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Abstract— The Popov criterion has proved to be a powerful
tool for analyzing the absolute stability of Lur’e systems, where
a linear time-invariant system is in feedback interconnection
with a nonlinear operator. However, its applicability is limited
by the stringent requirements that the linear system is strictly
proper and the input of the nonlinear operator has a bounded
time derivative. In this paper, we relax these requirements
for the Popov stability criterion on MIMO systems with non-
repeated diagonal slope-restricted nonlinearities by demonstrat-
ing the phase containment of Popov multipliers within the well-
established O’Shea-Zames-Falb multipliers.

I. INTRODUCTION

In the realm of robust control theory, the Popov criterion
has proved to be a pivotal stability criterion for the analysis
of absolute stability. The criterion dates back to [1] where
Popov proposed conditions for the absolute stability of a
class of nonlinear systems with a scalar nonlinear operator
within an open sector. It has wide applications across various
fields such as large-scale systems [2], power systems [3], [4],
and neural networks [5]. In particular, recent studies in [6],
[7] have demonstrated that Lur’e type Lyapunov functions
associated with the Popov criterion contain the Bregman
divergence function in the optimization literature as a special
case when the former is applied to the mirror descent method.
This highlights the effectiveness of the Popov criterion and
implies a broader application of robust control theory to
cutting-edge optimization algorithms [8], [9].

The extensive applications of the Popov criterion have
stimulated sustained development efforts over decades [10]–
[16]. It has been generalized by [10]–[12] to multiple-input-
multiple-output (MIMO) systems. It is shown in [13], [14]
that Popov criterion can be applied with indefinite multipli-
ers. However, stringent requirements are still imposed: the
stable linear time-invariant (LTI) system in the feedback in-
terconnection is strictly proper and the input of the nonlinear
operator must have a bounded time derivative. Notably, [14]
has proposed a relaxation of these constraints, allowing for
a nonzero direct feedthrough term provided the product of
the Popov multiplier and the direct feedthrough term is zero.
However, such a condition is still restricted, as it simply
rules out the feedthrough term for the single-input-single-
output (SISO) case. More recently, the work [15], [16] has
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further extended the SISO Popov criterion to systems with
nonzero feedthrough terms through the O’Shea-Zames-Falb
(OZF) multipliers.

The relation between Popov and OZF multipliers has
been widely explored in the literature [15]–[19]. The Popov
multipliers have been treated as the first-order Zames–Falb
multipliers having a pole at infinity [17], but such a claim is
not rigorous without mathematical proof. It has been proved
in [15], [16] that Popov multipliers are phased-contained
within OZF multipliers in the SISO case, i.e., given any
Popov multiplier for a slope-restricted or monotone and
bounded nonlinear operator, there always exists a substitute
OZF multiplier certifying the same stability result. Applying
this insight to MIMO systems is particularly intriguing, as
analyzing dynamical systems usually involves loop trans-
formations, which results in MIMO systems with direct
feedthrough terms [7], [20]. While this generalization seems
possible, its realization is non-trivial. A critical impediment
lies in the intricacy of characterizing the phase for MIMO
systems, a concept that is straightforward in the SISO
context but complicated and multifaceted for the MIMO
case [21]–[23]. Moreover, [19] has discouraged this idea
in the MIMO case by providing counterexamples showing
that phase substitution is difficult to achieve with a finite-
dimensional approximation of OZF multipliers. Nonetheless,
we would like to note that [19] considers identical poles
and causal OZF multipliers for the MIMO case, which may
introduce conservatism in numerical tests.

In this work, we rigorously explore the generalization of
the Popov criterion to MIMO systems for slope-restricted
nonlinearities, without restrictions on the strict properness
of the linear system and boundedness of the input’s time
derivative to the nonlinear operator. Our investigation in-
cludes verification of such feasibility in the MIMO case,
addressing the phase containment of the Popov multipliers
within OZF multipliers using strong positivity.

II. PRELIMINARIES

A. Notation

Let R denote the set of real numbers, Rn the space of
n-dimensional real vectors, and Rm×n the space of m × n
real matrices, respectively. Let Id and 0d denote the d × d
identity matrix and zero matrix, respectively, with subscripts
omitted when the dimensionality is clear from the context.
The notation diag(α1, . . . , αd) denotes a d × d diagonal
matrix with αi as its i-th diagonal entry. Define RL∞ as
the set of all proper real rational functions that are bounded
on the imaginary axis, and RH∞ as the set of all proper
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real rational functions without poles in the closed right-half
plane. The set of m × n matrices with elements in RL∞
(RH∞) is denoted by RLm×n

∞
(
RHm×n

∞
)
. Let Lm

2 [0,∞)
be the Hilbert space of all square-integrable and Lebesgue
measurable functions f : [0,∞) → Rm with inner product

⟨f, g⟩ :=
∫ ∞

0

fT (t)g(t)dt, for f, g ∈ Lm
2 [0,∞). Lm

2 [0,∞)

is a subspace of Lm
2e[0,∞), which includes elements that are

integrable on any finite interval. For a function f : R → R,

its L1 norm is given by ∥f∥1 =

∫ ∞

−∞
|f(t)|dt. Given a

matrix G(jω), G∗(jω) := GT (−jω) represents its conjugate

transpose and (G(jω))H :=
1

2
(G(jω) +G∗(jω)) denotes its

Hermitian part.

B. Absolute stability

Definition 1: A memoryless nonlinearity ϕ : R → R, with
ϕ(0) = 0, is slope-restricted in the sector [α, β], if α ≤
ϕ(x)−ϕ(y)

x−y ≤ β, for all x ̸= y and x, y ∈ R. It is said to be
odd if ϕ(x) = −ϕ(−x), for all x ∈ R.
The above terms can be generalized to multivariable Φ :
Rn → Rn. In particular, Φ(x) := [ϕ1(x1), . . . , ϕn(xn)]

T ,
where xi denotes the i-th element of x ∈ Rn, is said to be
slope-restricted in [K,K], with K = diag(k1, . . . , kn), K =
diag(k1, . . . , kn), if each ϕi is slope-restricted in [ki, ki].

Define the truncation operator PT which does not change
a function on the interval [0, T ] and gives the value zero on
(T,∞]. The operator Φ is said to be causal if PTΦPT =
PTΦ, for all T ≥ 0. Consider the interconnection

v =Gw + e, w = −Φ(v) + f (1)

where e, f ∈ Ln
2e[0,∞), G is a causal LTI system with

G(s) ∈ RHn×n
∞ and Φ is a memoryless nonlinear operator.

System (1) is called the Lur’e system, which is depicted by
Figure 1. In this work, Φ is slope-restricted in [0,K], with

Fig. 1. The Lur’e system, where a linear time-invariant system G is in
feedback interconnection with a nonlinear operator Φ.

diagonal matrix K > 0. The feedback interconnection of G
and Φ is well-posed if the map (e, f) 7→ (v, w) defined by
(1) has a causal inverse on L2n

2e [0,∞).
Definition 2: System in Figure 1 is said to be L2 stable,

or simply, stable, if (v, w) ∈ L2n
2 [0,∞) for all exogenous

signals (e, f) ∈ L2n
2 [0,∞). It is absolutely stable if it is

stable for all Φ within the class of nonlinear operators.

C. O’Shea-Zames-Falb multipliers and stability theorem

Before introducing the multiplier theorem, let us first
define strong positivity based on [24]–[26].

Definition 3: An operator H : Ln
2e[0,∞) → Ln

2e[0,∞)
is termed (strongly) positive if ⟨v,H(v)⟩ ≥ δ⟨v, v⟩, ∀v ∈
Lm
2e[0,∞), for δ = 0 (δ > 0).
A (strongly) positive operator H is also (strongly) passive

if it is causal and H(0) = 0. An LTI system with G(s) ∈
RLn×n

∞ is strongly positive if (G(jω))H > δI , for some
δ > 0, ∀ω ∈ R. It is easily observed that the slope-restricted
Φ is passive.

The multiplier theorem is illustrated through the loop
transformation depicted in Figure 2. Loosely speaking, a
bounded and causal multiplier M ∈ RHn×n can be designed
such that passivity of Φ is preserved under the multiplication
of its bounded inverse M−1. Then, if the upper block is
strongly passive, the feedback interconnection is stable by the
well-known passivity theorem [25]. Additionally, canonical
factorization of M allows for relaxation in causality such
that M ∈ RLn×n

∞ , requiring only that the upper block be
strongly positive and the lower block preserve positivity [25],
[27]. The O’Shea-Zames-Falb multipliers, introduced in [24],

Fig. 2. Diagram of loop transformation with multiplier. The bounded
multiplier M is designed such that positivity of Φ is preserved under the
multiplication of its bounded inverse M−1. Then, if the upper block is
strongly positive, the feedback interconnection is stable.

[28], are currently the largest set of multipliers preserving
positivity of slope-restricted and odd nonlinearities [18],
[29]. We adopt the following definition of SISO rational
OZF multipliers for slope-restricted but not necessarily odd
nonlinearities [15], [30].

Definition 4: A SISO rational transfer function of the
form M(s) = 1−Z(s) is said to be an O’Shea-Zames-Falb
(OZF) multiplier if Z(s) satisfies Z(∞) = 0, and its inverse
Laplace transform satisfies ∥z(t)∥1 < 1. The set of all SISO
rational OZF multipliers is denoted by the set M ⊂ RL∞.
The subset of M+ ⊂ M contains all OZF multipliers such
that z(t) ≥ 0, ∀t ∈ R.
The above definition includes Z(s) = 0 as a special case,
where M(s) = 1 is a constant gain. We use Mn×n and
Mn×n

+ to denote the sets of all n×n diagonal matrices with
elements from M and M+, respectively.

We have the following OZF theorem for non-repeated
diagonal nonlinearities, considering rational OZF multipliers.

Theorem 1 ([31]): Consider the feedback interconnection
in Figure 1 with G ∈ RHn×n

∞ and Φ is slope-restricted
in [0,K], with diagonal matrix K > 0. Consider a diagonal
M(s) ∈ Mn×n

+ . Suppose that the system is well-posed, then
the system is absolutely stable if M(jω)

(
G(jω) +K−1

)
is

strongly positive.
Remark 1: MIMO systems with repeated or non-diagonal

nonlinearities have been extensively studied [19], [31]–[33].
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Nonetheless, we focus specifically on the absolute stability of
MIMO systems with non-repeated diagonal nonlinearities in
this work to reveal the connection between Popov and OZF
multipliers. Moreover, the repeated case can be viewed as
adding extra constraints to the characterization of nonlinear
operators in the non-repeated case , which can be addressed
separately [7].

We consider G to be in the subset SR of RHn×n
∞ defined

by

SR =
{
Ĝ ∈ RHn×n

∞ : Ĝ−1 ∈ RHn×n
∞ , and

∃ diagonal P > 0, s.t.
(
PĜ(∞)

)
H
> 0
}
. (2)

To see that this consideration is without loss of generality,
let us first consider a linear feedback matrix Φ = K̃, where
K̃ = diag(k̃1, . . . , k̃n), with k̃i ∈ [0, ki], in Figure 1. Then,
a necessary condition for the absolute stability derived from
the generalized Nyquist stability criterion [34] is that

det
[
I + K̃G(s)

]
̸= 0, ∀k̃i ∈ [0, ki], ∀Re[s] ≥ 0. (3)

Define Ĝ(s) := G(s) + K−1 = K−1(I + KG(s)), with
K = diag(k1, . . . , kn). Condition (3) guarantees that Ĝ is
invertible, and Ĝ−1 ∈ RHn×n

∞ . The loop transformation to
obtain Ĝ is given in Figure 3. The nonlinear operator Φ̃ is
passive. The feedback interconnection is absolutely stable if
Ĝ is strongly passive. The strong passivity can be relaxed by
applying the multiplier method, but a necessary condition
for the existence of a valid OZF multiplier is that there
exists a diagonal and positive definite matrix P such that(
PĜ(∞)

)
H
> 0, as the lower block in Figure 3 preserves

passivity with the diagonal P−1.
Remark 2: It can be observed that Ĝ ∈ SR is a necessary

condition for absolute stability. It follows that if Ĝ =
G + K−1 /∈ SR, with G ∈ RHn×n

∞ and K > 0, then
the feedback interconnection of G and the class of slope-
restricted nonlinearities Φ cannot be absolutely stable. This
necessity is imposed by the generalized Nyquist stability
criterion [34], [35].

D. Phase Containment
The term phase-contained is defined in [15] to char-

acterize the equivalence of multipliers for slope-restricted
nonlinearities in the SISO case. The concept of phase is
not straightforward for the MIMO systems [21]–[23], but we
adopt this same terminology as an expansive interpretation
through the strong positivity.

Definition 5: Let Ma, Mb be two sets of multipliers and
let Ĝ ∈ SR. The class Ma is said to be phase-contained
within the class Mb if for any multiplier Ma ∈ Ma such
that (

Ma(jω)Ĝ(jω)
)

H
≥ δ1I, ∀ω ∈ R

for some constant δ1 > 0, there exists a multiplier Mb ∈ Mb
to phase-substitute Ma, i.e.,(

Mb(jω)Ĝ(jω)
)

H
≥ δ2I, ∀ω ∈ R

for some constant δ2 > 0.

Fig. 3. Diagram of loop transformation. The nonlinear operator Φ̃ is
passive. The feedback interconnection is absolutely stable if Ĝ is strongly
passive. The strong passivity can be relaxed by applying the multiplier
method, but a necessary condition for the existence of a valid OZF multiplier
is that there exists a diagonal and positive definite matrix P such that(
PĜ(∞)

)
H

> 0, as the lower block preserves passivity with diagonal

P−1.

III. MAIN RESULTS

We present the main results in this section. The proofs are
included in the appendix.

As the open-loop system G considered in this work may
contain the nonzero feedthrough term D, we assume the
well-posedness of the negative feedback interconnection of
G(s) = C(sI−A)−1B+D and Φ, as defined in Theorem 1.
It is worth noting that this assumption is fulfilled if G(s) +
K−1 is within the set SR since every element in the set is
invertible as indicated by (3).

A. Popov and O’Shea-Zames-Falb multipliers

The class of Popov multipliers for SISO systems is given
by

Mp(s) = 1 + λs, λ ∈ R. (4)

The first-order OZF multiplier

Mozf(s) =
1 + λs

1 + εs
, ε · λ > 0 (5)

is adopted in [15] to show that the class of Popov multipliers
(4) are phase-contained within the class of OZF multipliers.
The class of first-order OZF multipliers is given below.

Lemma 1 ([15]): Let Mozf(s) be a first-order transfer
function given by (5). Then Mozf(s) ∈ M+ if and only
if
∣∣1− λ

ε

∣∣ < λ
ε .

The above lemma implies that in the MIMO case, the
signs of ε1, . . . , εn should coincide with their corresponding
λ1, . . . , λn, in order to construct a valid OZF multiplier. This
observation also indicates that a multivariable OZF multiplier
should be constructed with multiple poles if one wants to
achieve a similar performance as the multivariable Popov
multipliers. Moreover, when λ = 0, the Popov multiplier
(4) is reduced to Mp(s) = 1, which is a trivial case in
SISO systems as no Popov multiplier is required to prove the
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stability, but this case is not negligible in MIMO systems.
To see this, let us look at the multivariable Popov multiplier
for MIMO systems [14], given by

MP(s) = Q+ sΛ (6)

where Q := diag(q1, . . . , qn) is a diagonal positive definite
matrix and Λ := diag(λ1, . . . , λn) is an indefinite diagonal
matrix. If λi = 0 for some i ∈ {1, . . . , n}, MP(s) is still
a Popov multiplier, but M(s) = diag

(
q1+sλ1

1+sε1
, . . . , qn+sλn

1+sεn

)
fails to be an OZF multiplier due to the i-th element being
Mi(s) =

qi
1+sεi

for any nonzero εi.
Therefore, we adopt the following OZF multiplier

MOZF(s) =


q1+s(λ1+p1ε1)

1+sε1
. . .

qn+s(λn+pnεn)
1+sεn

 , (7)

where pi > 0 is defined in (2), εiλi ≥ 0, and εi = 0 iff
λi = 0.

Lemma 2: MOZF(s) defined in (7) is a multivariable
O’Shea-Zames-Falb multiplier and MOZF ∈ Mn×n

+ if and
only if 0 < qi <

2λi

εi
+ 2pi for all i such that λi ̸= 0.

From the above lemma, one has MOZF(s) ∈ Mn×n
+ given

sufficiently small nonzero εi, for all i such that λi ̸= 0.

B. Phase containment of Popov multipliers

The following lemma is trivial in the SISO case but is
required to verify phase containment of the Popov multipliers
in the MIMO case.

Lemma 3: If MP(s)Ĝ(s) is strongly positive, then ΛD is
a symmetric matrix.
The following lemma on the eigenvalues of matrix product
will be used.

Lemma 4: Given matrices A, B ∈ Rn×n with A and B+
BT being positive (semi-)definite, then all eigenvalues of
AB have positive (nonnegative) real parts.

Next, we show that the class of multivariable Popov multi-
pliers is phase-contained within the class of OZF multipliers.

Lemma 5: Let Ĝ(s) = G(s) + K−1 and suppose that
Ĝ(s) ∈ SR, then the class of multivariable Popov multi-
pliers is phase-contained in the class of O’Shea-Zames-Falb
multipliers.

C. Generalized multivariable Popov criterion

We are now ready to present the generalized multivariable
Popov criterion.

Theorem 2 (Generalized multivariable Popov criterion):
Consider the feedback interconnection in Figure 1
with G(s) ∈ RHn×n

∞ and Φ is slope-restricted in
[0,K], with diagonal matrix K > 0. Suppose the
system is well-posed, and G(s) + K−1 is in the set
SR defined by (2). If there exist constant matrices
Q = diag(q1, . . . , qn) and Λ = diag(λ1, . . . , λn) such that(
QK−1 + (Q+ jωΛ)G(jω)

)
H ≥ δI , ∀ω ∈ R, for some

constant δ > 0, then the system is stable.
Proof: The proof follows directly from Lemma 5 and

Theorem 1.

Remark 3: This multivariable Popov criterion is gener-
alized in the sense that the requirements of D = 0 or
ΛD = 0, and the input e in Figure 1 having a bounded time
derivative are removed. However, it is important to verify in
advance the well-posedness of the closed-loop system, and
that G(s)+K−1 is within the set SR in (2) before applying
the Popov criterion when there is a nonzero D.

IV. NUMERICAL EXAMPLES

In this section, we present two numerical examples to
illustrate our proposed results.

A. Phase Containment

We adopt Example 4.9 from [19] but with non-repeated
diagonal nonlinearities. The system matrices are given by

A =

−4 −3 0
2 0 0
−1 −1 −2

 , B = −

0 4 1 3
2 0 3 1
1 0 3 1

 ,

C =


−0.1 −0.2 1
−1 −0.3 0.1
−0.2 0.1 1
0.1 −0.2 0.2

 , D = 0.

and Φ = [ϕ1, . . . , ϕn]
T with K = diag (0.5, 1, 0.5, 5).

Solving the time-domain conditions derived from Theorem 2
via the KYP lemma [26], we obtain Mp = Q + jωΛ,
where Q = diag(0.7097, 1.2072, 0.4240, 0.5778) and Λ =
diag(0.2392,−0.0829, 0.1419, 0.5108). It has been shown in
[19] that a finite-dimensional approximation of OZF multi-
pliers cannot achieve the same bound, indicating a failure of
the phase containment. However, we believe that this is due
to the use of identical poles only, i.e., εi = ε > 0, for all i
in (7). To obtain the phase containment, εi should have the
same sign as its corresponding λi, leading to possibly non-
causal OZF multipliers. Indeed, in this example, considering
MOZF(s) in (7) but with identical ε1 = . . . = ε4 = ε > 0

fails1 to ensure the inequality
(
MOZF(jω)Ĝ(jω)

)
H

> δI .

even for ε = 10−9, which coincides with the observation
in [19]. On the other hand, let |ε1| = . . . = |ε4| = ε and
εiλi > 0, it is shown in Figure 4 that strong positivity holds
for ε = 0.01, which is relatively small but not infinitesimal.

B. Nonzero direct feedthrough term

Let us consider the same system matrices A, B, C, and
nonlinear operator Φ, as the previous example, but with a
nonzero direct feedthrough term given by

D =


0 0 0 0
0 1 −5 0
0 0 0 0
0 0 0 −0.1

.
It is important to check that D+K−1 has positive eigenval-
ues. It is readily observed that

(
D +K−1

)
H is not positive

definite. A positive definite matrix P satisfying (2) is given

1Note that such a MOZF(s) may not even be an OZF multiplier by
Lemma 1.
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Fig. 4. The minimum eigenvalue of
(
MOZF(jω)Ĝ(jω)

)
H

over frequency

ω [rad/s], where Ĝ(jω) = G(jω) +K−1.

by P = diag (0.4000, 0.1959, 0.6042, 1.6667). Similarly,
Theorem 2 gives the Popov multiplier MP(jω) = Q +
jωΛ, where Q = diag (0.8533, 0.2020, 1.6010, 0.8771), and
Λ = diag (0.1066, 0, 0.4134, 0.1737). This Popov multiplier
is phase-contained within the set of OZF multipliers by
choosing ε1 = ε3 = ε4 = 0.01, and ε2 = 0. It is worth
noting that we do not use M(jω) = 1+p2εs

1+εs to approximate
the constant in the Popov multiplier M2,P(jω) as it may not
represent a first-order OZF multiplier by Lemma 2. More
importantly, a constant can already be considered a special
case of an OZF multiplier, which exhibits distinct phase
properties compared to first-order OZF multipliers.

V. CONCLUSIONS

This paper has shown that the class of multivariable Popov
multipliers for MIMO systems with slope-restricted nonlin-
earities is phase-contained within the class of the O’Shea-
Zames-Falb multipliers. In other words, any multivariable
Popov multiplier can be equivalently replaced by an O’Shea-
Zames-Falb multiplier when applied to the absolute stability
analysis with slope-restricted nonlinearities. As a result, the
requirement that the input has bounded time derivatives has
been removed and the feedthrough term D can be nonzero
to apply the multivariable Popov stability criterion.

APPENDIX

Proof of Lemma 2

As MOZF(s) is diagonal, it suffices to show that each
diagonal element Mi,OZF(s) :=

qi+s(λi+piεi)
1+sεi

is a SISO OZF
multiplier. When λi = 0, εi = 0 and Mi,OZF(s) degenerates
to the constant qi, which is a special case of OZF multiplier
by Definition 4. When λi ̸= 0, Mi,OZF(s) can be rewritten as
Mi,OZF(s) = Mi,OZF(∞) + M̂i,OZF(s) where Mi,OZF(∞) =

λi+piεi
εi

and M̂i,OZF(s) =
qi−

λi+piεi
εi

1+sεi
. Applying Lemma 1

using the fact that ∥m̂i,OZF(t)∥1 = |qi − λi+piεi
εi

|, where
m̂i,OZF(t) is the inverse Laplace transform of M̂i,OZF(s),

we have that Mi,OZF(s) is an OZF multiplier if and only
if (λi + piεi)εi > 0 and |qi − pi − λi

εi
| < λi

εi
+ pi. The first

condition is satisfied since λiεi > 0 and pi > 0, and the
latter is equivalent to 0 < qi <

2λi

εi
+ 2pi.

Proof of Lemma 3

We have MP(jω)Ĝ(jω) = (Q+ jωΛ) (C(jωI−A)−1B+
D + K−1). When ω is large, the term jωΛ(D + K−1)
dominates other terms, and it follows that its Hermitian
part is positive semidefinite, i.e.,

(
jωΛ(D +K−1)

)
H =

1
2jω(ΛD − DTΛ) ≥ 0 where the equality follows from
the fact that ΛK−1 is symmetric. Since jω(ΛD − DTΛ)
is a positive semidefinite Hermitian with diagonal elements
being zero, it follows that the eigenvalues are solely zero. As
the Hermitian matrix is diagonalizable, we have jω(ΛD −
DTΛ) = 0, meaning that ΛD is symmetric.

Proof of Lemma 4

Given matrices S ∈ Rn×n and T ∈ Rn×n. If ν is
an eigenvector of ST , then Tν is an eigenvector of TS,
both associated with the same nonzero eigenvalue µ, as
TS(Tν) = µTν. Thus, ST and TS share the same nonzero
eigenvalues. Since A is positive (semi-)definite, it admits
a positive (semi-)definite square root A1/2. Then, we have
AB = A1/2(A1/2B) and thus AB shares the same nonzero
eigenvalues with

(
A1/2B

)
A1/2, which have positive (non-

negative) real parts due to positive (semi-)definiteness of
B+BT , as xTA1/2BA1/2x = 1

2x
TA1/2(B+BT )A1/2x >

(≥) 0, for any x ̸= 0.

Proof of Lemma 5

Let E := diag(ε1, . . . , εn) where εi = 0 iff λi = 0, |εi| =
ε, for all i such that λi ̸= 0, and ε > 0 is a sufficiently small
constant. Let N := {1, . . . n}, we denote its subset Nnz as
the set of indices of all nonzero λi, and N0 := N \ Nnz.
Define Ei ∈ Rn×n such that its i-th diagonal element is
one, and the rest of all other elements are zero. Let us first
look at

(
MOZF(jω)Ĝ(jω)

)
H

at high frequencies,

lim
ω→∞

(
MOZF(jω)Ĝ(jω)

)
H

=

(∑
i∈Nnz

Ei

(
EΛ
ε2

+ P

)
Ĝ(∞)

)
H

+

(∑
i∈N0

EiQĜ(∞)

)
H

=

(∑
i∈Nnz

Ei

(
EΛ
ε2

+ P

)(
D +K−1

))
H

+

(∑
i∈N0

EiQ(D +K−1)

)
H

=
∑
i∈Nnz

Ei
EΛ
ε2
(
D +K−1

)
+

(∑
i∈Nnz

EiP
(
D +K−1

))
H

+

(∑
i∈N0

EiQ(D +K−1)

)
H

≥

(∑
i∈Nnz

EiP
(
D +K−1

))
H

+

(∑
i∈N0

EiQ(D +K−1)

)
H
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where the symmetry in the third equality follows from
Lemma 3, and the inequality follows from Lemma 4.
Moreover, the first term on the right-hand side is positive
semidefinite, and the nonzero diagonal elements of the
second term are all positive. Then, it follows from the
Schur complement that there exists a diagonal P > 0
with sufficiently large elements such that its sum with the
right-hand side of the above equation is positive definite,
i.e., lim

ω→∞

(
MOZF(jω)Ĝ(jω)

)
H

≥ δaI , for some δa > 0.

As
(
MOZF(jω)Ĝ(jω)

)
H

is continuous on ω, and by the
definition of limit at infinity, there exists a sufficiently large
ω0, such that

(
MOZF(jω)Ĝ(jω)

)
H
≥ (δa − ϵ)I > 0, for all

|ω| ≥ ω0, where ϵ > 0. It is worth noting that the minimum
value of δa does not depend on ε but on P and D + K−1

instead, so ω0 can be chosen independently of ε. Next, let
us look at the system at lower frequencies,(

MOZF(jω)Ĝ(jω)
)

H

=
(
(I + jωE)−1

MP(jω)Ĝ(jω)
)

H

=
((

I − jωE + ω2E2 (I + jωE)−1
)
MP(jω)Ĝ(jω)

)
H

≥δ1I +
((

ω2E2 (I + jωE)−1 − jωE
)
MP(jω)Ĝ(jω)

)
H

where the inequality follows from strong positivity of
MP(jω)Ĝ(jω). Moreover,

(
ω2E2 (I + jωE)−1 − jωE

)
→

0 as E → 0, and it is bounded for |ω| ≤ ω0, where ω0 is given
previously. Then, for any |ω| ≤ ω0, there exists a sufficiently
small ε > 0, such that

(
MOZF(jω)Ĝ(jω)

)
H
≥ δbI > 0, for

some constant δb. In summary, there exists a multivariable
OZF multiplier MOZF(jω) in the form of (7) such that(
MOZF(jω)Ĝ(jω)

)
H
≥ δ2I , where δ2 = min {δa − ϵ, δb} .
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