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Abstract

This paper investigates the approximation problem
of large-scale Boolean networks (BNs). The whole net-
work is partitioned into several blocks and the input-
output representation of each block is obtained via the
observed data. By analyzing the simplified network
composed of the input-output representation of each
block, the properties of the original network can be ob-
tained. The relations of topological structure and finite-
time stability between the original system and the ap-
proximated system are discussed. Several illustrative
examples are given to demonstrate the obtained results
about the approximation of large-scale BNs.

Keywords: Large-scale Boolean network, Input-output
representation, Approximation, Topological structure, Stabil-
ity.

1. INTRODUCTION

Boolean networks (BNs) are a special class of finite
dynamical systems to model gene regulatory network-
s, and the variables of BNs take values from the finite
set {0,1}. Starting from modeling molecular network-
s [1] and then developing into popular logical model-
s [2], BNs have been widely used in systems biology
and computational biology [3, 4]. By designing the ap-
propriate control strategies of BNs, one can carry out
the intervention and treatment of some diseases [5, 6].
The updating of each node in a BN is determined by
the Boolean function and node interactions. However,
it is worth noting that the node interactions will be more
complex when the number of nodes increasing rapidly.
Therefore, a fundamental topic of studying large-scale
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BNs is how to reduce the computational load [7].
Recently, the semi-tensor product (STP) of ma-

trices has been proposed for the investigation of BN-
s [8, 9]. By using STP, the algebraic state space repre-
sentation of BNs can be obtained. Then the classical
control theory can be applied to the analysis and con-
trol of BNs [10, 11]. Under this framework, there ex-
ist lots of excellent results for the exploration of BNs,
including controllability and observability [12, 13], sta-
bility and stabilization [14,15], optimal control [16,17],
and so on. However, it is worth pointing out that most
of the existing results are hardly applied to the large-
scale BNs due to the high computational complexity.
For large-scale BNs, there exist several useful method-
s to reduce the computational load, including network
aggregation [18, 19], logical matrix factorization [20],
distributed pinning control [21, 22] and so on [23, 24].

In [23], the approximation of large-scale BNs was
investigated via STP method. Using the approxima-
tion method, one can simplify a large-scale network in-
to a relatively small network through the observed da-
ta. However, in the process of estimating input-output
time-varying matrices, not all the observed data comes
into play. Only the observed data which is correspond-
ing to the state transitions with the highest frequency is
adopted. In order to make full use of the observed da-
ta and to reduce errors in the process of estimation as
much as possible, we will use the model of probabilis-
tic Boolean networks (PBNs) to estimate time-varying
BNs in this paper.

The main contributions of this paper are listed as
follows: (i) The model of PBNs is used to simplify
large-scale BNs by describing the input-output repre-
sentation of each subnetwork. Compared with [23], the
observed data can be better applied for the approxima-
tion; (ii) The relations of topological structure and sta-
bility between the original large-scale BNs and the sim-
plified network are proposed.

The remainder of this paper is organized as fol-
lows. Section 2 formulates the approximation problem
of large-scale BNs. Section 3 investigates the approx-
imation of large-scale BNs via PBNs. The topological
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structure of large-scale BNs is analyzed in Section 4,
which is followed by a brief conclusion in Section 5.

For statement convenience, the notations used in
this paper are listed here. D := {0,1} and Dk :=
D ×·· ·×D︸ ︷︷ ︸

k

. ∆k := {δ i
k : i = 1, · · · ,k}, where δ i

k is the

i-th column of identity matrix Ik. P = [δ i1
k · · · δ is

k ] is
called a logical matrix, and it can be simply denoted
by P = δk[i1 · · · is]. The set of k × s logical matrices
is denoted by Lk×s. |M | denotes the cardinality of set
M . φ(R,S) is the natural projection from R= {nn

i=1αi :
αi ∈ ∆2, i = 1, · · · ,n} ⊆ ∆2n to S = {nm

j=1αi j : αi j ∈
∆2, i j ∈ {1, · · · ,n}, j = 1, · · · ,m} ⊆ ∆2m , 1 ≤ m < n.

2. PROBLEM FORMULATION

Consider the following BN:
x1(t +1) = f1(X(t)),

...
xn(t +1) = fn(X(t)),

(1)

where X(t) = (x1(t), · · · ,xn(t))⊤ is the state vector, and
fi : Dn → D , i = 1, · · · ,n are Boolean functions.

Denote the state node set as X = {x1, · · · ,xn}. In
general, the number of state nodes is large for a real
gene regulatory network. This motivates us to develop
an appropriate approximation method for the study of
large-scale BNs.

First of all, by resorting to the network partition
[18], we split the whole state node set into s blocks as
follows:

X = X1 ∪·· ·∪Xs, (2)

where Xi = {xi,1, · · · ,xi,ni} is a nonempty proper subset
of X , Xi ∩X j = /0, i ̸= j, i, j = 1, · · · ,s. For the i-th
block, there may exist input nodes from the other blocks
and output nodes to the other blocks, denoted by Zi =
{zi,1, · · · ,zi,qi} and Yi = {yi,1, · · · ,yi,pi}, respectively. It
is obvious that

s∪
i=1

Zi =
s∪

j=1

Y j := C ⊆ X . (3)

Without loss of generality, denote the i-th block as sub-
network Σi, i = 1, · · · ,s and suppose |C | = β . Since
gene regulatory networks are generally sparse [25], it is
evident that β ≪ n.

Based on the above notations, the dynamics of Σi is
xi,1(t +1) = fi,1(Xi(t),Zi(t)),

...
xi,ni(t +1) = fi,ni(Xi(t),Zi(t)),
yi,l(t) = hi,l(Xi(t)), l = 1, · · · , pi,

(4)

where Xi(t) = (xi,1(t), · · · ,xi,ni(t))
⊤ and Zi(t) =

(zi,1(t), · · · ,zi,qi(t))
⊤ are the state vector and input vec-

tor of Σi, respectively, and fi, j : Dni+qi →D , hi,l : Dni →
D , j = 1, · · · ,ni, l = 1, · · · , pi, i = 1, · · · ,s are Boolean
functions.

By using the STP method, the algebraic form of
subnetwork (4) is{

θi(t +1) = Fiθi(t)ρi(t),
ηi(t) = Hiθi(t),

(5)

where θi(t) = nni
j=1xi, j(t), ρi(t) = nqi

j=1zi, j(t), ηi(t) =
npi

j=1yi, j(t), Fi ∈ L2ni×2ni+qi , and Hi ∈ L2pi×2ni , i =
1, · · · ,s.

For the sake of avoiding the appearance of isolated
blocks, we need the following assumption, which is also
necessary for deriving the input-output description of
each subnetwork.

Assumption 1 The network graph of system (1) is
weakly connected. Furthermore, for a network parti-
tion, each block is weakly connected.

Remark 2 For convenience, we assume that the com-
ponents in Yi keep the order in X . Moreover, we
also assume that the component indices in Yi are s-
maller than that in Y j, i < j, i, j = 1, · · · ,s. For in-
stance, for nodes yi,k and y j,r, it holds that indices
(i,k) < ( j,r), where k ∈ {1, · · · , pi}, r ∈ {1, · · · , p j},
i < j, i, j = 1, · · · ,s.

Furthermore, based on (5), the input-output repre-
sentation of system (4) is obtained as

ηi(t +1) = Fi(t)ρi(t), (6)

where Fi(t) = HiFiθi(t) ∈ L2pi×2qi is called the input-
output transition matrix of Σi, which is a time-varying
logical matrix. Since pi and qi are generally much s-
maller than n, i = 1, · · · ,s, the size of Fi(t) is much s-
maller than that in the whole system (1). Therefore, if
we can obtain a time-invariant matrix to properly ap-
proximate Fi(t), i = 1, · · · ,s, then a simplified network
can be derived for the original large-scale network.

3. APPROXIMATION OF LARGE-
SCALE BNS

In this section, we firstly investigate the approxi-
mation of time-varying BNs via PBNs, based on which,
we present the approximation of large-scale BNs.

3.1. Approximation of Time-Varying BNs
based on PBNs

Consider the following time-varying BN:

w(t +1) = g(t,w1(t), · · · ,wn(t)), (7)
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where w(t) = (w1(t), · · · ,wn(t)) ∈ Dn is the state vari-
able, and g : N×Dn → Dn is the time-varying Boolean
function. System (7) is a time-varying system, which
is difficult to handle. We aim to find a proper time-
invariant system to approximate system (7) via the fol-
lowing observed data:

O = {(dk,ek) : k = 0,1, · · · ,N −1}, (8)

where N ∈Z+ is the number of observed pairs of states,
dk ∈ Dn and ek ∈ Dn depict the states of system (7) at
two adjacent moments, respectively.

In order to make full use of the observed data, we
develop a PBN model to approximate system (7). Sup-
pose that the approximating PBN is

v(t +1) = ĝ(v1(t), · · · ,vn(t)), (9)

where v(t) = (v1(t), · · · ,vn(t)) ∈ Dn is the state vari-
able, and ĝ : Dn →Dn is a time-invariant Boolean func-
tion, which is chosen from {ĝ1, · · · , ĝτ} with proba-
bility p j, j = 1, · · · ,τ at every time step. Obviously,

τ
∑
j=1

p j = 1, and τ is the number of modes in system (9).

By using the STP method, the algebraic form of
system (9) is

V (t +1) = LV (t), (10)

where V (t) = nn
i=1vi(t), L ∈ {L1, · · · ,Lτ}, and P{L =

L j} = p j, j = 1, · · · ,τ . The derivation of approxi-
mating PBN becomes the determination of L j and p j,
j = 1, · · · ,τ via the observed data.

For the observed data (dk,ek)∈O , using the canon-
ical vector form, assume that

dk =nn
i=1wi(k) ∈ ∆2n , ek =nn

i=1wi(k+1) ∈ ∆2n ,

where k ∈ {0,1, · · · ,N −1}.
Split O into 2n disjoint groups as

Oi = {(dk,ek) ∈ O : dk = δ i
2n}, i = 1, · · · ,2n.

Then split Oi into 2n disjoint groups as

O j
i = {(dk,ek) ∈ Oi : ek = δ j

2n}, i, j = 1, · · · ,2n. (11)

For a given threshold ε ∈ Z+, if |O j
i | ≥ ε , then the cor-

responding observed data is effective; otherwise, it is
not sufficient to determine the state transition from δ i

2n

to δ j
2n of system (7), and thus we omit it.
Let Ji = { ji : |O ji

i | ≥ ε} := { j1
i , · · · , jτi

i }, where
j1
i < · · · < jτi

i , and τi = |Ji|, i = 1, · · · ,2n. We use the
lexicographical order to arrange elements in J1 × ·· ·×

J2n , and each combination is given as follows:

j1
1, j1

2, · · · , j1
2n−1, j1

2n ,

j1
1, j1

2, · · · , j1
2n−1, j2

2n ,

· · ·
j1
1, j1

2, · · · , j1
2n−1, jτ2n

2n ,

· · · (12)
jτ1
1 , jτ2

2 , · · · , jτ2n−1
2n−1 , j1

2n ,

jτ1
1 , jτ2

2 , · · · , jτ2n−1
2n−1 , j2

2n ,

· · ·
jτ1
1 , jτ2

2 , · · · , jτ2n−1
2n−1 , jτ2n

2n .

Each line of (12) determines a mode in the approximat-
ing PBN. For instance, the second line of (12) is used to
describe mode L2 = δ2n [ j1

1 j1
2 · · · j1

2n−1 j2
2n ]. Based on

the operation, {L1, · · · ,Lτ} of the approximating PBN

can be obtained, where τ =
2n

∏
i=1

τi. Moreover,

P{ j∗i = jk
i }=

|O jki
i |

τi
∑

k=1
|O jki

i |
:= pi,k, (13)

where k = 1, · · · ,τi, i = 1, · · · ,2n. Therefore, for

Lζ = δ2n
[

jk1
1 jk2

2 · · · jk2n−1
2n−1 jk2n

2n

]
, (14)

it holds that

P{L = Lζ}=
2n

∏
i=1

pi,ki , (15)

where ζ = 1, · · · ,τ .
Based on (12), (14) and (15), we establish a time-

invariant PBN in the form of (10) to approximate the
time-varying BN (7). Please see Algorithm 1.

Remark 3 The approximation method proposed in
[23] just considered O j

i with the maximum cardinali-
ty and thus obtained a time-invariant BN to approxi-
mate the time-varying BNs. It is worth pointing out that
the time-invariant PBN model makes full use of the ob-
served data and can reduce the approximating error.

Remark 4 The specific value of threshold ε ∈Z+ is de-
termined according to the amount of observed data un-
der the particular network.

3.2. Approximation of Large-Scale BNs via PB-
Ns

In this part, based on the results about the approxi-
mation of time-varying BNs, we give the procedure for
the approximation of large-scale BNs.
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Algorithm 1 Calculation of approximating PBN via ob-
served data
Input: O , ε .
Output: L ∈ {L1, · · · ,Lτ}, and P{L = Lζ}, ζ =

1, · · · ,τ .
1: Split O into 2n groups as Oi = {(dk,ek) ∈ O : dk =

δ i
2n}, i = 1, · · · ,2n.

2: if Oi = /0 then
3: the observed data is not enough, stop
4: else
5: go to the next step
6: Split Oi into 2n groups as O j

i = {(dk,ek)∈Oi : ek =

δ j
2n}, i, j = 1, · · · ,2n.

7: Let Ji = { ji : |O ji
i | ≥ ε} := { j1

i , · · · , jτi
i }, i =

1, · · · ,2n.
8: L ∈ {L1, · · · ,Lτ}, where L1 = δ2n [ j1

1 j1
2 · · · j1

2n ], · · · ,

Lτ = δ2n [ jτ1
1 jτ2

2 · · · jτ2n
2n ] and τ =

2n

∏
i=1

τi.

9: P{ j∗i = jk
i }=

∣∣O jki
i

∣∣
τi
∑

k=1

∣∣O jki
i

∣∣ = pi,k.

10: P{L = Lζ} =
2n

∏
i=1

pi,ki is satisfied for Lζ =

δ2n
[

jk1
1 jk2

2 · · · jk2n−1
2n−1 jk2n

2n

]
.

According to (2), system (1) is split into s block-
s, and the input-output representation of each subnet-
work is obtained as (6). Based on (3) and properties of
STP, there exists unique matrix Wi ∈ L2qi×2β such that
ρi(t) =Wiη(t), where η(t) = ns

i=1ηi(t). Then, system
(6) can be further described as

ηi(t +1) = F̃i(t)η(t), (16)

where F̃i(t) = Fi(t)Wi ∈ L2pi×2β . Then, we obtain the
following time-varying BN:

η(t +1) = F̃(t)η(t), (17)

where F̃(t) = F̃1(t)∗ · · · ∗ F̃s(t) ∈ L2β×2β .
Since β ≪ n, there exist sparse connections be-

tween each block in (2). Therefore, it is feasible to
directly observe the state nodes in the set C . Giv-
en a set of observed data, denoted by Õ = {(d̃k, ẽk) :
k = 0,1, · · · ,N − 1}, where d̃k = ns

i=1ηi(k) ∈ ∆2β and
ẽk =ns

i=1ηi(k+1) ∈ ∆2β . For any i, j = 1, · · · ,2β , sim-
ilar to (11), one can define Õ j

i . Fix a threshold ε ∈ Z+.
Then, by resorting to Algorithm 1, one can obtain the
following PBN to approximate system (17):

η(t +1) = F̃η(t), (18)

where F̃ ∈ {F̃1, · · · , F̃τ}, F̃ζ ∈ L2β×2β , and P{F̃ =

F̃ζ} = pζ , ζ = 1, · · · ,τ . We call system (18) the ap-
proximating PBN of large-scale BN (1).

4. TOPOLOGICAL STRUCTURE AND
STABILITY OF LARGE-SCALE BNs

Based on the approximating PBN (18) of large-
scale BN (1), this section explores the relation of topo-
logical structure between systems (1) and (18), and then
analyzes the stability.

First of all, as for the topological structure between
systems (1) and (18), we have the following results.

Theorem 5 If xe = δ θ
2n is a fixed point of system (1),

then ηe =ns
i=1φ(xe,Yi) := δ ϑ

2β is a positive-probability
fixed point of system (18).
Proof: Since xe = δ θ

2n is a fixed point of system (1),
for some (d̃k, ẽk) ∈ Õ , d̃k = ηe implies ẽk = ηe. Then,
Õϑ

ϑ ̸= /0. Hence, for the enough observed data, one has
J̃ϑ := { jϑ : |Õ jϑ

ϑ | ≥ ε} ⊇ {ϑ}. Correspondingly, there
exists ζ ∈ {1, · · · ,τ} such that (F̃ζ )ϑ ,ϑ = 1.

A straightforward calculation gives P{η(t + 1) =
δ ϑ

2β | η(t) = δ ϑ
2β } = ∑τ

i=1 pi(F̃i)ϑ ,ϑ ≥ pζ > 0, which
shows that ηe = δ ϑ

2β is a positive-probability fixed point
of system (18). 2

Suppose that system (1) has a limit cycle {δ γ1
2n →

·· · → δ γl
2n}. Using the natural projection, denote δ ϑ j

2β =

ns
i=1φ(δ γ j

2n ,Yi), j = 1, · · · , l.

Theorem 6 If {δ γ1
2n → ··· → δ γl

2n} is a limit cycle of
system (1) and ϑi ̸= ϑ j, ∀ i ̸= j, i, j = 1, · · · , l, then
{δ ϑ1

2β → ·· · → δ ϑl
2β } is a positive-probability basic cy-

cle of system (18).
Proof: Since {δ γ1

2n → ··· → δ γl
2n} is a limit cycle of

system (1), then for some (d̃k, ẽk) ∈ Õ , d̃k = δ ϑi
2β im-

plies ẽk = δ ϑi+1
2β , i = 1, · · · , l, where l + 1 := 1. Then,

Õ
ϑi+1
ϑi

̸= /0. Hence, for the enough observed data, J̃ϑi :=

{ jϑi : |Õ
jϑi

ϑi
| ≥ ε} ⊇ {ϑi+1}.

Correspondingly, for any i = 1, · · · , l, there exists
ζi ∈ {1, · · · ,τ} such that (F̃ζi)ϑi+1,ϑi = 1. Then,

P{η(t +1) = δ ϑi+1
2β | η(t) = δ ϑi

2β } (19)

=
τ

∑
ζ=1

pζ (F̃ζ )ϑi+1,ϑi ≥ pζi > 0, ∀ i = 1, · · · , l,

which shows that {δ ϑ1
2β → ··· → δ ϑl

2β } is a positive-
probability basic cycle of system (18). 2

Remark 7 Suppose that system (1) has a limit cycle
{δ γ1

2n → ·· · → δ γl
2n}. If there exist two distinct positive
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integers i, j ∈ {1, · · · , l} such that ϑi = ϑ j, then system
(18) has at least two positive-probability basic cycles
with length being less than l.

Next, for the stability analysis between systems (1)
and (18), we have the following results.

Theorem 8 If system (1) is globally stable at xe = δ θ
2n ,

then system (18) is stable at ηe = ns
i=1φ(xe,Yi) with

positive probability.
Proof: Assume that system (1) is globally stable
at xe. On one hand, for any initial state δ γ0

2n ∈ ∆2n ,
there exist l ∈ Z+ and γ1, · · · ,γl ∈ {1, · · · ,2n} satisfy-
ing x(1,δ γi

2n) = δ γi+1
2n , ∀ i = 0, · · · , l, where γl+1 = θ .

Accordingly, for some (d̃k, ẽk) ∈ Õ , d̃k = δ ϑi
2β implies

ẽk = δ ϑi+1
2β , i= 0, · · · , l, where δ ϑl+1

2β = ηe. Then, similar
to the derivation of (19), for any i = 0, · · · , l, there exist-
s ζi ∈ {1, · · · ,τ} such that P{η(l + 1) = ηe | η(0) =
δ ϑ0

2β } ≥ (∑τ
ζ=1 pζ (F̃ζ ))ϑl+1,ϑl · · ·(∑

τ
ζ=1 pζ (F̃ζ ))ϑ1,ϑ0 ≥

pζl
· · · pζ0

> 0. On the other hand, since xe is a fixed
point of system (1), we obtain from Theorem 5 that ηe
is a positive-probability fixed point of system (18).

To sum up, system (18) is stable at ηe with positive
probability. 2

In order to demonstrate the effectiveness of the ap-
proximation method in simplifying large-scale BNs, we
give an example of BN with 400 nodes.

Example 9 Consider the following BN with 400 nodes:

xi(t +1) = xi+1(t)∨ xi+3(t), i = 1, · · · ,50,
xi(t +1) = ¬xi+1(t)∧ xi+2(t),

i = 51, · · · ,100,
xi(t +1) = xi+2(t), i = 101, · · · ,150,
xi(t +1) = ¬(xi+1(t)∧ xi+2(t)),

i = 151, · · · ,200,
xi(t +1) = xi+1(t)∨ xi+3(t),

i = 201, · · · ,250,
xi(t +1) = ¬(xi+1(t)∧ xi+3(t)),

i = 251, · · · ,350,
xi(t +1) = ¬xi+2(t), i = 351, · · · ,398,
x399(t +1) = ¬x1(t), x400(t +1) = ¬x2(t),

(20)

where xi ∈ D , i = 1, · · · ,400 are state variables.
Assume that the network graph of system (20) is

partitioned into 7 blocks as

X1 = {x1, · · · ,x50}, Y1 = Z7 = {x1,x2},
X2 = {x51, · · · ,x100}, Y2 = Z1 = {x51,x52,x53},
X3 = {x101, · · · ,x150}, Y3 = Z2 = {x101,x102},
X4 = {x151, · · · ,x200}, Y4 = Z3 = {x151,x152},
X5 = {x201, · · · ,x250}, Y5 = Z4 = {x201,x202},

X6 = {x251, · · · ,x350}, Y6 = Z5 = {x251,x252,x253},
X7 = {x351, · · · ,x400}, Y7 = Z6 = {x351,x352,x353}.

By setting η1 = ρ7 = x1 n x2, η2 = ρ1 = x51 n
x52 n x53, η3 = ρ2 = x101 n x102, η4 = ρ3 = x151 n x152,
η5 = ρ4 = x201nx202, η6 = ρ5 = x251nx252nx253, and
η7 = ρ6 = x351nx352nx353, we firstly aim to obtain the
following simplified system:

η(t +1) = Fη(t), (21)

where η(t) =n7
i=1ηi(t), F ∈ L217×217 is the state tran-

sition matrix.
Considering that the model of system (20) is

known, then the observed data can be obtained by
choosing the initial states arbitrarily. Generate data ran-
domly using Python. In this example, we choose the
initial states randomly for 100 times, and we observe
1000 data at each time. According to Algorithm 1, the
structural matrices F of system (21) can be estimated as
F = F1 ∗ · · · ∗F7, where

F1 = (1⊤4 ⊗ I8 ⊗1⊤4096)H1,

H1 = δ4[ j1,1 3 j1,3 2 2 j1,6 4 3],

F2 = (1⊤32 ⊗ I4 ⊗1⊤1024)H2, H2 = δ8[3 1 6 j2,4],

F3 = (1⊤128 ⊗ I4 ⊗1⊤256)H3, H3 = δ4[ j3,1 2 4 4],

F4 = (1⊤512 ⊗ I4 ⊗1⊤64)H4, H4 = δ4[2 4 4 2],
F5 = (1⊤2048 ⊗ I8 ⊗1⊤8 )H5,

H5 = δ4[4 3 3 1 3 3 2 4],
F6 = (1⊤214 ⊗ I8)H6, H6 = δ8[4 4 6 3 3 8 5 7],

F7 = (I4 ⊗1⊤215)H7, H7 = δ8[8 j7,2 1 2],

j1,1 ∈ {2,3}, j1,3 ∈ {1,4}, j1,6 ∈ {2,4},
j2,4 ∈ {1,3,7}, j3,1 ∈ {1,4}, j7,2 ∈ {5,7}, and
j1,1, j1,3, j1,6, j2,4, j3,1, j7,2 take their values from the
corresponding set with equal probability, respectively.

After obtaining the structural matrices of system
(21), a simplified network can be derived for system
(20). By using the dummy operator, one can obtain the
algebraic representation of system (21) in the form of
(18). Then we can analyze the topological structure of
system (20) based on the approximating system (21). 2

Remark 10 We can see from Example 9 that the ap-
proximation method can obtain a small-scale system to
estimate the original large-scale system. If we directly
deal with system (20), we should handle matrix of size
2400 × 2400. On the contrary, for the simplified system,
the matrix we should handle is of size 217 × 217, which
is far less than the former. Though the simplified system
is an approximation of original network, the computa-
tional load can be reduced greatly.
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5. CONCLUSION

In this paper, we have studied the approximation
problem of large-scale BNs. The time-varying input-
output matrix of each block has been approximated af-
ter partitioning the whole network into several blocks.
Furthermore, the approximating PBN for the original
system has been derived, and the relations of topolog-
ical structure and stability between the original system
and the approximating PBN have been discussed. Fu-
ture work will devote to establishing several necessary
and sufficient conditions for the stability of original B-
Ns via the approximation method.
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