tangent vector
as T (q) ≜ ΩN(q).

4) A target configuration qg ∈ W is to be achieved, with a
nominal controller ud : Rn 7→ Rn achieving this task, as
the negative gradient of a positive definite differentiable
function V (q) such that V and ∇V vanish only at q =
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qg . Furthermore, it is assumed that ∥∇V (q)∥ is upper
bounded by all q, i.e., max

q∈Rn
∥∇V (q)∥ is finite.

5) The set of configuration-dependent constraints to our
control input can be written as U(q) ≜ {µ | A(q)µ ≥
b(q)}, in which A : Rn 7→ Rl×n and b : Rn 7→ Rl are
continuous functions of q. Furthermore, ∀q, let the set
U(q) contain a ball of radius r > 0 centered at the
origin, i.e., if ∥µ∥ ≤ r, then Aµ ≥ b.

6) A continuous function α : R+ 7→ R− exists such that
α(0) = 0 and α(D) < 0 for D < 0 (e.g., α(D) = −ηD
for a constant η > 0) .

7) A continuous function β : R+ 7→ R exists with the
following properties: β is decreasing, β(0) > 0, and
β(D) → −∞ as D → ∞ (e.g., β(D) = a − bD for
positive constants a, b). Furthermore, β(D(qg)) < 0
and β(0) < r.

8) The system’s dynamics is q̇ = u.

The most striking assumption is related to the even-
dimensional assumption in Assumption 1-1. It turns out that
even-dimensional spaces are more amenable for defining the
circulation of obstacles than odd-dimensional spaces. This is
a topological issue: the hairy ball theorem [24] establishes
that there is no way to define a continuous and non-vanishing
circulation field (i.e., tangent to the surface) on the surfaces
of odd-dimensional balls. Thus, since N is in the surface
of a n-dimensional ball (thanks to ∥N∥ = 1 and N ∈ Rn),
creating a continuous non-vanishing function that maps every
possible N to a vector orthogonal to it would be tantamount
to generating a continuous non-vanishing field at the surface
of the n-sphere, which is forbidden by the hairy ball theorem
when n is odd. As a consequence of this result, there is
no such matrix Ω as defined in Assumption 1-3 if n is
odd1, because F (N) = ΩN would define a continuous
and non-vanishing tangential field in the surface of an
odd-dimensional sphere. In Subsection IV-C, we discuss a
workaround for the case when n is odd.

To reach the target qg while avoiding the obstacle, a
common approach is to formulate a minimally invasive QP
using CBFs and compute the control input u as:

u(q) = argmin
µ

∥µ− ud(q)∥2

such that N(q)Tµ ≥ α(D(q))

A(q)µ ≥ b(q) (2)

for q ∈ W (we leave u(q) undefined if q ̸∈ W). The
QP tries to minimally modify the nominal controller ud(q)
while imposing the CBF constraint Ḋ = ∇D(q)Tµ ≥
∥∇D(q)∥α(D(q)) ≥ 0 that guarantees that the system will
not enter the forbidden set C.

Unfortunately, the formulation in (2) can have stable
equilibrium points other than the only desired one q = qg .
The result of (2) is essentially a sum of potential fields, which

1Another approach without invoking the hairy ball theorem is that
if n is odd and Ω is skew-symmetric, det(ΩT ) = det(−Ω) implies
det(Ω) = (−1)n det(Ω) and thus det(Ω) = 0. Hence, odd-dimensional
skew-symmetric matrices are non-invertible and cannot be orthonormal.

is known for having spurious equilibrium points, dependent
on the repulsive potential N(q). To give an intuition about
it, we note that if we disregard the constraints A(q)u ≥ b(q),
(2) can be solved analytically:

u(q) = −∇V (q) +N(q)λ(q)

in which λ(q) = max
(
0, N(q)T∇V (q) + α(D(q))

)
, the

dual variable for the normal constraint, is a nonnegative
configuration-dependent weight for the repulsive potential.

These spurious equilibrium points appear near the surface
of the obstacle when the controller cannot force the config-
uration to move around the obstacle to avoid it. Therefore,
in this paper, we augment (2) with an inequality that forces
the configuration to circulate the obstacle when in its neigh-
borhood by including the inequality:

T (q)Tu ≥ β(D(q))

(in which β was defined in Assumption 1 - 7) that forces
the following behavior: when near obstacles (that is, when
β > 0), we have a positive projection into the tangent vector
of the obstacle, which means that we should circulate it. If
D is large enough, β becomes very negative and thus the
constraint is trivialized. This is specially true for q = qg:
we do not want to force any circulation when the goal is
achieved and this is why Assumption 1 - 7 has β(D(qg)) <
0. Nevertheless, after the inclusion of this inequality into (2),
we have the CCBF-QP (Circulation Control Barrier Function
Quadratic Program), including the validity of all terms in
Assumption 1:

u(q) = argmin
µ

∥µ− ud(q)∥2

such that N(q)Tµ ≥ α(D(q))

T (q)Tµ ≥ β(D(q))

A(q)µ ≥ b(q). (3)

Figure 1 makes the comparison in the computed vector
fields between (2) and (3), disregarding the constraints
A(q)µ ≥ b(q), for a smooth rectangle-like obstacle and goal
pgoal = [1 0]T (green dot in the two pictures). We can see
that without the circulation term, there is a spurious line of
attractive points (in cyan), with a very large attractive basin
to the left of the obstacle. If we include the circulation terms,
there are no spurious attractive points anymore.

Next, we establish some properties for this formulation.

B. Feasibility of CCBF-QP

One important question is whether the CCBF-QP formu-
lation always admits a feasible solution. The following result
answers this question positively.

Theorem 1. Let K be such that β(0) < K < r (such
K always exists, since β(0) < r, see Assumption 1-7).
Then, if q ∈ W , the CCBF-QP formulation always has a
feasible solution: µf ≜ KT (q). Furthermore, this particular
solution lies in the interior of the feasible set, achieving all
inequalities without equality.
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Proof: We shall verify all of the three constraints in
(3), and emphasize that the inequalities are achieved without
equality.

• For N(q)Tµf ≥ α(D(q)), we note that N(q)TT (q) =
0 and α(D(q)) < 0 if q ̸∈ C.

• For T (q)Tµf ≥ β(D(q)), we note that T (q)TT (q) =
∥T (q)∥2 = 1 and that K > β(D(q)) since β being
decreasing (Assumption 1-7) implies that the maximum
value for β occurs at D = 0 and thus K > β(0) ≥
β(D(q)).

• For the constraint Aµ ≥ b, we use the fact that ∥µ∥ ≤ r
is a sufficient condition for this inequality to hold
(Assumption 1-5). Now ∥KT (q)∥ = K < r. The
inequality being strict means that µf lies strictly inside
the set Aµ ≥ b, i.e., Aµf > b.

This implies that CCBF-QP allows as a feasible action for
the system to move tangent to its current contour surface of
D(q) (in the direction specified by T (q)).

C. Continuity of CCBF-QP

The continuity of u(q) is established in the sequel.

Theorem 2. If u(q) comes from a CCBF-QP, it is a contin-
uous function of q for any q ∈ W .

Proof: This is mainly a consequence of a result [25] that
states that the single minimizer of a strictly convex quadratic
program varies continuously with the parameters. See the
extended version [26] for the proof.

D. CCBF-QP Equilibrium Points

We will characterize the subset of W in which the output
of CCBF-QP is the null vector, that is, the equilibrium points
of the dynamical system q̇ = u(q).

Theorem 3. Considering the set q ∈ W , in the CCBF-
QP formulation, u(q) = 0 occurs only in the two mutually
exclusive conditions:

1) q = qg;
2) β(D(q)) = 0 and −ud(q) is positive parallel to T (q),

that is, there exists a positive scalar λT for which ud+
λTT = 0.

Proof: This comes by analyzing the KKT conditions.
See the extended version [26] for the proof.

IV. PRACTICAL ASPECTS

A. The function D

The scalar function D must encompass all the system
constraints, codified as an obstacle C in the configuration
space. However, in practice, it is easier to describe these
constraints using m scalar functions as Fi(q) ≥ 0, that is,
C = {q ∈ Rn | Fi(q) ≥ 0 i = 1, 2, ..,m}. In this case,
one could use as function D the minimum of these Fi, since
clearly D > 0 implies that q ̸∈ C. However, even if Fi is
everywhere differentiable, the function D defined in this way
can have many non-differentiable points. More specifically,
whenever a q exists in which the minimum is achieved for
at least two different functions Fi, D is non-differentiable

unless the respective gradients ∇Fi are equal at this q,
which is a very strong condition. Being non-differentiable
brings several practical problems because the controller will
be discontinuous at that point.

This problem can be removed by using an approximate
version of the minimum function. The softmin function [27]
is a good candidate, defined (with an averaging term) as
minh(g1, g2, ..., gm) ≜ −h ln

(
1
m

∑
k exp(−gk/h)

)
. This

function is always differentiable in the arguments gi and
approximates the minimum when h is positive and close to
0. However, it can be shown that minh(g1, g2, ..., gm) ≥
min(g1, g2, ..., gm), and thus if D(q) = minhi Fi(q), D > 0
is chosen, this may not imply Fi(q) > 0 for all i. In this
case, a margin δ > 0 is introduced followed by a choice of
D(q) ≜ minhi Fi(q)− δ.

B. Generating matrices Ω

In order to implement the algorithm, skew-symmetric
orthonormal matrices, i.e, Ω ∈ Rn×n such that ΩT =
−Ω = Ω−1 are needed, which exist only in even-dimensional
spaces. A different choice of Ω implies a different way to
circulate the obstacle.

If n = 2, there are only two such matrices:

Ω1 =

[
0 −1
1 0

]
, Ω2 = −Ω1 =

[
0 1

−1 0

]
(4)

corresponding to counter-clockwise and clockwise rotations,
respectively. But for n > 2 (and even), infinite such matrices
exist. A simple way to create these matrices is to divide the
set {1, 2, ..., n} into n/2 pairs (ik, jk), k = 1, 2, ..., n/2. We
then start from the n× n identity matrix, and multiply each
ithk row by −1. We then swap the ithk row with the jthk row,
and we can check by inspection that the resulting matrix is
skew-symmetric and orthonormal.

We can create n!/(n/2)! such matrices, but for even
numbers n > 2, there are other ways. One simple way is
as follows: it is easy to show that if Ω ∈ Rn×n is skew-
symmetric orthonormal and Q ∈ Rn×n is an orthonormal
matrix, then Ω̂ = QΩQT is also a skew-symmetric orthonor-
mal matrix. We can use this fact to generate new skew-
symmetric orthogonal matrices by constructing Ω by the
simple pairing index procedure described above, constructing
an orthonormal matrix Q and then calculating Ω̂ = QΩQT .
To generate orthonormal matrices in Rn×n, we use the fact
that if A is skew-symmetric and I is the n×n identity matrix,
Q = (I − A)−1(I + A) is orthonormal. We can generate a
skew-symmetric matrix by using any matrix B ∈ Rn and
computing A = B −BT .

C. Odd dimension extension

In Assumption 1-1, we consider even n. If n is odd, there
is no matrix Ω ∈ Rn×n that is skew-symmetric and or-
thonormal. One alternative for handling the odd-dimensional
case is to drop one of these properties. On the one hand,
being skew-symmetric is important for guaranteeing that
T = ΩN is orthogonal to N (for any N ), which guarantees
that T indeed induces circulations. On the other hand, being
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Fig. 2: Manipulator trajectory snapshots without (with) the
circulation constraint at left (right) column.

orthonormal, is not as important as Ω being invertible, which
is also incompatible with skew-symmetry when n is odd.
Invertibility is important because it guarantees that T = ΩN
only vanishes when N vanishes, i.e., when q ̸∈ W . If T
vanishes when β > 0, the circulation constraint TTµ ≥ β
cannot be satisfied and the QP is infeasible, rendering the
controller undefined even in some points inside W .

The constraint in Ω for n odd can be relaxed assum-
ing that Ω is skew-symmetric and orthonormal only in an
n − 1 dimensional subspace of Rn, being singular in the
complementary 1-dimensional space. Such matrices can be
created using a similar construction as the one described in
Subsection IV-B. However, for n odd, the index i that has
no pair must have its respective row in the identity matrix
set to zero.

V. SIMULATION STUDIES

In this simulation, we have a planar 4DOF revolute manip-
ulator and rectangle-shaped links of size 0.70m×0.15m. The
configuration q ∈ R4 corresponds to the four joint positions.
The arm goes from an initial horizontal configuration to a
vertical configuration while avoiding a circular obstacle with
radius 0.5m, centered at x=1.5m and y = 1.3m.

We introduce functions Fi to model the constraints and
obstacles in configuration space, as described in Subsection
IV-A. The first constraint is the collision avoidance between
the links and the obstacle (i.e., circle). We consider functions
Fi(q), i = 1, 2, 3, 4, that compute the squared distance
(measured in meters square) between each rectangular link
and the circle. We also consider a joint limit of ±360o

for the first joint and ±120o for all the other joints. These
constraints also generate obstacles in the configuration space,
which are modeled using functions Fi(q) = 0.02(qi−qmin,i)
and Fi(q) = 0.02(qmax,i − qi) (qi measured in degrees) for
minimum and maximum joint limits, respectively. We thus
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Fig. 3: Snapshots of the trajectory of the manipulator in the
configuration space.

have another 8 functions Fi. For the softmin, we used h =
0.04 and a margin of δ = 0.15. We used α(D) = −0.5D,
β(D) = 0.6 − 2.25D, and V (q) =

∑4
i=1 0.4|qi − qg,i|1.5 .

We also use the constraints of the form Aµ ≥ b to impose
a maximum absolute value of 1 to each control input. The
employed Ω matrix is

Ω =


0

√
3

3
−

√
3

3

√
3

3

−
√
3

3
0

√
3
3

√
3

3√
3

3
−

√
3
3

0
√
3

3

−
√
3

3
−

√
3
3

−
√
3

3
0

 . (5)

Figure 2-(Top-Right) shows the path made by the ma-
nipulator in six different timesteps, Figure 2-(Bottom-Right)
shows the path made by the junction points of the links/tip
of the manipulator, and Figure 4 shows the evolution of
the distance function, which is always greater than 0. It is
important to note that without the circulation constraint, the
system converges to a spurious equilibrium point when the
manipulator touches the circle from below. The snapshots for
the simulation without the circulation constraint can be seen
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Fig. 4: Evolution of the distance function D.

in the two figures at the Left column of Figure 2. It is also
important to mention that, although the obstacle in the 2D
space is very simple (a circle), the resulting obstacle C in the
configuration space is very complex. To illustrate this claim,
Figure 3 shows snapshots of the obstacle in the configuration
space during the same six timesteps as Figure 2. Since the
configuration space is 4-dimensional, we show 2-dimensional
slices of this space by keeping the same configurations q1,
q3 but changing q2 and q4. The obstacle region is in gray.

VI. CONCLUSION

An optimization framework was proposed for control-
ling a system with integrator dynamics to a goal in the
configuration space while considering obstacle avoidance in
addition to other constraints. The novelty of the framework
is the introduction of a circulation inequality that forces the
system to circulate an obstacle - in the configuration space -
when sufficiently near it. The motivation for the approach is
that often CBF-QP formulations are prone to reach spurious
equilibrium points instead of the desired goal. The introduced
inequality allows us to extend the range of situations in which
the approach is successful with a negligible increase in the
complexity of the formulation. We showed several formal
results for the controller including continuity, feasibility,
and classification of the equilibrium points. Furthermore,
the applicability of the approach was demonstrated using
simulation studies, in which we highlight that the original
CBF formulation alone is not capable of solving the task.
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