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Abstract— This paper studies the data-driven finite-time
control (FTC) problem of unknown discrete-time linear time-
invariant (LTI) systems with unknown and bounded noise.
The proposed FTC aims to guarantee that the state of such
a system does not exceed a given bound over a finite time
interval under bounded initial conditions. Data-dependent rep-
resentations are built for the unknown system without and with
noise from pre-collected input/state data, based on which a
finite-time controller is designed. Sufficient conditions of finite-
time stability/boundness of the closed-loop system without/with
noise are derived. Compared with model-based FTC methods
that strongly depend on some accurate system models, the
proposed method is model-free and only relies on pre-collected
data. Numerical simulations are performed to illustrate the
effectiveness of the proposed scheme.

I. INTRODUCTION

Data-driven control technique bypasses system identifica-
tion and enables direct learning of controllers from data.
Thus, it offers a one-shot design paradigm for control en-
gineers and has gained widespread attention recently.

Among the fruitful literature, Willems’ fundamental
lemma is one of the most notable works, which states that if
the collected input signals of a linear time-invariant (LTI)
system are sufficient, i.e., satisfy the persistent excitation
(PE) condition, then a nonparametric model for the system
can be established by a Hankel matrix constructed from the
data [1], [2]. Based on this fundamental lemma, a data-based
closed-loop representation for systems with state-feedback
control was derived in [3], where the control design problem
was transformed into a feasibility problem of data-based
linear matrix inequalities (LMIs). To tackle the issue of the
large decision variable number in the formulated LMI prob-
lem, a noisy data-based quadratic matrix inequality (QMI)
method was proposed in [4] to describe all the potential
systems and design a state feedback controller. Following
the design philosophy in [4], a data-driven controller for
linear parameter-varying systems was designed in [5]. A
data-driven H∞ controller for LTI systems with disturbances
and measurement noises was developed in [6].

*The work was supported by the National Natural Science Foundation
of China through Projects 62173287, 62325303, 62333004 and the Early
Career Scheme of the Hong Kong SAR Research Grants Council through
Project 27206021.

Jinjiang Li and Tao Liu are with the Department of Electrical and Elec-
tronic Engineering, The University of Hong Kong (HKU), Hong Kong SAR,
and the HKU Shenzhen Institute of Research and Innovation, Shenzhen,
China. (e-mail: jjiangli@eee.hku.hk; taoliu@eee.hku.hk).

Tengfei Liu is with the State Key Laboratory of Synthetical Automation
for Process Industries, Northeastern University, Shenyang, China (email:
tfliu@mail.neu.edu.cn).

The aforementioned works mainly focus on the steady-
state behavior of linear systems but pay no attention to
transient behaviors, such as the maximum overshoots or
undershoots, which are also very important from a practical
perspective. For instance, the roll angle of the ship has to
be constrained as a large roll angle can cause discomfort to
the crew. Similarly, the speed of a fixed-wing aircraft must
be within a specific upper and lower limit [7]. To tackle
these problems, two extensively used approaches have been
developed. One is the prescribed performance control (PPC)
method [8], where most of the existing results are developed
for continuous-time systems, and only a few results are
established for discrete-time single-input and single-output
(SISO) systems [9]. The other one is finite-time control
(FTC), which can ensure the state of a discrete-time system
within a certain bound in a finite time interval [10]. So
far, FTC has been applied to various types of discrete-
time systems, whereas PPC has only been applied to SISO
systems. In view of the fact that FTC is more universal
than PPC in terms of handling discrete-time systems control
problems, this paper will use FTC to solve our problem.

FTC is closely related to finite-time stability theory that
can be traced back to the 1960s [10]. Since then, many
elegant results have emerged for different types of discrete-
time systems. Sufficient conditions for achieving FTC of LTI
systems via state feedback were proposed in [11], which was
further extended to systems with uncertainty in [12]. In [13],
an FTC scheme was proposed for systems with conic-type
nonlinearities and additive disturbances. In [14], a fuzzy FTC
method was developed for nonlinear singularly perturbed
systems. However, many existing works on FTC are model-
based and strongly rely on an accurate system model, which
is usually unavailable in practice.

To solve the abovementioned issues, we propose a data-
driven state feedback FTC method for LTI systems. By
assuming the availability of noise-free input/state data that
satisfies the PE condition, sufficient conditions for finite-
time stabilization via state feedback control are established
by using the data-based closed-loop representation. Then,
the case that the pre-collected data is corrupted by noise
is considered, where the data-dependent QMI is used to
characterize all possible systems that are compatible with
collected data. Sufficient conditions for noisy data-based
state feedback controller design are established by utilizing
the matrix S-lemma. Unlike conventional FTC methods that
depend on the explicit system model, the proposed method
directly uses pre-collected data for the controller design.

The rest of this paper is structured as follows. The system
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to be studied and some necessary preliminaries are stated
in Section II. Sufficient conditions for data-driven FTC with
noise-free and noisy data are presented in Section III and
Section IV, respectively. The effectiveness of the proposed
methods is illustrated by numerical examples in Section V.
Section VI concludes the paper.

Notation: Let R, Z, Z+, and N denote the sets of real
numbers, integers, positive integers, and natural numbers,
respectively. Let Rn and Rn×m be the n-dimensional real
vector space, and set of n × m real matrices, respectively.
In is the n × n identity matrix, 0n×m is the n × m zero
matrix with n,m ∈ Z+, and diag{M1, . . . ,Mn} is block
diagonal matrix with digaonal entry Mi ∈, i = 1, . . . , n.
The symbol * in a symmetric block matrix represents the
symmetric part of the matrix. z[k,k+T ] denotes the sequence
{z(k), z(k + 1), . . . , z(k + T )} with k ∈ Z, T ∈ Z+.

II. PROBLEM FORMULATION

Consider a discrete-time LTI system

x(k + 1) = Ax(k) +Bu(k) + w(k) (1)

where x ∈ Rn, u ∈ Rm, and w(k) ∈ Rn are the state, input,
and unknown noise, respectively. A ∈ Rn×n and B ∈ Rn×m

are the system matrices.
Assume that we have pre-collected the system’s input/state

trajectory (xd,[0,T ], ud,[0,T−1]), T ∈ Z+. Define the input
sequence U−, state sequences X− and X+, and unknown
noise sequence W− as follows:

U− =
[
ud(0) ud(1) · · · ud(T − 1)

]
,

X− =
[
xd(0) xd(1) · · · xd(T − 1)

]
,

X+ =
[
xd(1) xd(2) · · · xd(T )

]
,

W− =
[
w(0) w(1) · · · w(T − 1)

]
.

(2)

Without loss of generality, we make the following assump-
tions for the system (1) and pre-collected data (2).

Assumption 1: The system matrices A and B are un-
known, and (A,B) is controllable.

Assumption 2: The noise w(k) is norm-bounded satisfy-
ing w(k)⊤w(k) ⩽ δ2w with δw being a known positive scalar.

Assumption 3 (PE condition): The input sequency
ud,[0,T−1] is persistently exciting of order n+ 1.

Remark 1: These assumptions are extensively used in
the literature. For Assumption 1, the controllability of the
unknown pair (A,B) can be checked by performing a
data-driven Hautus test with data sequences U−, X−, and
X+ [15]. For Assumption 2, noises in practice are usu-
ally bounded. For Assumption 3, the PE condition of the
input signal ud,[0,T−1] can be checked by the rank of the
corresponding Hankel matrix, i.e, ud,[0,T−1] is persistently
exciting of order n+1 if its Hankel matrix has full row rank
m(n+ 1).

Definition 1 (Finite-Time Stability [11]): Given two pos-
itive constants δx and ϵ satisfying 0 < δx < ϵ, a positive
integer N ∈ Z+, and a positive-definite matrix R, the LTI
system (1) with u(k) = 0 and w(k) = 0 is said to be finite-
time stable with respect to (δx, ϵ, R,N), if xT (0)Rx(0) ⩽ δ2x
implies xT (k)Rx(k) < ϵ2,∀k ∈ {1, . . . , N}.

Definition 2 (Finite-Time Boundedness [11]): Given
three constants δx, δw and ϵ satisfying 0 < δx < ϵ and
δw ⩾ 0, a positive integer N ∈ Z+, and a positive-definite
matrix R, the LTI system (1) with u(k) = 0 is said to
be finite-time bounded with respect to (δx, δw, ϵ, R,N),
if xT (0)Rx(0) ⩽ δ2x and wT (0)w(0) ⩽ δ2w imply
xT (k)Rx(k) < ϵ2,∀k ∈ {1, . . . , N}.

Remark 2: The concept of finite-time stability studied in
this paper is distinct from those commonly discussed in the
literature (e.g., [16]). The former is to ensure that the state
of the system remains within predetermined bounds within
a finite time interval, whereas the latter focuses on the finite
settling time of the system.

This paper aims to design a data-driven based state feed-
back controller such that the closed-loop system of (1) is
finite-time stable if w(k) = 0 and finite-time bounded if
w(k) is bounded. These problems are formulated as follows.

Problem 1: When w(k) = 0, design a noise-free data-
based state feedback controller u = Kx(k) with control gain
K ∈ Rm×n such that the closed-loop system is finite-time
stable with respect to (δx, ϵ, R,N). When w(k) ̸= 0, design
a noisy data-based state feedback controller u = Kx(k)
such that the closed-loop system is finite-time bounded with
respect to (δx, δw, ϵ, R,N).

The following lemmas will be used to facilitate the data-
driven design procedure.

Lemma 1 (Schur complement lemma [17]): Consider
two symmetric nonsingular matrices F11 ∈ Rn×n, F22 ∈
Rm×m, and a matrix F12 ∈ Rn×m. The following three
statements are equivalent

(i)
[

F11 F12

∗ F22

]
⩾ 0;

(ii) F11 > 0 and F22 − F⊤
12F

−1
11 F12 ⩾ 0;

(iii) F22 > 0 and F11 − F12F
−1
22 F⊤

12 ⩾ 0.
Moreover, the equivalence still holds when the above in-
equalities are all strict inequalities.

Lemma 2 (Data-based closed-loop representation [3]):
Consider the system (1) with w(k) = 0. Suppose that
Assumption 3 holds. Then, the following rank condition is
satisfied,

rank

[
U−
X−

]
= n+m. (3)

Then the system (1) under the state feedback controller u =
Kx(k) can be equivalently represented as

x(k + 1) = (A+BK)x(k) = X+GKx(k), (4)

where GK ∈ RT×n satisfies[
K
In

]
=

[
U−
X−

]
GK . (5)

Lemma 3 (Matrix S-lemma [4]): Consider two (k+n)×
(k + n)−dimensional symmetric matrices

M =

[
M11 M12

∗ M22

]
, H =

[
H11 H12

∗ H22

]
.

Suppose that M22 ⩽ 0, H22 ⩽ 0, kerH22 ⊆ kerH12, and
there exists some matrix Z satisfying the Slater condition,
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or equivalently there exists some Z ∈ S with

S =

{
Z ∈ Rk×n|

[
In
Z

]⊤
H

[
In
Z

]
> 0

}
.

Then, the following inequality holds[
In
Z

]⊤
M

[
In
Z

]
> 0,∀Z ∈ S,

if and only if there exist two scalars α ⩾ 0 and β > 0 such
that

M − αH ⩾

[
βIn 0n×k

0k×n 0k×k

]
.

III. DATA-DRIVEN FTC WITH NOISE-FREE DATA

In this section, we will present a sufficient condition for
finite-time stabilization of the discrete-time LTI system (1)
via state feedback control with noise-free data. The main
result is stated as follows:

Theorem 1: Consider the system (1) with w(k) = 0. Sup-
pose that Assumption 1 and Assumption 3 hold. Given two
constants δx and ϵ satisfying 0 < δx < ϵ and xT (0)Rx(0) ⩽
δ2x, an integer N ∈ Z+, and a matrix R > 0, the system
under the controller u = Kx(k) with K = U−Q (X−Q)

−1

is finite-time stable with respect to (δx, ϵ, R,N) if there exist
a scalar γ ⩾ 1, and a matrix Q such that[

γX−Q X+Q
∗ X−Q

]
> 0,∀γ ⩾ 1, (6a)

λmax

(
P̃
)
δ2x <

ϵ2λmin

(
P̃
)

γN
, (6b)

hold with P̃ = R−1/2X−QR−1/2.
Proof: Select the Lyapunov funciton candidate V (x(k)) =

xT (k)Px(k) with P > 0. According to [11], the finite-time
stability of the closed-loop system of the system (1) under
state feedback controller u = Kx(k) is achieved if V (x(k+
1)) < γV (x(k)) holds, i.e.,

(A+BK)P (A+BK)⊤ − γP < 0. (7)

With Assumption 3 and Lemma 2, the inequality (7) can be
represented as the following data-based inequality

X+GKPG⊤
KX⊤

+ − γP < 0. (8)

Define Q = GKP . Multiplying both sides of (5) by P
give X−Q = P and U−Q = KP . Then, inequality (8) can
be rewritten as

X+Q(X−Q)−1Q⊤X⊤
+ − γX−Q < 0. (9)

Applying Lemma 1 to (6a) gives (9). From P̃ =
R−1/2X−QR−1/2 = R−1/2PR−1/2, we have

V (x(k)) = x(k)⊤R
1
2 P̃R

1
2x(k) ⩾ λmin

(
P̃
)
x⊤(k)Rx(k).

(10)
On the other hand, we have

V (x(k)) < γV (x(k − 1)) < γkV (x(0)) ⩽ γNλmax(P̃ )δ2x.
(11)

Combing (6b), (10) and (11) gives

xT (k)Rx(k) <
λmax

(
P̃
)
δ2xγ

N

λmin

(
P̃
) < ϵ2,∀k ∈ {1, . . . , N},

(12)
which implies that the closed-loop system is finite-time stable
with respect to (δx, ϵ, R,N) in the absence of noise. This
concludes the proof.

Remark 3: It is worth pointing out that when γ = 1,
the system (1) is both finite-time stable and asymptotically
stable. However, finite-time stability and Lyapunov stabil-
ity are two independent concepts. Lyapunov stability is a
qualitative concept focusing on the system behavior within a
sufficiently long, in principle infinite, time interval, whereas
finite-time stability is a quantitative concept that concerns
the boundedness of the state of a system over a finite time
interval for given initial conditions. Generally, a finite-time
stable system may not be asymptotic stable, and vice versa.

Remark 4: Condition (6b) is a nonlinear condition with
matrix eigenvalues. When designing the controller, we can
replace (6b) with the following LMIs

R < X−Q <
ϵ2

γNδ2x
R. (13)

It is easy to verify that (13) ensures 1 < λmin(P̃ ) <
λmax(P̃ ) < ϵ2/(γNδ2x), which further guarantees (6b).
Therefore, as long as the LMI problems (6a) and (13) are
feasible, we can find a finite-time controller such that the
closed-loop system is finite-time stable.

Remark 5: Compared with the model-based methods in
[11], [18], the presented work provides a sufficient condition
for achieving finite-time stability based only on pre-collected
measured data.

IV. DATA-DRIVEN FTC WITH NOISY DATA

This section will present a data-driven approach for finite-
time boundedness of the system (1) with bounded and
unknown noise.

In the presence of unknown noise w(k), the collected data
sequences are noisy data. Substituting (2) into (1) gives

W− = X+ −AX− −BU−. (14)

According to Assumption 2, the noise sequence W− satisfies
the following QMI[

In
W⊤

−

]⊤ [
Φ11 Φ12

∗ Φ22

] [
In
W⊤

−

]
⩾ 0 (15)

with Φ11 = Tδ2wIn,Φ12 = 0n×T , and Φ22 = −IT . In
particular, (15) satisfies the generalized Slater condition [4].

Combing (14) with (15), the system matrices A and B
satisfy the following QMI I

A⊤

B⊤

⊤

H

 I
A⊤

B⊤

 ⩾ 0 (16)
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with

H =

 In X+

0n×n −X−
0m×n −U−

[ Φ11 Φ12

∗ Φ22

]
×

 In X+

0n×n −X−
0m×n −U−

⊤

.

(17)

Moreover, the matrix H can be represented as the following
partitioned matrix

H =

[
H11 H12

∗ H22

]
(18)

with

H11 = Φ11 +X+Φ
⊤
12 + (Φ12 +X+Φ22)X

⊤
+ ,

H12 = (Φ12 +X+Φ22)

[
X−
U−

]⊤
,

H22 =

[
X−
U−

]
Φ22

[
X−
U−

]⊤
.

Due to the existence of the unknown noise w(k), the pair
(A,B) that matches the collected data may not be unique.
Fortunately, the QMI (16) characterizes a set containing all
possible pairs of (A,B) that are compatible with the pre-
collected data. Therefore, if we can make all the systems
that satisfy the QMI (16) finite-time bounded by designing a
finite-time controller, then Problem 1 is solved. To achieve
this objective, the following result is proposed.

Theorem 2: Consider the system (1) under Assumption
1-2. Given the triplet (δx, δw, ϵ) with 0 < δx < ϵ and
xT (0)Rx(0) ⩽ δ2x, an integer N ∈ Z+, and a matrix R >
0, the system is finite-time bounded w.r.t. (δx, δw, ϵ, R,N)
under the controller u = Kx(k) with K = LQ−1

1 if there
exist scalars α ⩾ 0, β > 0, γ ⩾ 1, a matrix L ∈ Rm×n, and
two positive definite matrices Q1 ∈ Rn×n, Q2 ∈ Rn×n so
that the following inequalities hold

M1 − αH1 ⩾ 0 for γ ≥ 1, (19a)
δ2x

λmin(Q̃1)
+

Nδ2w
λmin(Q2)

<
ϵ2

λmax(Q̃1)
for γ = 1, (19b)

δ2x
λmin(Q̃1)

+
(1− 1

γN )δ2w

(1− 1
γ )λmin(Q2)

<
ϵ2

λmax(Q̃1)γN
for γ > 1,

(19c)

with Q̃1 = R
1
2Q1R

1
2 , H1 = diag{H, 0n×n}, and

M1 =
Q1 − γ−1Q2 − βIn 0n×n 0n×m 0n×n

∗ −γ−1Q1 −γ−1L⊤ 0n×n

∗ ∗ 0m×m L
∗ ∗ ∗ γQ1

 .

Proof: Select the Lyapunov function candidate V (x(k)) =
xT (k)Px(k) with P = Q−1

1 . According to (19a), we claim
the following inequality holds:

V (x(k + 1)) < γV (x(k)) + γw(k)⊤P2w(k) (20)

with P2 = Q−1
2 .

To prove (20), define Ā = A + BK. Then, according to
(1) and u = Kx(k), (20) can be rewrited as[

x(k)
w(k)

]⊤ [
γP − Ā⊤PĀ −Ā⊤P

∗ γP2 − P

] [
x(k)
w(k)

]
> 0.

(21)
Applying Lemma 1 to (19a) with F11 = M2 − αH , F12 =[
0n×2n L⊤]⊤, F22 = γQ1, and

M2 =

 Q1 − γ−1Q2 − βIn 0n×n 0n×m

∗ −γ−1Q1 −γ−1L⊤

∗ ∗ 0m×m

 ,

yields

M − αH ⩾ diag{βIn, 0(n+m)×(n+m)} (22)

where M is given as

M =

 Q1 − γ−1Q2 0n×(n+m)

∗ −
[

In
K

]
γ−1Q1

[
In
K

]⊤  .

(23)
Denote the (2, 2) block of the partitioned matrix M as

M22. Obviously, M22 and H22 satisfy M22 ⩽ 0 and H22 ⩽
0. In addition, from the definition of H , one has

kerH22 = ker

([
X−
U−

]⊤)
,

kerH12 = ker

(
(Φ12 +X+Φ22)

[
X−
U−

]⊤)
,

(24)

which implies kerH22 ⊆ kerH12. Then, applying Lemma
3 with Z = [A,B]⊤, together with (16), the following
inequality is fulfilled[

In
Z

]⊤
M

[
In
Z

]
> 0, (25)

which is equivalent to

Q1 − γ−1

[
Ā⊤

In

]⊤
diag{Q1, Q2}

[
Ā⊤

In

]
> 0. (26)

Applying Lemma 1 to (26) with

F11 = Q1, F12 =

[
Ā⊤

In

]⊤
, F22 = γ−1diag{Q1, Q2},

gives [
γQ−1

1 − Ā⊤Q−1
1 Ā −Ā⊤Q−1

1

∗ γQ−1
2 −Q−1

1

]
> 0, (27)

which implies (21) that is equivalent to (20).
Next, we will demonstrate that (19b)-(19c) and (20) imply

that the system (1) is finite-time bounded with respect to
(δx, δw, ϵ, R,N). Consider the case of γ = 1. From (20) and
P̃ = R−1/2PR−1/2, one has

V (x(k)) < V (x(0)) +

k−1∑
i=0

w(i)⊤P2w(i)

⩽ λmax(P̃ )δ2x + λmax(P2)Nδ2w,

(28)
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and

V (x(k)) = xT(k)Px(k) ≥ λmin

(
P̃
)
xT(k)Rx(k). (29)

Combing (28) with (29) gives

xT(k)Rx(k) <
1

λmin(P̃ )

[
λmax

(
P̃
)
δ2x + λmax (P2)Nδ2w

]
.

(30)
Using the fact that Pi = Q−1

i , i = 1, 2 and condition (19b),
it follows that xT(k)Rx(k) < ϵ2.

For case of γ > 1, according to (20), one has

V (x(k)) < γkV (x(0)) +

k∑
i=1

γiw(k − i)⊤P2w(k − i)

⩽ γNλmax(P̃ )δ2x + λmax(P2)δ
2
w

N∑
i=1

γi

⩽ γN

[
λmax

(
P̃
)
δ2x + λmax (P2) δ

2
w

1− 1
γN

1− 1
γ

]
.

(31)
Combing (19c), (29) and (31) give xT(k)Rx(k) < ϵ2,
for γ > 1. Hence, we have proved (19a)-(19c) guaran-
tee that system (1) is finite-time bounded with respect to
(δx, δw, ϵ, R,N). This concludes the proof.

Remark 6: Conditions (19b) and (19c) are nonlinear con-
ditions and can be replaced by the following LMIs in the
controller design

λ1R
−1 < Q1 < R−1, Q2 < In, (32)[

Q2 In
∗ λ2In

]
> 0, (33)

[
ε2 − λ2δ

2
wN δx

∗ λ1

]
> 0 for γ = 1, (34)

 ε2

γN − λ2δ
2
w

(
1− 1

γN

1− 1
γ

)
δx

∗ λ1

 > 0 for γ > 1, (35)

for some positive numbers λ1 and λ2. The LMI (33) aims at
ensuring that Q2 > In/λ2. The LMIs (34)-(35) are obtained
by taking (19b)-(19c) and (32)-(33) into consideration and
performing Schur complements.

Remark 7: Since (16) and (25) are both QMI involved
with A and B, the significance of Theorem 2 lies in finding a
feedback control gain K such that (25) holds for all possible
(A,B) satisfying (16), which can be realized by utilizing the
matrix S-lemma, i.e., Lemma 3.

V. NUMERICAL SIMULATIONS

This section will show the effectiveness of the proposed
method via examples. To solve the related LMIs, CVX [19]
is adopted, and Mosek [20] is selected as the solver.

A. Noise-free scenario

We consider an unstable plant with (A,B) as follows

A =

 0.850 −0.038 −0.380
0.735 0.815 1.594
−0.664 0.697 −0.064

 ,

B =

 1.431 0.705
1.620 −1.129
0.913 0.369

 .

(36)

The information of (A,B) is only used for simulation and
is unknown for controller design.

In the absence of noise, similar to the model-based finite-
time controller, we can perform an optimization over ϵ using
the following algorithm.

Optimization algorithm I
Initialization: Choose δx, R, N and initial value
for ϵ. Set γ = 1.
Procedure
if no solution is found and γ < (ϵ/δx)

(2/N), then
increase γ until a solution is found.
if no solution can be found, then increase the initial
valueof ϵ.
end if
if the LMIs are feasible, then keep decreasing ϵ.
elseif γ < (ϵ/δx)

(2/N), then increasing γ until a
solution is found.
end if
return ϵ
End procedure

In the simulation, an input/state trajectory with length
T = 20 is pre-collected, whose inputs and initial state are
generated randomly from a Gaussian distribution with zero
mean and unit variance. Set R = I3, N = 4 and the initial
value of ϵ as ϵ = 10. In optimization, ϵ is decreased by a
step size of 0.1, and γ is increased by a step size of 0.01. We
consider δx with five different values: δx = {0.5, 1, 2, 5, 7.5}.

Since the proposed controller is a data-driven realization of
the model-based controller proposed in Corollary 2 of [11],
we compare the optimization results of the two controllers.
The obtained results are shown in the following table:

TABLE I: Optimize search result for ϵ

Model-based control Data-driven control
δx = 0.5 γ = 1, ϵ = 0.7 γ = 1, ϵ = 0.7
δx = 1 γ = 1, ϵ = 1.3 γ = 1, ϵ = 1.3
δx = 2 γ = 1, ϵ = 2.5 γ = 1, ϵ = 2.5
δx = 5 γ = 1, ϵ = 6.2 γ = 1, ϵ = 6.2
δx = 7.5 γ = 1, ϵ = 9.2 γ = 1, ϵ = 9.2

As we can see from TABLE I, the noise-free data-based
controller reaches the same results as the model-based one.
This is not surprising, as pointed out by Willems’ funda-
mental lemma, when the data is rich enough, it is possible
to achieve exact identification of LTI systems using data. In
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this example, we fixed δx to find the minimum admissible ϵ
that guarantees the desired closed-loop finite-time property.
Conversely, we can also fix ϵ to search for the maximum
admissible δx [11].

B. Noisy scenario

In the presence of unknown noise, the data-based rep-
resentation (16) may contain different (A,B) pairs, and
then the optimization, as in the previous example, may
give very conservative results since the search terminates
as long as one of the possible systems fails to satisfy the
LMIs (19a) and (32)-(35). Therefore, in this subsection,
similar to the other existing FTC works, we will directly
use the proposed sufficient condition to find a controller for
prespecified parameters (δx, δw, ϵ, R,N). In the simulation,
we set γ = 1 and the noise is randomly generated within
the ball {w ∈ Rn|∥w∥2 ≤ δ2w}. In particular, we investigate
two noise levels: δw ∈ {0.1, 0.5}. For each noise level, we
collect 250 input/state trajectories. Meanwhile, we consider
the following six cases in TABLE II.

TABLE II: Simulation parameters of the noisy scenario

δx δw ϵ R N
Case 1 1 0.1 1.5 I3 4
Case 2 1 0.1 2 I3 4
Case 3 1 0.1 5 I3 4
Case 4 1 0.5 5 I3 4
Case 5 1 0.5 10 I3 4
Case 6 1 0.5 100 I3 4

For each case, we record the number of times the finite-
time controller was found using the corresponding noise level
dataset and Theorem 2, as shown in TABLE III.

TABLE III: The number of trajectories on which the
controller was found

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
100 224 250 96 226 242

Based on the TABLE II-III, from Case 1-3, we can see
that for noise level δw = 0.1, by increasing ϵ, we can find
a controller from each pre-collected trajectory such that the
closed-loop system is finite-time bounded. This is mainly
because the increase of ϵ relaxes condition (19b), which
makes LMIs more feasible. For Case 4-6, we successfully
find controllers from 96, 226, and 242 trajectories, respec-
tively. The proposed method fails to find the controller in
some trajectories. This is due to the fact that as the noise
level increases, the (A,B) pairs characterized by the QMI
also enlarged, and thus it is much harder to find a controller
that simultaneously guarantees all possible systems with the
same finite-time boundedness.

VI. CONCLUSION

This work has proposed a data-driven FTC method for
discrete-time LTI systems. For the noise-free case, suf-
ficient conditions of the system with the proposed FTC
method have been obtained by using a data-based closed-
loop representation. In the presence of bounded unknown
noise, sufficient conditions for the finite-time boundedness

of the closed-loop system have been derived by using QMI
and matrix S-lemma. The proposed control method enables
control engineers to bypass system identification and use
only measured data to design a finite-time controller.
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