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Abstract—This work investigates the impact of Field-of-View
(FOV) on the performance of Reinforcement Learning (RL)
models in Multi-Agent Path Finding (MAPF) problems. The
study measures the effects of different FOV settings on RL
performance, communication overhead, and computation time.
Results show that the tested smallest FOV (3×3) reduces com-
munication frequency by 28.9% with only a 1.65% reduction
in success rate compared to the baseline (9×9). The study also
compares computation time for different FOV for efficiency
analysis and provides insights into FOV selection considering
computation cost.

Index Terms—Reinforcement Learning, Multi-Agent System,
Multi-Agent Path Finding

I. INTRODUCTION

Large-scale deployment of autonomous robots has been
transforming manufacturing and warehouses [1]. To support
these applications, a solution to the MAPF problem [2], i.e., a
set of collision-free paths on a given map, has to be provided.
Even though MAPF is NP-hard to solve optimally, numerous
solutions for the MAPF problem have been derived. Some
approaches exploit search-based techniques such as Conflict
Based Search (CBS) [3], [4], while some simplify the prob-
lem into Boolean Satisfiability Problem (SAT) [6]. However,
these approaches can only scale effectively in a system with
a small number of agents.

To overcome the scalability issue, decentralized executions
with Imitation Learning (IL) or RL have been used [19]–
[21], [24]. Decentralized executions often modeled the MAPF
task as a partially observable Markov game. They reduce the
overhead by allowing agents to make decisions based on their
observation instead of thoroughly observing the environment.
IL-focused approaches aim to reduce the deviation between
expert guidance and actual agent actions, while RL-focused
approaches receive guidance from behavior cloning [19], [20]
and heuristics [25].

To further improve multi-agent collaboration, researchers
have recently shifted the focus on communication-based
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solutions [21], [22], [25]. These solutions, however, em-
phasize broadcast communication, in which messages are
sent to the surrounding agents without specific targets. Even
though significant advantages have been demonstrated in
broadcast communication over previous works, it creates a
large amount of communication overhead. In addition, it adds
unnecessary burdens and latency to the system, as not all
information from the surroundings is helpful for decision-
making. The superfluous information might confuse the agent
and eventually degrade the learning process. Therefore, RL
frameworks that can lower communication overhead have
been suggested [15]–[17], [26], [27]. Particularly in [26],
agents communicate to any neighbor who can potentially
affect its temporary decision.

The FOV setting is critical in multi-agent systems for
several reasons. FOV impacts agents’ perception, navigation,
and awareness of opportunities. Larger FOVs allow more
perspective but demand more resources, while smaller FOVs
are more focused and efficient and require less computation
load to operate. FOV also affects coordination and collab-
oration, as overlapping views enable communication and
shared goals. However, oversized FOVs cause unnecessary
exchanges. Additionally, smaller FOVs help agents concen-
trate on their immediate surroundings, like decreasing the
detection distance of a LiDAR sensor to focus only on nearby
objects. Narrower FOVs conserve energy and extend battery
life, especially where charging is limited. In some contexts,
limiting FOV restricts sensitive data access for security.

FOV configuration is critical in real-world deployment,
given hardware and cost constraints. The FOV scope must be
judiciously chosen when engineering and fielding multi-agent
robots. Intuitively, the FOV scale should adequately support
navigation and teamwork while remaining energy-efficient.
In order to bring more insight into the selection of FOV and
study its effect on performance and communication overhead,
we conduct experiments based on a recent communication-
based MAPF framework [26]. On one hand, the performance
of the MAPF framework can easily be improved by adjusting
the FOV. Conversely, we suggest a way to view the per-
formance when considering computation cost, and it allows
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researchers and engineers to examine the trade-offs more
easily when designing a cost-efficient system.

II. RELATED WORKS

A. Multi-Agent Path Finding (MAPF)

Even though there exists approximating optimal solutions
[7], MAPF is still an NP-hard issue. We can generally catego-
rize MAPF planners as coupled, decoupled, and dynamically
coupled methods.

Coupled methods such as A* suffer tremendously from the
curse of dimensionality. Meanwhile, decoupled methods such
as [8] can plan and modify large amounts of paths for colli-
sion avoidance in low-dimensional search spaces. However,
it is possible that the decoupled techniques are not complete,
as the low-dimensional search spaces only represent a limited
piece of joint configuration space [9]. Dynamically-coupled
techniques allow broader agent interactions while preventing
planning in the entire configuration space. For example, CBS
and its variants [3]–[5] avoid searching in higher dimensional
space by defining a set of constraints.

B. MAPF with RL

Single-agent path planning using RL has seen consider-
able accomplishments [11], [12]. Researchers have recently
focused on using RL approaches to solve MAPF problems,
and most rely on expert guidance from existing planners.
For instance, OD-recursive-M∗ (ODrM*) [13] is used in
PRIMAL [19], A* is used in MAPPER [24] and a graph-
based planner [10] is used in Global-to-Local Autonomy
Synthesis (GLAS) [23]. Particularly in PRIMAL, the frame-
work uses an Asynchronous Advantage Actor-Critic (A3C)
network as the RL module and ODrM* planner for behavior
cloning. However, these expert planners suffer from high
computation complexity with the growing number of agents,
and the paths designed for single-agent environments might
not be optimal for multi-agent environments. One potential
way is to utilize communication to encourage collaboration
between agents. Targeted Multi-Agent Communication (Tar-
MAC) [15] and Graph Neural Network (GNN) [21] are two
recent examples of how communication is used to boost
collaboration. DHC [25] utilizes both heuristics and graph
convolution for navigation and communication. In Decision
Causal Communication (DCC) [26], the authors extend DHC
by using a Decision Causal Unit to communicate selectively
with neighbors. It removes redundant messages, and the
communication overhead is greatly reduced.

III. PROBLEM SETUP

The models are trained and tested in a classical MAPF
setting or benchmark defined in [2]. The basic rules of the
benchmark test are as follows:

1) Each agent in the environment takes one of the five
available actions (Up, Down Left, Right and Stop).

2) Agents should stop once their destinations are reached.

A. Formal Definition

In a classical MAPF problem with n agents, an undirected
graph G = (V,E) is used as the input, where the start ver-
tices and destination vertices are defined as {s1, . . . , sn} ∈ V
and {d1, . . . , dn} ∈ V for the n agents correspondingly. The
location change v → v′ caused by an agent’s movement
corresponds to an edge in the graph (i.e., (v, v′) ∈ E). Time
is discretized so that each agent will move or stop at its
position for each time step.

We denote a sequence of actions taken by agent i from the
beginning to time t as πi = {a1, . . . , at} and the location
of the agent i as li(t) = at(...a1(s1)). A MAPF problem
solution comprises n action progressions π = {π1, . . . , πn}
for each of the n agents.

B. Types of Conflicts

MAPF has a lot of variants and each allows different
conflicts defined in [2]. However, all MAPF surveyed by [2]
and this work forbids the below conflicts:

1) Vertex collision: A vertex collision happens when 2
agents i and j try to arrive at the same vertex at time
t such that li(t) = lj(t).

2) Edge collision: An edge collision occurs iff agents i
and j try to move with the same edge (v, v′) ∈ E such
that li(t) = lj(t).

C. MAPF Environment

In the predefined MAPF task, the agents move simultane-
ously in a discrete grid world. In a map of size k × k with
n agents, there will be n corresponding start positions and
goals. In the grid world, agents can move to the adjacent
vertices in the four cardinal directions or remain stationary.
Therefore, the action space has a size of 5.

We consider the MAPF task as a partially observable world
for each agent in order to simulate real-world deployment. As
a result, each agent has its own limited FOV for its decision-
making. More on FOV settings will be discussed in Section
V-A.

Table I shows the reward structure, which is adopted from
DHC [25] and DCC [26]. To encourage giving ways to other
agents when blocking occurs, staying on non-goal vertices is
not punished as heavily as in PRIMAL [19] and MAPPER
[24].

Actions Reward
Move (Up/Down/Left/Right) -0.075

Stay on goal vertices 0
Stay on non-goal vertices -0.075

Collision -5
Completion 3

TABLE I
REWARD STRUCTURE
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Fig. 1. Examples of different FOV settings (3 × 3 on the left and 7 × 7 on the right) of the center agent (red square) in a 13 x 13 grid. Agents are
displayed as colored squares, and their corresponding destinations are displayed as colored flags. In addition, the obstacles are displayed as grey squares
and white squares are the walkable tiles. Agents that fall into the red agent’s FOV (yellow area) can communicate in a request-reply style. In the 3 × 3
FOV setting, the red agent can only communicate with the blue agent. While in the 7× 7 FOV setting, the red agent can communicate with both the blue
and orange agents. Note that the computation load will increase indefinitely in an agent-dense environment.

IV. RL MODEL ARCHITECTURE

Our model architecture is based on DCC, which utilizes
a selective communication mechanism based on causal in-
ference and Individually Inferred Communication (I2C) [27].
The model contains an observation encoder, a decision causal
unit, a graph convolution-based communication block, and a
Dueling Deep Q Network (DQN).

With a FOV size of l × l, each agent i receives a 6-
channel input observation of size of l× l×6 and is passed to
an observation encoder. The input observation includes two
binary matrices marking the positions of agents and obstacles
inside the FOV, respectively. The other four matrices are the
heuristic channels from DHC. Path information is embedded
in four action channels (Up, Down, Left, Right) sized to the
FOV. A location is marked one if its action moves the agent
closer to the goal; otherwise, it is zero.

The observation encoder is made up of convolutional
layers and followed by a Gate Recurrent Unit (GRU). An
encoded observation ôi is first generated by the convolutional
layers using the original observation oi. The GRU then takes
ôi and hidden state from the last communication outcome
e
[2]
i to output an intermediate message ei.

The decision causal unit determines whether the communi-
cation should be triggered between agent i and its neighbors
Ni, by judging if the neighbors’ existence affects the agent i’s
decision. To achieve this, the observation encoder first gen-
erates modified observation embeddings {ei,−j}j∈Ni from
modified observations {oi,−j}j∈Ni

(agent i’s observation
without agent j) for all of agent i’s neighboring agents
j ∈ Ni. The embeddings {ei,−j}j∈Ni

are then fed to a
Dueling network [18] (discussed later in this session) to get
temporary actions ãi and {ãi,−j}j∈Ni . By comparing ãi and
{ãi,−j}j∈Ni , we define the communication scope as

Ci = {j|ãi ̸= ãi,−j}j∈Ni
· (1)

The communication block is based on graph convolution,
creating a graph by connecting the neighboring agents as
adjacent nodes. We communicate with neighboring agents
in a request-reply scenario to improve efficiency. Given
a communication scope Ci for agent i, the intermediate
message ei generated from the observation encoder of i, and
relative positions of agent i’s neighbors’ li are passed to all
the neighboring agents j ∈ Ci.

The message ei is projected to query with matrix Wh
Q and

the concatenation of ei and li are projected to key and value
with matrices Wh

K and Wh
V . Let Oj+ be the set {Oj , j}

where the receiving scope for agent j is defined as Oj =
{i|j ∈ Ci}. The relation in h-th attention head between agent
j and agents i ∈ Oj+ is computed as follows

µh
ji
= softmax

[
Wh

Qej · (Wh
K [ei, li])

T

√
dK

]
, (2)

where dK is the dimensions of key and
√
dK is used

to stabilize the training. The attention head’s outputs are
concatenated over H heads and passed to a single neural
network layer fo to generate a final output

êj = fo

concat
 ∑
i∈Oj+

µh
ji
Wh

V [ei, li],∀h ∈ H

 . (3)

Using a GRU, the output êj and the initial message are
aggregated, and the output e

′

i acts as the input message for
the next round by repeating Equation (1) and (2). The final
output of the communication module is denoted as e

′′

i .
We use a Dueling DQN model [18], which utilizes the

advantage functions to estimate the Q-value using the output
from the communication block. In this work, we use the mean
of the advantages

1

|N |
∑
a

A(e
′′

i ))
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to stabilize the training, where N is the size of the action
space. The Equation is defined as

Qi,s,a = Vs(e
′′

i ) +

[
A(e

′′

i )−
1

|N |
∑
a

A(e
′′

i ))

]
. (4)

A multi-step Temporal Difference (TD) error is calculated
as

L(θ) = MSE(Rt −Qst,at
(θ)), (5)

where the total reward Rt = rt + γrt+1 + · · · +
γnQst+n,at+n

(θ̄) and rt is the reward received at time t. The
discount factor applied to the future rewards is represented
as γ, and the periodic target network copy of the model
parameters θ is denoted as θ̄.

V. EXPERIMENTS

A. FOV Settings

The importance of the FOV of an agent in a robotic multi-
agent system cannot be overstated. It is a crucial factor
in enabling the agent to perceive, navigate, and collaborate
effectively with other agents in its environment. A larger FOV
can provide an agent with more information and a broader
perspective on its surroundings. However, there are also some
advantages to using a smaller FOV: reduced computational
load, improved energy efficiency, collaboration, and security.

FOV controls agents’ information intake and communi-
cation scope during MAPF tasks. Our focus is studying
FOV’s effects on performance and communication overhead.
To mimic realistic deployment in large environments like
factories and warehouses, assuming a fully observable en-
vironment (FOV with the size of the map) is not practical.
Thus, a FOV with size l × l must be smaller than map size
k × k, i.e., l < k.

Intuitively, minimizing FOV reduces information to save
computing bandwidth for path planning and networking. An
appropriate FOV should maximize energy efficiency without
compromising performance significantly. To find a more
energy-efficient FOV, we tested sizes smaller than 9 × 9
(used in DCC). Note that FOV width and height must
be odd to center agents, making 3 × 3 the minimum. To
investigate increased information intake on decision-making
and performance, we also evaluated larger FOVs. We use the
original DCC model with a 9×9 FOV as the baseline, trained
with a batch size of 192 using curriculum learning. Training
starts with 2 agents on a 10×10 map, up to 20 agents, and a
40×40 map size. We conduct experiments with the following
FOV settings: {3× 3, 5× 5, 7× 7, 9× 9, 11× 11}.

B. Test Settings and Hardware Specifications

To assess navigation ability and generalization, our tests
used 40× 40 and 80× 80 maps with 30% obstacle vertices.
The 80×80 size evaluates generalization since training used
maps smaller or equal to 40 × 40. We randomly generated
500 test cases varying map size and number of agents {4,
8, 16, 32}, with a maximum of 256 steps. All metrics were
averaged across cases.

16 Intel Xeon Gold 6230 CPUs and 2 RTX Quadro RTX
6000 GPUs from HKUST’s HPC3 are used during the model
training.

VI. RESULT

Fig. 2. Success Rate versus Number of Agents in 80× 80 Map

Fig. 3. Average Steps versus Number of Agents in 80× 80 Map

Fig. 4. Number of Communications versus Number of Agents in 80× 80
Map

A. Success Rate, Average Steps and Number of Communica-
tions

We evaluate the performances of different FOVs by mea-
suring success rate, average steps taken, and number of
communications required. The success rate corresponds to the
percentage of agents reaching the destination within the max-
imum number of steps. Average steps measure the average
number of steps to finish a MAPF task across all agents. The
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maximum number of steps that each agent can take is 256
steps. Finally, the number of communications indicates the
number of request-reply pairs generated throughout a MAPF
task.

Fig. 2-3 illustrate the success rate and average steps com-
parison with different FOV in a 80×80 map. On average, the
7×7 FOV outperforms the original baseline (9×9) by 4.2%
in terms of success rate and 3.0% in average steps. Although
the 3 × 3 FOV receives the least amount of information,
it demonstrated a relatively small sacrifice in performance
across the metrics mentioned above. In terms of success rate,
3×3 was 5.85% lower than 7×7 and 1.65% lower than 9×9.
Regarding average steps across all the settings, the 3×3 FOV
exhibited 4.2% more steps than 7 × 7 and 1.0% more steps
more than 9× 9.

Fig. 4 shows the number of communications conducted
during different MAPF tasks in a 80 × 80 map. The 3 × 3
FOV, which receives the least amount of information regard-
ing neighboring entities, is restricted in its communication
capacity, thereby reducing communication overheads. On
average, the number of communication drops by 28.9% when
compared with the baseline 9× 9 FOV and by 24.4% when
compared to the most performant 7 × 7 FOV. The 3 × 3
FOV’s combination of the least communication required and
small performance impact makes it optimal when bandwidth
is limited, like deploying many robots with few networking
devices.

Fig. 5. Network Step Time versus Number of Agents in 80× 80 Map

B. Network Step Time

High-performing robotic systems often utilize large FOVs
despite high computation costs. However, real-world multi-
robot systems face constraints on computing power due to
limited resources. Thus, weighing the computational cost of
different FOV options is crucial. This study uses network
step time to evaluate computation cost. Network step time
measures the time an agent takes to select an action given
an observation. Longer step times indicate higher decision-
making computation costs.

Fig. 5 compares network step times across FOVs. Results
confirm step time scales with FOV size. 3×3 has the lowest
computation cost among tested FOVs, while 11× 11 has the

highest. It demonstrates the need to balance performance and
computational efficiency when configuring FOV.

FOV Network Step Time Ratio
3× 3 1
5× 5 1.34
7× 7 1.95
9× 9 2.27

11× 11 3.69

TABLE II
NETWORK STEP TIME RATIO OF DIFFERENT FOV

However, considering only computation cost is insufficient
for selecting FOV, as performance impact is not weighed. It
motivates devising a metric incorporating performance and
cost, further detailed in Section VI-C. To obtain a universal
ratio between step times across FOVs, we normalized the
step times by the shortest time for each map and agent count.
Table II shows the average ratios of networked step times for
the tested FOVs.

C. Normalized Success Rate

In order to consider both computation cost and success rate
concurrently, this study introduces a novel metric referred to
as the normalized success rate, denoted as r′. The value of
r′ is determined by dividing the original success rate r by
the normalized network step time t̄, i.e.,

r′ =
r

t̄
. (6)

Fig. 6 shows the normalized success rate across all the
FOV tested in the two map sizes. Our analysis incorporates
both success rate and computation cost metrics, with the
understanding that optimal performance demands satisfactory
outcomes in both domains. Our findings indicate that the 3×3
FOV demonstrates the most robust performance in terms of
normalized success rate, and it is followed by 5× 5, 7× 7,
9×9, and 11×11. In essence, 3×3 is the most cost-efficient
FOV among all the FOVs we tested.

Fig. 6. Normalized Success Rate versus Number of Agents in 80×80 Map

In this study, we have observed that the network step
time and normalized success rate of varying FOV dimensions
exhibit in the same order, i.e., 3 × 3, 5 × 5, 7 × 7, 9 × 9,
and 11 × 11. This finding suggests a high sensitivity of
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the normalized success rate to the network step time. The
effect is further exaggerated when the range of success rate
of different FOV is small (typically within 10%), while the
maximum network step time can be three times longer than
the minimum. Given the reduced computation time associated
with smaller FOV dimensions, it is likely that these smaller
dimensions will exhibit a comparatively high normalized
success rate.

D. Key Findings and Recommendations:

• Increasing the size of the FOV may not necessarily
lead to improved performance but could weaken perfor-
mance. Smaller FOV sizes may be more effective since
performance does not decrease proportionally with FOV
size.

• Use normalized success rates to compare performance
across FOV sizes. A thorough evaluation is critical
to determine optimal FOV per application since no
universal best size exists.

VII. CONCLUSION

In this work, we studied agent FOVs’ impact on MAPF
performance and communication overhead using DCC. Ex-
periments with varied FOV settings showed that adjusting
FOV alone can improve prior DCC results for success rate,
average steps taken, and number of communications required.
We also estimated decision-making time for different FOVs
and presented a computation cost ratio. Accounting for this
cost, 3× 3 FOV is the most efficient overall. These insights
on optimizing the performance and communication overhead
will assist real-world, large-scale MAPF deployment under
resource constraints.
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