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Abstract— We address the problem of cooling a Markovian
quantum system to a pure state in the shortest amount of time
possible. Here, the system drift takes the form of a Lindblad
master equation and we assume fast unitary control. This
setting allows for a natural reduction of the control system
to the eigenvalues of the state density matrix. We give a simple
necessary and sufficient characterization of systems which are
(asymptotically) coolable and present a powerful maximum
principle, based on majorization, which allows to considerably
simplify the search for optimal cooling solutions. With these
tools at our disposal, we derive explicit, provably time-optimal
cooling protocols for rank one qubit systems, inverted Λ-systems
on a qutrit, and a certain system consisting of two coupled
qubits.

I. INTRODUCTION

Cooling quantum mechanical systems to a well-defined
ground state is an essential task in quantum information
technologies such as quantum computing [10]. For trapped
ions or cold atoms, the preferred method is laser cooling, e.g.,
Doppler cooling, Sisyphus cooling [38], Raman cooling [27]
and many others, as well as using strong coupling [20] or
aided by optimal control [18]. Another popular approach is
using algorithmic cooling [4], [30], [28], [1]. In this paper,
we use reduced control systems [24], [25] together with
quantum optimal control theory [6], [7] to derive provably
time-optimal schemes for cooling Markovian quantum sys-
tems. Such Markovian systems are described by a time-
independent master equation of GKS–Lindblad form [12],
[19]. Furthermore, in the systems of concern, we assume
that unitary control is fast compared to dissipation. We
note, however, that the obtained solutions often don’t require
fast control. Indeed, for many tasks a time-independent
Hamiltonian is sufficient [25]. Analogous results can be
obtained assuming that the noise itself is switchable as in
the experimental set-up of [5], [39].

The main tool used here is to go from a full bilinear control
system [16], [11] to a reduced one just describing the dynam-
ics of the eigenvalues of the state. Such a reduced control
system in a Lindbladian setting has first been formulated
in [33], [40], (see also [35]) and it has been studied in [29].
Similar ideas were used in the single-qubit setting in [17].
Beyond single qubits, these tools (see also [9], [37], [36],
[31]) have been vastly generalized and made mathematically
rigorous in [24] and further explored in the Markovian setting
in [25] and applied to quantum entanglement in [21]. The
reduced control system shifts the viewpoint naturally to the
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achievable derivatives of the eigenvalues and thus invites the
use of methods from the theory of differential inclusions.

Outline: After sketching theoretical tools, we focus on
applications to illustrative low-dimensional examples in the
language of a quantum engineer. Yet the methods are gen-
eral, readily carry over to higher dimensions and match
with numerical methods. Notably, our time-optimal controls
are obtained without invoking the Hamilton–Jacobi–Bellman
Equation or the Pontryagin Maximum Principle. — The
paper is organised as follows: Sec. III recalls the definition
of the reduced control system while Sec. IV characterizes
coolable systems in simple algebraic terms. The methods
are illustrated in Sec. V by solving the rank one qubit case
in detail. Sec. VI goes on to study achievable derivatives in
higher dimensions and introduces two systems to be solved
in the subsequent sections. Sec. VII presents a maximum
principle allowing to reduce the achievable derivatives to a
subset of optimal derivatives, and finally, Sec. VIII deter-
mines optimal solutions to the higher dimensional systems
introduced in Sec. VI. For brevity, some technical details are
relegated to the arXiv version of this paper.

II. PRELIMINARIES

Throughout the paper we work on the finite dimensional
Hilbert space Cn, and we denote the set of skew-Hermitian
matrices using the unitary Lie algebra u(n). Quantum states
are represented by density matrices, that is, positive semi-
definite matrices of unit trace, denoted pos1(n).

A. Full control system

Markovian quantum systems are characterized by the
GKS–Lindblad equation [12], [19] which takes the form

ρ̇ = −L(ρ) = −i[H0, ρ]−
∑r

k=1 ΓVk
(ρ),

where −ΓV (ρ) = V ρV ∗ − 1
2 (V

∗V ρ+ ρV ∗V ). The Hamil-
tonian H0 ∈ iu(n) is a Hermitian matrix and the Lindblad
terms {Vk}rk=1 ⊂ Cn,n are arbitrary matrices. We call −L
the Kossakowski–Lindblad generator1, and we denote the
set of all Kossakowski–Lindblad generators in n-dimensions
by wGKSL(n), called the Kossakowski–Lindblad Lie wedge,
cf. [8].

The following definition encapsulates what we mean by a
Markovian quantum system with fast unitary control. Let
{Hj}mj=1 be a set of Hermitian matrices, called control
Hamiltonians, and I an interval of the form [0, T ] or [0,∞).
In the following we use the notation adH(·) = [H, · ]. A path

1The signs are chosen such that the real parts of the eigenvalues of −L
are non-positive.
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ρ : I → pos1(n) of density matrices is a solution to the full
bilinear control system [16], [11]

ρ̇(t) = −
(
i
∑m

j=1 uj(t)adHj
+ L

)
(ρ(t)), (F)

with initial state ρ(0) = ρ0 ∈ pos1(n) and with locally
integrable control functions uj : I → R if ρ is absolutely
continuous and satisfies (F) almost everywhere. We will
always assume that the control Hamiltonians generate at least
the special unitary Lie algebra:

⟨iHj : j = 1, . . . ,m⟩Lie ⊇ su(n).

Since the full bilinear control system (F) allows for un-
bounded control functions and since the control Hamiltonians
generate the entire special unitary Lie algebra—meaning
that we have fast unitary control—we can move arbitrarily
quickly within the unitary orbits. Thus we may concentrate
on the dynamics of the eigenvalues of the state.

B. Definition of cooling

Since we assume to have fast unitary control over the
system, any pure state can be transformed into any other pure
state at no cost. Hence any pure state can also be transformed
into the ground state of the system Hamiltonian. For this
reason, we will equate cooling the system with purifying it.
Moreover, due to the nature of the GKS–Lindblad equation,
pure states can only be reached asymptotically. Thus one
has to clarify what is meant by “cooling the system in the
shortest amount of time possible”. In particular one has to
define a cost (resp. reward) function. The task then becomes
to minimize (resp. maximize) this measure in a given time,
or to reach a certain value in the shortest possible amount
of time.

Some common examples of such measures are the purity
of the state, the von Neumann entropy, and the largest eigen-
value (which is the maximum fidelity with a pure state) or
the minimum energy (with respect to some Hamiltonian with
non-degenerate ground state) over the unitary orbit of the
state. An important property of these functions is that they
are Schur-convex (or concave), i.e. they are monotone with
respect to majorization, significantly simplifying the search
for optimal solutions. The details are given in Sec. VII.

III. REDUCED CONTROL SYSTEM

The main tool for determining optimal cooling procedures
used in this paper is the reduction of the full control sys-
tem (F) to a reduced control system describing the evolution
of the eigenvalues of the density matrix ρ representing the
quantum state. The general theory was established in [24]
and applied in [25] to investigate reachable and stabilizable
states in Markovian quantum systems.

Since we have fast control over the unitary group, and
since two density matrices have the same spectrum if and
only if they lie on the same unitary orbit, we may concentrate
on the dynamics of the eigenvalues of the state. Thus the
reduced state space will be the standard simplex

∆n−1 =
{
(λ1, . . . , λn) ∈ Rn :

∑n
i=1 λi = 1, λi ≥ 0 ∀i

}
,

representing the subset of diagonal density matrices. More
precisely, a point λ ∈ ∆n−1 defines a unique diagonal
density matrix ρ = diag(λ) ∈ pos1(n). For the reverse
direction, it is convenient to choose an ordering of the
eigenvalues. Let ∆n−1

� denote subset of ∆n−1 where the
components λi are arranged in a non-increasing manner.
Then we can define the map spec� : pos1(n) → ∆n−1

�
which maps a density matrix to the vector containing its
eigenvalues in non-increasing order. The vertices of ∆n−1

are the standard basis vectors ei for i = 1, . . . , n and the
center is e = (1, . . . , 1)/n.

Now the dynamics of the reduced control system on the
simplex ∆n−1 are defined by the induced vector fields −LU

which take the form

−LU = J(U)− diag(J(U)⊤e),

where J(U)ij =
∑r

k=1 |⟨i|U∗VkU |j⟩|2. A function λ : I →
∆n−1 is a solution to the reduced control system

λ̇(t) = −LU(t)λ(t) , λ(0) = λ0 ∈ ∆n−1 (R)

with measurable control function U : I → SU(n), if λ is
absolutely continuous and satisfies (R) almost everywhere.

Remark 3.1: In [25] additional definitions of the reduced
control system are given. Due to Filippov’s Theorem [34,
Thm. 2.3] the system can equivalently be defined as a
differential inclusion λ̇(t) ∈ derv(λ) := {−LUλ(t) : U ∈
SU(n)}, which is a more geometric way of describing the
system. Moreover one may take the convex hull of the set
of achievable derivatives derv, as solutions to this relaxed
control system

λ̇(t) ∈ conv(derv(λ)) , λ(0) = λ0 ∈ ∆n−1 (C)

can still be uniformly approximated on compact time inter-
vals by solutions to (R). This is the content of the Relaxation
Theorem [2, Ch. 2.4, Thm. 2].

Equivalence: The reduced control system (R) is indeed
equivalent to the full control system (F) in the precise sense
of the Equivalence Theorem [25, Thm. 2.4]. In particular no
loss of information is incurred by switching to the reduced
control system. A convenient way to state the equivalence is
through reachable sets.

First we recall the definition of reachable sets for (F). The
definitions for (R) are entirely analogous. The reachable set
of ρ0 at time T ≥ 0 is defined as

reachF(ρ0, T ) = {ρ(T ) : ρ solves (F), ρ(0) = ρ0}.

Similarly the (all-time) reachable set of ρ0 is defined as
reachF(ρ0) =

⋃
T≥0 reachF(ρ0, T ). Then we can state the

result as:
Proposition 3.2: Given any −L ∈ wGKSL(n), let ρ0 ∈

pos1(n) and λ0 ∈ ∆n−1 be such that spec�(ρ0) = λ�
0. Then

it holds for all T > 0 that (writing λ̃ for diag(λ))

reachF(ρ0, T ) = {Uλ̃U∗ : λ ∈ reachR(λ0, T ), U ∈ SU(n)}.
The analogous result also holds for the (all-time) reachable

sets. A general proof is provided in [24].
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To be of practical use one needs a way to lift solutions
from the reduced control system to the full one. In particular
one needs a method to determine corresponding control
functions. A general result is given in [24, Prop. 3.10], and
we will apply it to some concrete examples in Sections V
and VIII.

IV. ASYMPTOTICALLY COOLABLE SYSTEMS

The first question to ask is whether the system under
consideration is coolable at all, by which we mean that a
pure quantum state state can be reached from every given
initial state, at least in an asymptotic sense. It turns out that
such systems can be characterized nicely in an algebraic way,
cf. [25, Thm. 4.7].

Theorem 4.1: Given any Kossakowski–Lindblad genera-
tor −L ∈ wGKSL(n), the following are equivalent.

(i) For each choice of Lindblad terms {Vk}rk=1 of −L,
there exists a common eigenvector of all Vk which is
not a common left eigenvector.

(ii) There exists a (time-independent) Hamiltonian H such
that −(iadH +L) has a (unique) attractive fixed point2,
and this fixed point is pure.

(iii) For some initial state λ ∈ ∆n−1 \ {e1} it holds that
e1 ∈ reachR(λ).

An efficient algorithmic way of determining whether a set
of matrices Vk has a common eigenvector, and, if so, of
finding such an eigenvector, is presented in [22].

In the following we will only deal with asymptotically
coolable systems. If the system is not coolable, one first has
to determine which states are reachable, and which of them
is the coolest by some appropriate measure. Several results
in this direction can be found in [37], [25].

V. ‘WARM-UP’: OPTIMAL COOLING OF A QUBIT

The simplest special case is that of a single qubit. In this
section, we focus on rank one systems, i.e. those defined by
a single Lindblad term V . These systems are not trivial, but
they still allow for a complete description. The general qubit
case (including non-coolable systems) is treated in [23]. The
solution obtained here shares some similarity with the solu-
tion obtained for the special case of the Bloch equations [17],
[23], which is however simpler to solve as it has a symmetry
which allows to reduce the dimensionality of the problem.
For later use we define the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

Let V ∈ C2,2 be an arbitrary Lindblad term. First we
have to check whether such a system is coolable at all.
Indeed, Theorem 4.1 shows that the system is asymptotically
coolable if and only if V is not normal (equivalently if and
only if −L is not unital).

One can show that without loss of generality one can
reduce the problem to the case V =

(
0 1
ν 0

)
, with ν ∈ [0, 1).

There are two extremal cases. If ν = 0 we obtain a special

2We say that ρ is an attractive fixed point if every solution converges to
ρ. If such an attractive fixed point exists, it is clearly unique.

case of the Bloch equations, and if ν = 1, the matrix V is
normal and hence the system is not coolable. For this reason
we exclude the case ν = 1.

A. Optimal derivatives and path

In the qubit case it is convenient to represent the reduced
state by “the first” eigenvalue λ ∈ [0, 1]. The maximal
achievable derivative of λ, denoted by µ : [0, 1] → R, can be
obtained by studying the geometry of the set of all generators
−LU . Details are given in [23]. A computation then yields
the following result, see also Figure 1 for an illustration.

Lemma 5.1: Let λ0 = 1
2 (1 + 1−ν

1+ν ), then the maximal
derivative µ : [0, 1] → R takes the form

µ(λ) =

{
1
2 (1− ν2 − (1 + ν2)(2λ− 1)) if 0 ≤ λ ≤ λ0

( 1−ν
2 )2( 1

2λ−1 + 2λ− 1) if λ0 ≤ λ ≤ 1.

The function µ is continuously differentiable.

0.2 0.4 0.6 0.8 1.0
λ

-1.0

-0.5

0.5

1.0

μ(λ)

Fig. 1. Achievable derivatives as a set-valued function of λ with the upper
bound µ, given in Lemma 5.1, highlighted.

From this, the optimal path through the Bloch ball can be
computed.

Lemma 5.2: Let t0 = log
(
1 − 1+ν2

1+ν

)
/(1 + ν2). The

optimal path through the Bloch ball is given by ρ⋆(t) =
AdUy⋆(t)

(diag(λ⋆(t))) with Uy⋆(t) = eiπy
⋆(t)σy and where

λ⋆(t) =

 1−e−(1+ν2)t

1+ν2 0 ≤ t ≤ t0
1
2

(
1 +

√
1− ce−(1−ν)2t

)
t ≥ t0

with c = 4ν
(1+ν2)

(
1+ν

ν(1−ν)

) (1−ν)2

(1+ν)2 , is the unique solution to
d
dtλ

⋆(t) = µ(λ⋆(t)) with λ⋆(0) = 0 and the (continuous)
function y⋆ is defined by

y⋆(t) =

{
0 0 ≤ t ≤ t0
1
π arcsin

(√
1
2 (1 +

1−ν
1+ν

1
1−2λ⋆(t) )

)
t ≥ t0.

The optimal path is illustrated in Figure 2. Note that
the path is much simpler than one might expect from the
formulas.

B. Optimal controls

So far we have found the optimal derivatives of λ and
the optimal path of ρ through the Bloch ball. It remains
to determine the corresponding optimal controls of the full
control system (F). For simplicity, we assume that the control
Hamiltonians are the Pauli matrices and the goal is to
determine the corresponding control functions ux, uy and uz .

763



Fig. 2. Time-optimal path from the boundary of the Bloch ball (pure state)
to the center (maximally mixed state) and back. Starting at the south pole,
the path follows the z-axis until λ = λ0. Then the path takes a sharp turn
and continues horizontally until it reaches the boundary (which happens only
asymptotically). When projected onto the x, y-plane, the horizontal part is
a straight line lying on the negative x-axis (the mirrored path along the
positive x-axis is also optimal). The black dots are equally spaced in time,
and accumulate towards the end. The solution shares some similarity with
the so-called magic plane result for the Bloch equations obtained in [17].

There are two contributions to the control Hamiltonians. A
direct term, obtained by differentiating the optimal control
unitary of the reduced system, and a compensating term,
which cancels out the motion tangent to the unitary orbits
induced by the drift −L, see [24, Prop. 3.10]. This leads to
the following result:

Proposition 5.3: A choice of optimal controls is given by
ux = uz ≡ 0 on [0,∞). Moreover uy ≡ 0 on [0, t0] and

uy(t) =
1

2λ−1
1−ν
1+ν√

(2λ− 1)2 − ( 1−ν
1+ν

)2
·
(1− ν

2

)2( 1

2λ− 1
− (2λ− 1)

)

+
(1 + ν) sin(2πy)

4

(2(1− ν)

2λ− 1
+ (1 + ν) cos(2πy)

)
,

on t ∈ [t0,∞) and where λ⋆(t) is as in Lemma 5.2.
Proof: The direct term is

(
d
dtUy⋆(t)

)
U∗
y⋆(t) where Uy =

eiπyσy and y⋆(t) is as in Lemma 5.2. Using the chain rule this
becomes iπσy

dy⋆

dλ⋆ (λ
⋆(t))µ(λ⋆(t)). The expression follows

directly from the evaluation of the derivative. The compen-
sation term takes the form ad+ρ (L(ρ)), cf. [24, Prop. 3.10],
where adρ(·) = [ρ, ·] and (·)+ is the Moore–Penrose inverse.
The result then follows from an elementary computation.

The obtained optimal controls are illustrated in Figure 3.
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Fig. 3. Optimal control function uy (solid) with direct (dashed) and com-
pensation (dotted) contributions using ν = 1/2. The control is identically
zero on [0, t0] and has a singularity at t0.

VI. ACHIEVABLE DERIVATIVES

Locally, the reduced control system can be understood
by studying the set of achievable derivatives at λ, denoted
derv(λ) := {−LUλ : U ∈ SU(n)}. Due to continuity of
the map U 7→ −LUλ, it is clear that the set is compact and
path-connected, but the exact shape is difficult to determine
in general.

In the qubit case studied above, derv(λ) was just a
closed interval, and we were able to give an analytical
expression. For more general qubit systems this task becomes
more difficult, but it still allows for a partial analytical
solution [23]. In higher dimensional systems, the shape of
derv(λ) can be quite arbitrary, but in some special cases it
takes the form of a (convex) polytope, which can be seen as a
generalization of the qubit case. In the following examples,
this polytope structure will be essential to finding optimal
cooling solutions. Moreover, the polytope structure allows
for the easy application of numerical methods. Together with
the approximation Theorem [34, Thm. 4.6], this means that
it is useful to approximate conv(derv(λ)) with polytopes,
both from the inside and the outside, cf. Sec VI-C.

In the remainder of this section we provide some results
and examples in this direction. Note that due to the Relax-
ation Theorem [2, Ch. 2.4, Thm. 2], we are also interested
in the convex hull of derv(λ).

A. Examples of polytopes

We present a few cases where the set of achievable
derivatives derv(λ) takes the form of a polytope, and some
examples where derv(λ) is not convex and conv(derv(λ)) is
not a polytope.

First, at the maximally mixed state e/n, the set derv(e/n)
is always a convex polytope. In fact the vertices are the vec-
tors containing the eigenvalues of

∑r
k=1[Vk, V

∗
k ] in all pos-

sible permutations. This can be shown using [25, Lem. B.2]
together with the Schur–Horn Theorem [32], [13].

Another special case occurs at the vertices ei of the
simplex ∆n−1 under the assumption that there is only one
Lindblad term V . Indeed, there exists a value 0 < f⋆ ≤
∥V ∥∞, where ∥ ·∥∞ is the Schatten ∞-norm (i.e. the largest
singular value), such that

derv(ei) = f⋆ conv({0, ej − ei : j ̸= i}).

Let f(U) be the sum of squares of off-diagonal elements in
the first column of J(U). Then f⋆ is the maximal value
of f(U), and the value 0 is achievable using the Schur
decomposition. Using unitaries which leave the first basis
vector invariant the entire polytope can be obtained.

It is important to note that generically derv(λ) is not a
polytope. For a simple counterexample consider the Lindblad
term V = |1⟩⟨2| +

√
2 |2⟩⟨3| on a qutrit. A numerical

computation shows that for general λ the set derv(λ) is not
convex.

In the remainder of this section we introduce two concrete
systems where derv(λ) is always a polytope, and they will
serve as running examples in the following sections.
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1) Qutrit systems with spontaneous emission: Since the
qubit case is addressed in detail in [23], the next logical
step is the qutrit. We consider the special form of system
with only spontaneous emissions as described in [33] and
which include the Λ-system. Such systems are defined by
Lindblad terms of the form √

ηij |i⟩⟨j| for i, j ∈ {1, . . . , n}.
These systems have the property that J(U) = Θ⊤ΓΘ where
Γ = J(1) has entries ηij ≥ 0 and Θ is the unistochastic
matrix defined by Θij = |Uij |2. We focus on the following
two systems:

ΓΛ =

 0 0 0
γ1 0 0
γ2 0 0

 , ΓV =

0 γ1 γ2
0 0 0
0 0 0

 .

The first one is the Λ-system studied in [33] and the second
one is an inverted version, which we call the V-system. We
now show that for a V-system derv(λ) is always a convex
polytope.

Proposition 6.1: For the V-system in three dimensions it
holds that derv(λ) = conv({−LPλ : P ∈ S3}), where S3 is
the symmetric group represented by permutation matrices.

Proof: We find that the generator −LU equals the
convex combination of generators u1Γ1+u2Γ2+u3Γ3 where
the Γi are0 γ̃2 γ̃3
0 −γ̃2 0
0 0 −γ̃3

 ,

−γ̃1 0 0
γ̃1 0 γ̃3
0 0 −γ̃3

 ,

−γ̃1 0 0
0 −γ̃2 0
γ̃1 γ̃2 0


and where (γ̃1, γ̃2, γ̃3) = (γ2, γ1, 0)Θ.

It suffices to show that Γ1λ lies in the desired polytope.
Consider the following linear bijection:

(λ̇1, λ̇2, λ̇3) 7→ (x, y) := (−λ̇2/λ2,−λ̇3/λ3).

In these coordinates, the polytope intersected with the first
quadrant is defined by

x, y ≤ max(γ1, γ2), x+ y ≤ γ1 + γ2

and clearly Γ1λ satisfies this since (γ̃1, γ̃2, γ̃3) ⪯ (γ2, γ1, 0)
as Θ is bistochastic.3

(1,0,0)

(0,1,0) (0,0,1)

Fig. 4. Achievable derivatives in the V-system with γ1 = 1 and γ2 = 2
at the point λ = (0.4, 0.35, 0.25).

3The symbol ⪯ denotes majorization, see Section VII for details.

One might be tempted to try and generalize this result to
all qutrit systems with spontaneous emission, but unfortu-
nately it fails already for the Λ-system, see Figure 5 and the
following example.

Example 6.2: Consider the Λ-system with γ1 = γ2 = 1
and let λ = (1, 0, 0)⊤. Using only permutations we obtain
the derivatives (0, 0, 0)⊤ and (−2, 1, 1)⊤. However, a part of
the boundary can be obtained by computingx y 0
y x 0
0 0 1

0 0 0
1 0 0
1 0 0

x y 0
y x 0
0 0 1

 =

 ∗ y2 0
xy ∗ 0
x y 0

 ,

where x ∈ [0, 1] and y = 1 − x. Clearly the resulting
derivatives do not lie in the convex hull of (0, 0, 0)⊤ and
(−2, 1, 1)⊤.

It is somewhat unexpected that the Λ-system does not have
this polytope property, since the optimal cooling solution
found in [33] only requires permutations. This is explained
by the fact that the “non-classical” achievable derivatives are
suboptimal for cooling, cf. Sec. VII.

(1,0,0)

(0,1,0) (0,0,1)

Fig. 5. Achievable derivatives in the Λ-system with γ1 = 1 and γ2 = 2 at
the point λ = (0.6, 0.25, 0.15). The corners are achieved by permutations,
and there are bulges which leave the polytope but belong to derv(λ).

2) Spin-spin system: In this section we explore a system
composed of two qubits with a single Lindblad term V =
σ−⊗1 where σ− = (σx− iσy)/2. This can be seen as a first
approximation for the ubiquitous spin-boson system. We will
conjecture an exact description of the (convex hull) of the
achievable derivatives and support it with a partial proof and
numerical evidence. In Sec. VI-C we give a slightly larger
upper bound with full proof and in Sec. VIII we derive an
optimal cooling procedure for the system.

Conjecture 6.3: For every λ ∈ ∆3 it holds that

conv(derv(λ)) = conv({−LPλ : P ∈ S4}) =: P(λ).

The ⊇ direction is trivially satisfied, so it remains to show
that the right-hand side is an upper bound of derv(λ). First
we need to better understand the polytope P(λ). Indeed we
can derive a simple inequality description of the polytope:

Lemma 6.4: For regular λ, the polytope P(λ) has 12
vertices and 8 facets, 4 of which are hexagonal and the
other 4 are triangular. The hexagonal facets are described
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by λ̇i ≥ −λi. Let a be any of the four eigenvalues and
b ≥ c ≥ d be the remaining ones. Then

ȧ(b+ d)− ḃ(c− b)− b(c+ d) ≤ 0

describes the corresponding triangular facet.
The number of vertices stems from the fact that V is in-

variant under the permutation (12)(34). The hexagonal facet
inequalities are clearly satisfied, and so it remains to show
that all achievable derivatives also satisfy the inequalities
triangular facet. So far we only have numerical evidence
for this claim. Yet a slightly larger provable bound can be
obtained by studying the set of matrices J(U), cf. Sec. VI-C.

B. Reduction to toy model

We say that −L is quasi-classical if for all λ ∈ ∆n−1 it
holds that derv(λ) ⊆ conv({−LPλ : P ∈ Sn}).

Hence by Proposition 6.1 the V-system on the qutrit is
quasi-classical, but the qubit system studied in Sec. V is not.
Such quasi-classical systems are particularly nice, because
the controls in the reduced control system can be restricted
to the permutations (up to convexification).

Systems with this limited set of controls have been studied
in some detail in the setting of quantum thermodynamics [9],
[37], [36], [31] under the name “toy model”. Note however
that these systems are not quasi-classical, meaning that
“non-classical” controls might improve the results obtained
therein.

On the other hand these systems have the convenient
property that diagonal density matrices remain diagonal, and
hence no compensating Hamiltonian is necessary. We will
call such systems diagonally invariant. Indeed this follows
from the formula of the compensating Hamiltonian given
in [25, Sec. 3.2]. More generally, a system is diagonally
invariant if for all Lindblad terms Vk the associated directed
graph (with arcs corresponding to non-zero matrix entries)
are disjoint unions of directed paths and directed cycles.
In particular, systems with spontaneous emission and the
spin-spin system introduced in the previous section have the
property that diagonal states remain diagonal.

Quasi-classical and diagonally invariant systems are con-
venient to work with, but these properties are not necessary
to apply the methods presented here.

C. Upper bounds and speed limits

Working with the toy model, i.e. restricting the controls of
the reduced control system to permutations, is a practical way
of simplifying the system and allows for the computation
of solutions which are not necessarily optimal. In effect,
this method approximates conv(derv(λ)) from the inside.
Conversely, this section is concerned with approximations
from the outside. This is useful as it yields speed limits and
upper bounds to optimal solutions.

First we look at some general results before considering
specific systems. Useful bounds can be obtained on the level
of the J(U) matrices. A somewhat trivial bound can be
obtained by setting γ =

∑r
k=1 ∥Vk∥22. Then all matrices

J = J(U) satisfy the inequalities
∑n

i,j=1 Jij ≤ γ and

Jij ≥ 0. Using [25, Lem. B.2] we get the following stronger
bound.

Lemma 6.5: Let J = J(U), then Jij ≥ 0 as well as Je ⪯
spec(

∑r
k=1 VkV

∗
k ), and J⊤e ⪯ spec(

∑r
k=1 V

∗
k Vk), and

(J + J⊤)e ⪯ spec(
∑r

k=1{Vk, V
∗
k })

(J − J⊤)e ⪯ spec(
∑r

k=1[Vk, V
∗
k ]),

and this defines a polytope bound for the set of all J(U).
Here again ⪯ denotes majorization, cf. Section VII. Note

that by linearity these also define corresponding polytope
bounds for each derv(λ). An important property of these
bounds is that they guarantee that the simplex ∆n−1 is
preserved, and hence they do not lead to unphysical behavior.

For the spin-spin system we have, so far, only conjectured
a polytope bound on derv(λ). By studying the set of matrices
J(U), we can prove a slightly larger bound.

Lemma 6.6: Consider the spin-spin system. For every
matrix J = J(U) it holds that

Jij ≥ 0, (J + J⊤)e = e, Jii ≤ 1
4

for all i, j ∈ {1, . . . , n}.
Proof: The first two constraints follow immediately

from Lemma 6.5 and its proof (cf. [25, Lem. B.2]), and the
last one follows from J(U)ii = |ū1iu3i + ū1iu3i|2 ≤ 1

4 .
Note that by strengthening the latter inequalities to Jii = 0

we get the exact description of conv({J(P ) : P ∈ S4}).
While the polytope bound from Lemma 6.6 is always larger
than the conjectured bound, numerical results indicate that
for different values of λ the difference in volume does not
exceed 10%.

VII. OPTIMAL DERIVATIVES AND
MAJORIZATION

In the qubit case, the reduced state space [0, 1] ∼= ∆1

is one-dimensional, and hence there is only one optimal
derivative for cooling (resp. heating). In higher dimensions
this is not true anymore. In this section we present a maxi-
mum principle showing that the set of achievable derivatives
derv(λ) can be reduced to a subset of optimal derivatives,
which typically still consists of more than one element.

An important way of comparing two mixed quantum
states, or rather their eigenvalues, is called majorization [14],
[3]. First one defines majorization on vectors [26]. Let λ, µ ∈
∆n−1 be given. Then λ is said to majorize µ, denoted λ ⪰ µ
if ∑k

i=1 λ
�
i ≥

∑k
i=1 µ

�
i , k = 1, . . . , n,

where λ�
i is the i-th largest element of λ and analogously

for µ. The notion carries over to quantum states by defining
that a state majorizes another if its eigenvalues majorize
those of the other state. A function f is Schur-convex if
λ ⪰ µ implies f(λ) ≥ f(µ), and it is Schur-concave if
its negative is Schur-convex. Due to fast unitary control we
consider cost functions which depend only on the eigenvalues
of the state. Indeed, all the functions given in Section II-B are
Schur-convex or Schur-concave functions of the eigenvalues.
This follows from the fact that these functions are convex
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or concave and invariant under permutations. The following
result, which specializes [24, Thm. 5.3], shows that for the
purpose of cooling, a state which majorizes another is always
better.

Theorem 7.1: Let µ : [0,∞) → ∆n−1 be a solution to
the relaxed control system (C) and let λ0 ∈ ∆n−1 such that
µ(0) = µ0 ⪯ λ0. Then there exists a solution λ : [0,∞) →
∆n−1 to (C) with λ(0) = λ0 such that µ(t) ⪯ λ(t) for all
t ∈ [0,∞).

Just like states are compared via majorization, two deriva-
tives, at the same state, can be compared using an in-
finitesimal version of majorization, also called unordered
majorization, cf. [26, Ex. 14.E.6]. Let v, w ∈ R0 be two
tangent vectors (derivatives) at λ ∈ ∆n−1. Then we say that
v infinitesimally majorizes w, denoted v ⊵ w if∑k

i=1 vi ≥
∑k

i=1 wi, k = 1, . . . , n.

As a consequence of Theorem 7.1 one can show that deriva-
tives which are not majorized by any other derivatives are
optimal for cooling. If derv(λ) is a polytope, the subset of
optimal derivatives takes a nice form.

Corollary 7.2: Let λ ∈ ∆n−1
� be regular and assume that

derv(λ) is a convex polytope. If least one point in the relative
interior of a face is optimal, then the entire face is optimal.
Moreover, the set of optimal faces is connected.

Proof: Let P be the polytope derv(λ) and let C be the
cone of vectors infinitesimally majorizing the origin. Then
the optimal elements of P are exactly the bounded faces of
P−C, and hence they form a subcomplex (cf. [41, Sec. 5.1]),
which, by [15, Lem. 2.1], is connected.

Furthermore, as we will see in the following section, for
certain quasi-classical systems the optimal derivatives are
always given by the same controls in the reduced control
system, and do not depend on the state λ.

VIII. OPTIMAL COOLING

Now we have all the tools we need to determine opti-
mal cooling procedures for the V-system and the spin-spin
system (assuming Conjecture 6.3). Note that in both cases
Theorem 4.1 shows immediately that the system is coolable.

A. V-system

Using Corollary 7.2 one can show that the optimal deriva-
tives are exactly the convex combinations ofγ2b+ γ1c

−γ2b
−γ1c

 and

γ1b+ γ2c
−γ1b
−γ2c

 ,

where λ = (a, b, c) ∈ ∆n−1
� . These correspond to the two

topmost vertices in Figure 4. Note that the analogous result
holds for the Λ-system, and hence our method also recovers
the results of [33] using a completely different approach.
Note that if γ1 = γ2 the problem becomes trivial, so we
assume that γ1 < γ2. A direct computation shows that the
generators for these optimal derivatives commute and hence
they can be applied in any order. Hence following the first

derivative for time t1 and the second for time t2 the final
state is simplya0 + (1− e−(γ2t1+γ1t2))b0 + (1− e−(γ1t1+γ2t2))c0

e−(γ2t1+γ1t2)b0
e−(γ1t1+γ2t2)c0

 .

Note that following these two derivatives it might happen
that the second and third eigenvalue cross, but this does not
change anything about the optimality of the derivatives.

To go further, we have to clarify the control task, since
it necessarily takes infinite time to reach a pure state. One
natural choice is to minimize the time necessary to reach a
certain largest eigenvalue, although other Schur-convex (or
concave) functions, such as those mentioned in Sec. II-B,
are also sensible. Concretely, the problem becomes, for any
0 < ε < b0+c0, to minimize T = t1+t2 under the conditions
that t1, t2 ≥ 0 and e−(γ2t1+γ1t2)b0 + e−(γ1t1+γ2t2)c0 = ε.
Without the constraint t1, t2 ≥ 0, an elementary computation
shows that the optimal solution is

t1 =
γ2 log(

2b0
ε

)− γ1 log(
2c0
ε

)

γ2
2 − γ2

1

, t2 =
γ1 log(

2b0
ε

)− γ2 log(
2c0
ε

)

γ2
1 − γ2

2

.

and the final state satisfies that b(T ) = c(T ) = ε/2.
However, t2 becomes negative if ε > 2b0(

c0
b0
)γ2/(γ2−γ1). In

this case the optimal physical solution has t2 = 0 and t1 can
be computed correspondingly.

This allows us to find the time-optimal controls for the
task of reaching a largest eigenvalue of 1 − ε. We start
by applying a (near) instantaneous unitary transformation
to bring the state into diagonal form and with eigenvalues
in non increasing order. Then we wait for time t1 without
applying any controls (recall that the system is diagonally
invariant and thus the compensating Hamiltonian vanishes).
If t2 = 0 we are done, otherwise we swap the second and
third eigenvalue (near) instantaneously and wait for time t2.

This solution is quite similar to that of [33] for the
Λ-system, except that we only switch the eigenvalues once.
Note also that in contrast to the approach of [33], we deduced
the optimal solution instead of guessing it and we were able
to prove optimality without the HJB equation.

B. Spin-spin system
Finally we determine an optimal cooling procedure for

the spin-spin system. Assuming Conjecture 6.3 implies that
the system is quasi-classical. Corollary 7.2 allows us to
determine the optimal derivatives. It is easy to show that
the only optimal derivatives are the convex combinations of

(b,−b, d,−d)⊤, and (c, d,−c,−d)⊤.

Conveniently, the corresponding generators again commute
and hence their order of application is irrelevant. Moreover it
is clear that the system is diagonally invariant and hence the
compensating Hamiltonian vanishes again. Hence, similarly
to the previous case, one can define a Schur-convex (or
concave) cost function, such as purity, and find optimal times
t1 and t2 via direct computation. This is not much more
difficult than in the previous case, but the resulting formulas
are lengthy and not very enlightening, and hence omitted.
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IX. CONCLUSION

In this paper we apply a method of reduced control
systems to Markovian quantum systems with fast unitary
control to address the task of optimal cooling by deter-
mining provably time-optimal solutions. This method allows
for instance to derive a simple and efficiently computable
characterization of asymptotically coolable systems. More-
over, using the Majorization Theorem, one can significantly
simplify the search for optimal controls. Concretely, we
study three low dimensional systems, namely (i) general
rank one qubit systems, (ii) the V-system on a qutrit and
(iii) the spin-spin system consisting of two coupled qubits.
For each we explicitly derive the optimal cooling solution
and corresponding control functions. The results go well
beyond those obtained for instance in [17] and [33], all
the while avoiding the Pontyagin Maximum Principle and
the Hamilton–Jacobi–Bellman Equation. At the same time,
we only scratch the surface of the topic of optimal cooling,
and formulate a number of open problems, in particular a
conjecture on the spin-spin system. Although an essentially
complete treatment of the qubit case is given in [23] by
the author, the qutrit case, even restricted to systems with
spontaneous emission, has so far only been solved in specific
instances. Overall this work presents novel powerful methods
and demonstrates their effectiveness in concrete examples,
paving the way for future advances also in experiments.
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