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Moment matching for second-order systems with pole-zero placement

X. Cheng!, T. C. Ionescu?, O. V. Iftime® and I. Necoara®

Abstract— In this paper, a structure-preserving model reduction
problem for second-order dynamical systems of high dimension
using time-domain moment matching with pole-zero placement
is studied. The moments of a second-order system are defined
based on the solutions of linear matrix equations. Families of
second-order reduced models, parameterized in a set of matrix
degrees of freedom, that match the moments of a given second-
order system at selected interpolation points are computed. We
then provide formulae for the set of matrix parameters such
that the reduced order approximation has a set of prescribed
poles and zeros. The theory is illustrated on a damped vibratory
system (e.g., a chain of mechanical oscillators) of degree n,
governed by a second-order dynamical model.

I. INTRODUCTION

Second-order systems are used to model physical systems,
including mechanical and electrical systems, see e.g., [1],
[2], [3], [4]. In real applications, the model description of
a second-order system is of high dimension, and is com-
putationally costly, hence hindering simulation and control.
Therefore, model order reduction is needed to preserve the
second-order topology. The moment matching techniques
provide efficient tools for model reduction, see [5], [6], [7],
[8] for an extensive overview for first-order systems. Using
Krylov projection matrices, reduced models are constructed
to match the original system at selected complex points.
Extensions to second-order systems are found in, e.g., [9],
[10], [11], where second-order Krylov subspaces are intro-
duced to preserve the second-order structure, see also the
survey [12]. A time-domain approach to moment matching
has been presented in [8], with moments characterized by
the unique solution of the Sylvester equation, based on [6].
The approach has been further developed in e.g., [13], [14],
[15], [16] for port-Hamiltonian systems, two-sided moment
matching, and simultaneous pole-zero-higher order moments
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enforcement, respectively. In [17], a time-domain approach
based on a signal generator perspective has been taken yield-
ing a notion of moment matching for nonlinear second-order
dynamical systems. Necessary and sufficient conditions have
been given for a system of second-order equations to achieve
moment matching. A family of systems of second-order
equations achieving moment matching has been constructed
choosing the free parameters of a parameterization of all
systems achieving moment matching.

In this paper, using the recent results in the preprint [18],
on time-domain moment matching of linear second-order
systems, we compute the second-order approximation meet-
ing pole-zero constraints. Representing the moments of the
second-order system at a set of interpolation points through
the unique solution of a linear matrix equation, a family
of reduced models in the second-order form is constructed,
matching the prescribed moments, parameterized in a set of
several matrix degrees of freedom. We then derive results
by finding the unique set of free matrix parameters, and the
resulting model, such that a prescribed set of poles and/or
zeros are imposed on the second-order approximation. The
theory is illustrated using a damped vibratory system [19],
[20], with its limitations highlighted in the undamped case.
The approach herein is different from [17], where the notion
of moments is presented as the time-domain response at a
reference signal. We use the frequency domain notion of
moments of a complex transfer function and its relation to
linear matrix equations [6]. We then compute free parameters
to obtain reduced second-order models that achieve moment
matching with prescribed poles and zeros.

The paper is organized as follows. In Section II, we present
preliminary results regarding time-domain moment match-
ing for second-order linear systems [18]. We also briefly
overview the notion of zeros of a system from the state-
space perspective, as defined in [21], and formulate the
model reduction problem. In Section III, we address the
constraints on the family of second-order approximations
achieving moment matching, such that a set of prescribed
poles and/or zeros are imposed, computing the unique model
meeting the constraints. Section IV illustrates the theory on a
practical example. The paper ends with concluding remarks.
Notation: N, R and C are the sets of natural, real, and
complex numbers, respectively. For matrix A € R"*™, AT
is the transpose of A. o(A) is the set of eigenvalues of A.
I, € N™*" ig the identity matrix. A > 0 means that A is
positive definite. A set of complex numbers is symmetric if
for any element, its conjugate is in the same set, including
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II. PRELIMINARIES

In this section, we briefly overview recent results on single
input-single output, and time-domain moment matching for
second-order systems, as in the preprint [18]. Consider a
linear time-invariant second-order system described by

[ Mi(t) + Di(t) + Ka(t) = Buf(t),
| Cri(t) + Cox(t) = y(t),

where M > 0,D = 0,K = 0 € R B € R" and
Cy,Cy € RY™™, The transfer function of ¥ is

W(s) = (C1s+Co)(Ms*> +Ds+ K)"'B. (2

(D

A. Moments of second-order systems

In this section, we characterize the moments of the second-
order system X in (1) at a set of interpolation points, different
from the poles of X, defined as follows:

Q:={s€C|det(Ms®+ Ds+ K) = 0}. (3)

Note that || = 2n. We present the notion of moments of a
second-order transfer function (2), as in [5], [8].

Definition 1. Let s, € C be such that s, ¢ 2. The 0-moment
of W(s) at s, is the complex matrix

no(sx) = W(sx) = (C184 + Co)(Ms> + Ds, + K) "' B,

and the k-moment at s,, k € N, is defined by

(—1)* l &

() = 5

W(S)] s k=1 “)
The next result presents a matrix representation of the mo-
ments at a set of symmetric points (including multiplicities)
Nk(si), i =1 : v, where {s; € C|i=1:v} = o(S5), with
S 6 RVXV.

Theorem 1. [18] Consider the second-order system (1) with
transfer function W (s) and the non-derogatory' matrices
S eR"™ and Q € R"*¥. Let L € R and R € R” be
such that the pair (L, S) is observable, and the pair (Q, R)
is controllable, respectively. Then, the following statements
hold.

1) If o(S)NQ = 0, there is a one-to-one relation between
the moments of W (s) at o(S) and the matrix ColIl +
C11I1S, where T1 € R™*" is the unique solution of the
linear matrix equation

MTI1S? + DIIS + K11 = BL. (35)

2) If o(Q)NQ = O, there is a one-to-one relation between
the moments of W(s) at o(Q) and the matrix Y B,
where T € RY*"™ is the unique solution of the linear
matrix equation

Q?>YM + QYD + YK = RCy + QRC,.  (6)

' A matrix is non-derogatory if its minimal polynomial coincides with its
characteristic polynomial.

Remark 1. Matrices II and T can be extracted from the
solutions of Sylvester equations of order 2n x 2v. Indeed,
according to [18, Theorem 1], there exists a matrix II =
[HT HﬂT satisfying the solution of the Sylvester equation

0 I IT 0 IT

[—M‘lK —M—lD} {Hl] * {M—lB} L= [HJ S, ()
if and only if II; = ILS and IT is the unique solution of
(5). Furthermore, there exists T = [Y; TM] satisfying the
solution of the Sylevester equation
= 0 1
T [MlK -M~'D
ifand only if Ty = QYM+7YD— RC, and T is the unique
solution of (6). Hence, Krylov projections can be employed

for computing IT and Y, using first-order approaches as in
[91, [22].

} LRI G =T, ®

B. Moment matching-based second-order reduced systems

Using the characterization of moments in Theorem 1, we
now define the families of second-order reduced models
achieving moment matching at the given interpolation points.
The following results give necessary and sufficient conditions
for 3 to achieve moment matching.

Proposition 1. [18] Consider the reduced model

©))

SF F2f(t) + Fi&(t) + Fob(t) = Gul(t),
HLE() + Hot(1) )

with £(t),£(t) € RY, F; € RY*Y, for i = 0,1,2, and G €
RY, Hy, Hy € RY Y. Denote the following symmetric set

Q.= {s € C:det(s*Fy + sF} + Fy) = 0}. (10)

Let S € R”, L € R be such that the pair (L,S) is
observable. Assume that o(S) N Q = () and o(S) NQ = 0.
Then, the reduced system 3 matches the moments of X at
o(S) if and only if ColI4+C111S = HyP+H; PS, where P €
RY*Y [s the unique solution of the linear matrix equation
FPS? + F{PS + FyP = GL.

Selecting P = I,,, we then obtain the family of second-order
reduced models

$ {F25+F1é+(GL—FQSZ—F15)§ = Gu,

(1)

VHié + (Coll + CUTIS — HyS)E =,

parameterized in the matrix set G = {Fy, F», G, Hy }, that
matches the moments of ¥ at o(.5).

C. Zeros of second-order systems

In this section, we recall a notion of zeros for dynamical
systems as defined in [21, Chapter 8], see also more general
arguments in [23, Chapter 3]. Consider a system X defined
by (9). We determine conditions such that for the input
u(t) = uget and the state evolution £(t) = &yet, with
up, & # 0, the resulting output satisfies n(t) = 0, for all .
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Substituting v and ¢ in 3 yields

e’ (s> Falp + sF1&o + Foéo — Gug) = 0,
e’ (Hys + Hy) = 0,

written equivalently, in matrix form, as

82F2+8F1+F0 -G\ & -0
Hys+ Hj, 0 U o

Hence, s = z is a zero of X if

22F2 + 2 + Fy —G

rank [ Hyz+ Hy 0

} <v+1,
or, equivalently,

12)

2 _
det {Z Fo+zF, + Fy G:| —o.

Hiz+ Hy 0
D. Problem formulation

We now formulate a moment matching-based model reduc-
tion problem for second-order systems.

Problem 1. Consider the second-order system X as in (1)
with the transfer function W and the family of v order
models 3¢, as in (11), matching v moments of W at o(.5).

Let {\1,..., A} and {z1,...,2,} be two symmetric sets,
such that {A\,...., A} NQ =0, {A1,...; 0} Nc(S) =0
and {z1,...,25} No(S) = 0. Find the parameter matrices

of appropriate dimensions, in the set G such that
i) Eg has ¢ poles at \; i =1: ¢,
ii) 3g has k zeros at z;, j=1:k.

III. POLE-ZERO PLACEMENT FOR SECOND-ORDER
REDUCED SYSTEMS

In this section, we derive linear constraints on the matrix
degrees of freedom in the set G, resulting in the linear system
yielding the solution to Problem 1.

A. Second-order pole placement

In this section, we overview the results on second-order time-
domain moment matching with pole placement, as in [18].
Considering 3 in (1) and the family of approximations f)g
as in (11) that matches the moments of 3 at ¢(S) with
S e IE”X”, the parameter matrices Fy, Fb, G, and H; such
that 3 has the poles at prescribed locations A1, Ag, ..., Ay,
where ¢ < v, and \; ¢ o(S) U Q with Q defined in (3),
are computed. Define Qp € R®*‘ such that o(Qp) =
{A1, A2, ..., A¢}. Since o(Qp) N = (), the matrix equation

QEYpM+QpYpD+TpK =RpCpo+QpRpCpi. (13)

has the unique solution Tp € R**™, where Rp € R is
any matrix such that the pair (Qp, Rp) is controllable, and
Cpo, Cp1 € R such that Cpoll = Cp1Il = 0, i.e. Ch, €
ker(ITI") and CL, € ker(II7) with TI the unique solution
of (5). The next result provides sufficient conditions given
by linear constraints on the free parameters of the reduced
model 3¢ such that the approximating model 3¢ has poles

at O'(Qp).

Theorem 2. Consider f]g in (11) as a reduced model that
matches the moments of the system (1) at o(S). Let 11 and
YTp € RX™ be the unique solutions of the second-order
Sylvester equations in (5) and (13), respectively. Assume that
rank(Ypll) = £. If the following constraints hold

YpIlF, = TpMII,
YpIlF, = TpDII,
TpIIG = TpB,

(14)

then o(Qp) = {1, A2, ..., A} C Q with Q in (10) the set
of poles of the reduced model 3.

Remark 2. Theorem 2 yields the sufficient conditions (14)
on the set G such that ¢ < v of the poles of (11) are fixed,
when the pair (L, S) is observable and the pair (Qp, Rp)
is controllable. liurthermore, if / = v and YpII is assumed
invertible, then Q2 = o(Qp), if and only if

Fy = (YpIl) 'YpMII, F, = (YpIl)~'YTpDII,
G = (Ypll) ' TpB.

B. Second-order zero placement

Consider a second-order system (1) with the transfer function
(2) and the family of v order models 3¢ that match v
moments of (1), for all matrices in G. Let {z1, ..., 2z} C C
be a symmetric set of zeros of W (s) as in (2), with k < v
and {z1,...,2z}No(S) = 0. In the sequel, we compute the
set G such that z, ..., z; are zeros of (11). In practice, the
zeros of the plant are rendering control design difficult.

By (12), we are looking for matrices in the set G, such that
FQZ? + Fiz; + (GL - FQSZ - FlS) -G

det | 4 (Coll + CuTIS — HiS) . 0

=0,i=1:k.
Now let Qz € R¥*k with 0(Qz) = {z1,..., 2} and Rz €
R* be such that (Qz, Rz) is controllable. Let Yz € R¥*"
be the unique solution of the Sylvester equation

Q%TZM +QzYzD+YzK = RzCo + QzRzC;. (15)

with rank Tz = k. The moments of W at z; are given by
Yz B [18]. Since W(z;) = 0, then Tz B = 0. The next result
i/r\nposes linear constraints on G such that the reduced model
3¢ has k zeros of W(s) at {z1,..., 2}

Theorem 3. Consider f]g in (11) a system of order v
matching the moments of (1) at o(S). Consider the matrix
Qz € RF* with 0(Qz) = {z1,...,2x}, a symmetric
set and let Rz € RF be such that the pair (Qz, Rz) is
controllable. Let T and Yz € R**™ be the unique solutions
of the matrix equations in (5) and (15), respectively. Assume
that rank(YzIT) = k. If the following constraints hold

Hy = C11, (16a)
YzIIFy = —TzMII, (16b)
YT,IF, = —YzDII, (16¢)
TZIIG = 0, (16d)
then {z1,...,z} = 0(Qz) are zeros of the system f]g.
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C. A solution to Problem 1

Let f]g, as in (11), define a family of v order models that
match v moments of (1) at {sq,...,s,}, parameterized in
the set of matrices § = {Fy, Fs, G, H;} of appropriate
dimensions. Let {\1,...,A¢} and {z1,..., z;} be symmetric
sets (including multiplicities), such that {1, ..., A} NQ =
0, {1, A} No(S) =0 and {21,...,2c} No(S) =0,
!+ k < v. To write the solution of Problem 1 as a linear
system, we collect the constraints (14) and (16) yielding the
system of matrix equations in the unknowns F, F5, G, Hy.

Corollary 1. Let ig, as in (11), define a family of v order
models that match v moments of (1) at {s1,...,s,}. Let II
be the solution of the matrix equation (5), Yp be the solution
of the matrix equation (13) and Yz the solution of the matrix
equation (15). Denote by Y = [Yf, T%]T € R”*™. Further-
more, let {\1,...,\¢} and {z1,..., 21} be symmetric sets
(including multiplicities), such that {\1,..., e} N Q = 0,
{A, .-t no(S) = 0 and {z1,...,2,} Na(S) = 0,
{4+ k < wv. Assuming (16a) holds and if

YTIF, = [(Te MI)T —(YzMI)T]" (17a)
YTIF, = [(Tp DT —(TDI)T]", (17b)
YIG = [(YeB)T 0], (17¢)
then {A1,...,\¢} are poles and {z1,...,z} are zeros of

g as in (11), respectively.

Corollary 1 yields the sufficient conditions (17) on G such
that £ + k < v of the poles and zeros of (11) are fixed,
when S, L are arbitrary matrices such that the pair (L, .S)
is observable. In practice, for the reduced order modeling
of physical systems, additional structure on the dynamics
of the reduced order model is imposed. Hence, note that
in Corollary 1, if £ + k < v, then the sufficient conditions
expressed through the linear systems (17) have an infinite
number of solutions, respectively. Furthermore, if /+ k = v
and YII is invertible, then

_ —1 TPMH _ —1 TPDH
Fy=(YTI) {—Tz MH} ., Fy=(TI) [—Tz DH] , (18a)
G = (Ym! [TBB] , (18b)

provides the unique model (11) having the poles \;,i =1: /¢
and the zeros z;,j =1 : k.

Algorithm 1. Consider a second-order system described by
(1) and choose v < n € N.

1) Consider the symmetric sets {s;, € C\ o(A4) | i =
1: l/}, {)\1,...,/\@} c C, Sj 7é )\j7j =1:/¢and
{z1,.. . 2z} CC, {4+ k<.

2) Let S € R¥*¥, such that o(S) = {s; | i = 1 : v}.
Pick L € R such that (L, S) is observable.

3) Compute IT € R™*¥, the solution of (5).

4) Compute Yp and Yz, the solutions of (13) and (15),
respectively. R

5) Compute G, using (18) and substitute in 3g as in (11).

IV. SECOND-ORDER MOMENT MATCHING MODEL
REDUCTION FOR VIBRATORY SYSTEMS

In this section, we illustrate the theory on two vibratory
systems (e.g., a chain of mechanical oscillators) of degree
n governed by the second-order dynamical model (1), as in
e.g., [20] (see also [24]).

A. Damped vibrating system

We first apply the results to the damped vibratory case
described by the following relations [20]

M = diag(myq,...,my) = 0,
[ —a
—C1 C1 +Cy —Co
D= = D7,
—Cp—1
L —Cp—1 Cp—1+Cp
2D
[ k1 —k
—ki ki + ko —k2
K - ’ ’ = KT’
. *kn—l
L *kn—l kn—l + kn
B"=Cy=[10...0], C; =0,

with masses m;, stiffness constants k; and damping factors
¢;, © = 1 : n. The input u is a force applied to mass mq,
whereas the output y measures the displacement of mass m;.
We select n = 10, with the masses, the stiffness and damping
constants computed as in [20], [19],

my, =1,
m+i—Dl(n—i—-1) .
Mp—i = 2 1) ,di=1:n—1,
c;=1,1=1:n, 22)

Kii:i,izlzn,

1
Ki,i+1:_§ i2n—i—1),i=1:n-2,

Kp_1n=— n(n —1).

1
V2
We approximate this system with a second-order system f)g

as in (11) of order v = 6. Hence, selecting the interpolation
points {0,0, £4,+55}, we define

s—ans ([0 .12 [%]):

L=[100+v20 V2],

such that the pair (L, S) is observable. Solving the Sylvester
equation (7), yields the unique solution (19) of the matrix
equation (5), with rankIl = 6. A family of second-order
models of order ¥ = 6 matching the moments Cyll =
[0.284 —0.010 11.765 0.0019 0.015 — 0.119] of (21), with
given data in (22), is described by (11) parameterized in
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r1.08e — 06 —3.08e — 08 0.0002 5.40e — 07 —1.5¢ —09 3.75e — 09 7
2.17e — 05 —6.14e — 07 0.004 9.72¢ — 06 4.48¢ —08 —1.13e — 07
0.0002 —5.87e — 06 0.04 8.2e —05 —6.59e¢ —07 1.66e — 06
0.001 —3.58¢ — 05 0.2 0.0004 6.32¢e — 06 —1.59e — 05
o= 0.005 —0.0002 0.74 0.001 —4.45e — 05 0.0001 (19)
- 0.02 —0.0005 2.0733 0.003 0.0002 —0.0006 ’
0.05 —0.002 4.49 0.002 —0.001 0.003
0.10 —0.003 7.7 —0.004 0.004 —-0.01
0.19 —0.007 10.59 —-0.01 —0.009 0.04
L 0.28 —0.01 11.77 0.002 0.02 —0.12 |
[—8.11le — 05 2.82e¢ — 06 —0.004 2.54e —06 —7.13e — 07 9.46e — 06
—0.002 5.94e — 05 —0.07 3.11le — 05 —4.43e —05 0.0004
I = 0.0001 —4.42e — 06 0.008 —8.45e¢ — 06 —2.86e — 06 1.36e — 05 0)
0.004 —0.0002 0.15 —2.58e — 05 0.0002 —0.002
0.0006 —1.99¢ — 05 0.032 —4.36e — 05 —1.96e — 05 9.25e — 05
—0.04 0.002 —2.85 0.002 0.0008 —0.004

Fy,Fy,G. We now consider { = 4 and k = v —{ = 2
and {A\12,A34} = {—0.009 + 1.95,-0.01 £+ 2.45} and
z1,2 = —0.004 £ 2j. We construct the matrices

Op = di —0.009 1.9 —0.01 2.4
p=dag{| 19 —0009|'|-24 —0.01])"

Qz = |:70_.204 _0?004:| , Rp = [0 \/i 0 \/i]Tv Rz = [0 \/Q}T7

such that (Qp, Rp) is controllable and (Qz.Rz) is con-
trollable. Solving the matrix equations (13) and (15), re-
spectively, yield the solutions Yp and Tz, respectively.
Furthermore, rank Tp = 4 and rank Tz = 2. We now build
YT = [YLYL]”. The computations yield YII as in (20),
invertible. Hence, applying Corollary 1, the second-order
model (11) that matches the moments of (21) at o(S) and
has four poles in \;,7 = 1:4 and two zeros in z;,j =1:2
is given by Fy, F», G as in (18),

[—691.02  26.495 —12096  87.959 92.037 —396.39

—16310 625.11  —288270 2098.3 2197 —9516.1

F o= 2.1082 —0.080938 35.731 —0.25902 —0.27044 1.1422
1= | —207.54 7.9763 —3410.9 24.33 25.328 —104.13 |~

—573.75  22.221 —7575.8 53.414 54.504 —187.47

| —128.75  4.9742 —1830 12.896 13.247 —48.679

[ 66133 —2081.3 5.2163e + 06 —1561.7 433.17 —1637.7

1558300 —49029 1.2304e + 08 —36457 10351 —39278

F = —202.82 6.3892 —15943 4.9372 —1.2684 4.7352
27| 20114 —634.18 1.577le + 06 —493.15 118 —433.15(

56723  —1798 4.3537e + 06 —1690.4 248.38 —808.87

L 12631 —399.74 9.7581e + 05 —356.28 60.872 —207.03

G = [—4.3361 —165.44 —0.010469 4.2793 —33.762 79.9479}T.

Note that the second-order structure is preserved, even if the
matrices Fy, Fy are not necessarily "mass" and "damping"
matrices. The transfer function of the second-order reduced
approximation is a complex rational function of order 12,
with the poles {—0.11 & 4.2265, —0.059 + 3.0245, —0.01 &+
2.45,—0.009+1.95, —0.008+1.7535, —0.01145} and the ze-
ros {0.073+3.6575, —0.021£2.6845, —0.004+ 25, —0.007+
1.95935, —0.003 + 1.4195}. Note that the approximation has
the imposed poles and zeros.

Figure 1 presents the step response of the original tenth order
vibrating system, closely matched by the step response of the
sixth order approximation. Figure 2 shows that the magnitude
plot of the approximation closely follows the magnitude
plot of the original system. Finally, note that the resulting

Step Response

0.6 T T T T T T T T T

Vibr. n=10
Red. mod. nu=6

Amplitude

0 10 20 30 40 50 60 70 80 90 100
Time (seconds)

Fig. 1. Step response of the vibrating system (21) with (22), n = 10
(solid line) v. the second-order approximation of order » = 6 matching six
moments at o(.S) and having ¢ = 4 poles and k = 2 zeros imposed

approximant is stable and minimum phase similar to the
original system.

B. The undamped case

We consider an undamped vibratory system of degree n
governed by the second-order dynamical model (1), as in
[24], [19] with D = 0 in (21). In this case, the transfer
function of (21) is W (s) as in (2) such that

_ det(K — w?M)

W) = Gor(R = w2y

(23)
where & and M are obtained by removing the last line and
the last column in K and M, respectively. The poles of (23)
are {p;,pi} = {*£jw;},i = 1 : n. The zeros of (23) are
{#;,%7;} = {£ju;},j =1 : n—1. For this undamped second-
order vibrating systems, equations (5) and (6) become

MTIS? + K11 = BL,
QQPTPM + TPK = ROO,

(24)

2174



Bode Diagram

20
— — — Red. mod. nu=6
0
20
/M
=
L
B 40
E
=1
g
=
-60
-80
-100 L L )
107! 10° 10" 10°
Frequency (rad/s)
Fig. 2. Magnitude plot of the vibrating system (21) with (22), n = 10

(solid line) v. the second-order approximation of order ¥ = 6 matching six
moments at o(S) and having £ = 4 poles and k = 2 zeros imposed

equivalent to

ns?+ M 'KO=M"'BL,
QiYp + YpKM '=RCoM™*,

provided that M is invertible. Note that one does not have
to match moments at complex-conjugated frequencies as, up
to a coordinate transformation S? = diag(—w?, —w?) is
derogatory and in this case, the solution II in (24) would
have rank Il < v. For approximating vibrating systems the
¢ imposed poles and the k imposed zeros have to be in

complex-conjugated pairs, respectively. Then, e.g.,

: ¢
0 wﬂ7i:1..

Qp = diag(Q;), Qi = {_wi 0 >

Therefore Q3 = diag(—w?, —w?), derogatory, implying the
solution Yp in (24) satisfies rank Tp < £. Hence, the matrix
TII in Corollary 1 is such that rank YII < v and the results
in (18) cannot be applied to this particular case of second-
order systems.

V. CONCLUSIONS

In this paper, we have addressed a time-domain moment
matching with pole-zero placement, structure-preserving
model reduction problem for second-order systems. The
definition of moments of second-order systems, based on
the solutions of linear matrix equations, has been employed,
leading to families of second-order reduced models. The
models are parameterized in a set of matrices and all match
the moments of a given second-order system at selected
interpolation points. We have provided formulae for the set
of matrices such that the reduced order approximation has
a set of prescribed poles/zeros. As an illustrative numerical
example, a second-order, damped vibratory system, described
as a chain of damped mechanical oscillators, has been
presented. The limitations of the method have been exposed
in the undamped case, where derogatory matrices appear.
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