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Abstract— We study a fixed step-size distributed gradient
descent algorithm for solving optimization problems in which
the objective is a finite sum of smooth but possibly non-
convex functions. Random perturbations of the gradient descent
directions are introduced at each step to actively evade saddle
points. Under certain regularity conditions, and with a suitable
step-size, it is established that each agent converges to a
neighborhood of a local minimizer; the size of the neighbor-
hood depends on the step-size and a probabilistic confidence
parameter. A numerical example is presented to illustrate the
effectiveness of the random perturbations in terms of escaping
saddle points in fewer iterations than without the perturbations.

Index Terms— Non-convex optimization; consensus-based
distributed optimisation; first-order methods; random pertur-
bations; evading saddle points

I. INTRODUCTION

We consider the optimization problem

min
x∈Rn

f(x) ≜ min
x∈Rn

m∑
i=1

fi(x), (1)

where each fi : Rn → R is smooth but possibly non-
convex, and x ∈ Rn is the decision vector. The aim is
to employ m agents to iteratively solve the optimization
problem in (1), over an undirected and connected network
graph G(V, E). Each agent i ∈ V := {1, . . . ,m} only
knows the corresponding function fi and its gradient. The
pair of agents (i, j) ∈ V × V is able to directly exchange
information if and only if (i, j) ∈ E . Collaborative distributed
optimization over a network is of significant interest in
the contexts of control, learning and estimation, particularly
in large-scale system scenarios, such as unmanned vehicle
systems [1], electric power systems [2], transit systems [3],
and wireless sensor networks [4].

In optimization, two primary classes of distributed meth-
ods can be identified: dual decomposition methods and
consensus-based methods. Dual decomposition methods
minimize an augmented Lagrangian based on agreement-
enforcing constraints through iterative primal-dual updates
[5]. The distributed dual decomposition algorithm in [6]
involves agents alternating between updating their primal
and dual variables and communicating with their neighbors.
In [7], it is established that distributed alternating direction
method of multipliers (ADMM) exhibits linear convergence
rates in strongly convex settings. Consensus-based meth-
ods, originating from the models in [8], seek to eliminate
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disagreements through local iterate exchange and weighted
averaging. The distributed (sub)gradient methods proposed
in [9] and [10] use this concept to solve problem (1) with
convex fi. In the case of diminishing step-size, each agent
converges to an optimizer [10]; with constant step-size,
convergence is typically faster, but only to the vicinity of
an optimizer [9].

This paper investigates a perturbed variant of Distributed
Gradient Descent (DGD) [9], using a constant step-size. In
fixed step-size DGD, the update for each agent i ∈ V at
iteration k is given by

x̂k+1
i =

m∑
j=1

Wijx̂
k
j − α∇fi(x̂

k
i ), (2)

where α > 0 is the constant step-size, ∇fi is the gradient
of fi, x̂i ∈ Rn is the local copy of the decision vector x at
agent i ∈ V , and Wij is the scalar entry in the i-th row and
j-th column of a given mixing matrix W ∈ Rm×m. The
mixing matrix is consistent with the graph G(V, E) in the
sense that Wii > 0 for all i ∈ V , Wij > 0 if (i, j) ∈ E ,
and Wij = 0 otherwise. The convergence rates of DGD
in strongly convex settings are examined in [11] and [12].
Several techniques like Nesterov momentum [13], inexact
proximal-gradient method [14], and gradient tracking [15],
[16] are employed in (strongly) convex settings to enhance
convergence rates, handle non-smooth functions, and achieve
exact consensus with a constant step-size, respectively.

In non-convex settings, gradient descent methods may
struggle due to saddle points. Use of the Hessian can
be beneficial, but may be computationally expensive for
large problems. In [17], fixed step-size DGD is shown
to retain the property of convergence to a neighborhood
of a consensus stationary solution under some regularity
assumptions. Further, it is shown in [18] that fixed step-size
DGD converges almost surely to a neighborhood of second-
order stationary solutions. However, random initialization
is required to avoid the zero measure manifold of saddle
point attraction, and moreover, the underlying analysis lacks
techniques for actively escaping saddle points.

Standard gradient descent methods can take exponential
time to escape saddle points [19]. It is shown that adding
noise (random perturbations) to descent directions is effective
for escaping saddle points in [20] and [21]. However, these
works are limited to centralized algorithms. In [22], it is
shown that distributed stochastic gradient descent converges
to local minima almost surely when diminishing step sizes
are used. For constant step-size, the diffusion strategy with
stochastic gradient in [23] and [24] only returns approximate
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second-order stationary points, rather than outcomes that lie
in a neighborhood of a local minimizer with controllable
size.

In this paper, the main contribution is an analysis of a
fixed step-size noisy distributed gradient descent (NDGD)
algorithm for solving the optimization problem in (1). To
this end, we expand upon and combine ideas from [20] and
[21] on centralized stochastic gradient descent, and from
[11], [17], [18] on unperturbed DGD. In particular, random
perturbations are added to the gradient descent directions at
each step to actively evade saddle points. It is established
that under certain regularity conditions, and with a suitable
step-size, each agent converges to a neighborhood of a local
minimizer. We determine a probabilistic upper bound for the
distance between the iterate at each agent and the set of
local minimizers after a sufficient number of iterations. A
numerical example is presented to illustrate the effectiveness
of the algorithm in terms of escaping from the vicinity of
a saddle point in fewer iterations than the standard (i.e.,
unperturbed) fixed step-size DGD.

A. Notation

Let In denote the n×n identity matrix, 1n denote the n-
vector with all entries equal to 1, and Aij denote the entry
in the i-th row and j-th column of the matrix A. For a
square symmetric matrix B, we use λmin(B), λmax(B) and
∥B∥ to denote its minimum eigenvalue, maximum eigenvalue
and spectral norm, respectively. The Kronecker product is
denoted by ⊗. The distance from the point x ∈ Rn to a given
set Y ⊆ Rn is denoted by dist(x,Y) := infy∈Y ∥x − y∥.
We say that a point x is δ-close to a point y (resp.,
a set Y) if dist(x,y) ≤ δ (resp., dist(x,Y) ≤ δ). We
use the Bachmann–Landau (asymptotic) notations including
O(g(x, y)), Ω(g(x, y)) and Θ(g(x, y)) to hide dependence
on variables other than x and y.

II. PROBLEM SETUP AND SUPPORTING RESULTS

In this section, we present a reformulation of the op-
timization problem defined in (1) and provide a list of
assumptions used in subsequent analysis. We then provide
some supporting lemmas (see Lemma 2.3.1-2.3.4), which
will be used to establish relevant properties of the local
minimizers of f (see Theorem 2.1).

A. Problem Setup

By introducing additional local variables, the optimization
problem in (1) can be reformulated as

min
x̂∈(Rn)m

F (x̂) ≜ min
x̂∈(Rn)m

m∑
i=1

fi(x̂i),

s.t. x̂i = x̂j for all (i, j) ∈ E ,
(3)

where x̂i ∈ Rn is the local copy of the decision vector x at
agent i ∈ V , and x̂ = [x̂T

1 , · · · , x̂T
m]T ∈ (Rn)m.

Definition 2.1 For differentiable function h, a point x is said
to be first-order stationary if ∥∇h(x)∥ = 0.

Definition 2.2 For twice differentiable function h, a first-
order stationary point x is: (i) a local minimizer, if
∇2h(x) ≻ 0; (ii) a local maximizer, if ∇2h(x) ≺ 0; and (iii)
a saddle point if λmin(∇2h(x)) < 0 and λmax(∇2h(x)) >
0.

Assumption 2.1 (Local regularity) The function f in (1)
is such that for all first-order stationary points x, either
λmin(∇2f(x)) > 0 (i.e., x is a local minimizer), or
λmin(∇2f(x)) < 0 (i.e., x is a saddle point or a maximizer).

Assumption 2.2 (Lipschitz gradient) Each objective fi
has Lg

fi
-Lipschitz continuous gradient, i.e., for all x,y ∈ Rn

and each i ∈ V , ∥∇fi(x)−∇fi(y)∥ ≤ Lg
fi
∥x− y∥.

Assumption 2.3 (Lipschitz Hessian) Each objective fi has
LH
fi

-Lipschitz continuous Hessian, i.e., for all x,y ∈ Rn and
each i ∈ V , ∥∇2fi(x)−∇2fi(y)∥ ≤ LH

fi
∥x− y∥.

If Assumption 2.2 holds, then F defined in (3) has
Lg
F -Lipschitz continuous gradient with Lg

F = maxi{Lg
fi
}.

Further, if Assumption 2.3 holds, then F has LH
F -Lipschitz

continuous Hessian with LH
F = maxi{LH

fi
}.

Assumption 2.4 (Coercivity and properness) Each local
objective fi is coercive (i.e., its sublevel set is compact) and
proper (i.e., not everywhere infinite).

B. Distributed Gradient Descent

Assumption 2.5 (Network) The undirected graph G(V, E)
is connected.

The DGD algorithm in (2), with constant step-size α > 0,
can be written in a matrix/vector form as

x̂k+1 = Ŵx̂k − α∇F (x̂k), (4)

where Ŵ := W ⊗ In. Note that from this point on, the
mixing matrix W is taken to be symmetric, doubly stochastic
and strictly diagonally dominant, i.e., Wii >

∑
j ̸=i Wij for

all i ∈ V . Thus, W is positive definite by the Gershgorin
circle theorem. As proposed in some early works, including
[11], [17], [18], we can analyze the convergence properties
using an auxiliary function. Let the Qα denote the auxiliary
function,

Qα(x̂) =

m∑
i=1

fi(x̂i) +
1

2α

m∑
i=1

m∑
j=1

(Im −W)ij(x̂i)
T (x̂j)

= F (x̂) +
1

2α
∥x̂∥2

Imn−Ŵ
, (5)

consisting of the objective function in (3) and a quadratic
penalty, which depends on the step-size and the mixing
matrix. We use x̂∗ to denote a local minimizer of Qα. Note
that the DGD update (4) applied to (3) can be interpreted
as an instance of the standard gradient descent algorithm
applied to (5), i.e.,

x̂k+1 = x̂k − α∇Qα(x̂
k). (6)

Thus, iteratively running (4) and (6) from the same initial-
ization yields the same sequence of iterates.
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If Assumption 2.2 holds, then Qα defined in (5) has Lg
Qα

-
Lipschitz continuous gradient with Lg

Qα
= Lg

F + α−1(1 −
λmin(W)) = maxi{Lg

fi
} + α−1(1 − λmin(W)). We have

that 1−λmin(W) ≥ 0 because the spectrum of a symmetric,
positive definite and doubly stochastic matrix is contained in
the interval (0, 1] by the Perron–Frobenius theorem, with 1
being the only largest eigenvalue (the Perron root). Further,
if Assumption 2.3 holds, then Qα has LH

Qα
-Lipschitz con-

tinuous Hessian with LH
Qα

= maxi{LH
fi
} = LH

F .

C. Relationships between Local minimizers of f and Qα

In this section, we show that x̂∗
i , the component of a local

minimizer x̂∗ of Qα associated with agent i, can be made
arbitrarily close to the set of local minimizers x∗ of f by
choosing sufficiently small α > 0 (see Theorem 2.1). This
expands upon the outcomes in [18] and is further used to
prove the main theorem (see Theorem 3.1). Full proofs of
intermediate lemmas are provided in the extended version of
this work [25].

Let X ∗
f and X̂ ∗

Qα
denote the set of local minimizers of f

and Qα, respectively:

X ∗
f := {x ∈ Rn : ∇f(x) = 0, ∇2f(x) ≻ 0},

X̂ ∗
Qα

:= {x̂ ∈ (Rn)m : ∇Qα(x̂) = 0, ∇2Qα(x̂) ≻ 0}.
(7)

Lemma 2.3.1 Let Assumption 2.5 hold. Given α > 0, let x̂∗

be a local minimizer of Qα. Then, for each i ∈ V ,

∥x̂∗
i − x̄∗∥ ≤ α · ∥∇F (x̂∗)∥

1− λ2
,

where x̄∗ = 1
m (1m⊗In)

T x̂∗, and 0 < λ2 < 1 is the second-
largest eigenvalue value of W.

Lemma 2.3.2 Let Assumptions 2.2, 2.5 hold. Given α > 0,
let x̂∗ be a local minimizer of Qα. Then

∥∇f(x̄∗)∥ ≤ α · Lg
F

m
√
m∥∇F (x̂∗)∥
1− λ2

,

where x̄∗ = 1
m (1m⊗In)

T x̂∗ and 0 < λ2 < 1 is the second-
largest eigenvalue value of W.

Lemma 2.3.3 Let Assumptions 2.3, 2.5 hold. Given α > 0,
let x̂∗ be a local minimizer of Qα. Then

λmin(∇2f(x̄∗)) ≥ −α · LH
F

m2∥∇F (x̂∗)∥
1− λ2

,

where x̄∗ = 1
m (1m⊗In)

T x̂∗ and 0 < λ2 < 1 is the second-
largest eigenvalue value of W.

Lemma 2.3.4 Let Assumptions 2.1, 2.2, 2.3 hold. Then, for
any given compact set X ⊂ Rn,

lim
α↓0

(sup{dist(x,X ∗
f ) : x ∈ Xα

f ∩ X}) = 0,

where Xα
f := {x : ∥∇f(x)∥ ≤ α · c1, λmin(∇2f(x)) ≥

−α · c2}, with

c1 = Lg
F

m
√
m∥∇F (x̂∗)∥
1− λ2

, c2 = LH
F

m2∥∇F (x̂∗)∥
1− λ2

.

By combining Lemmas 2.3.1 through 2.3.4, the following
theorem can be established.

Theorem 2.1 Let Assumptions 2.1, 2.2, 2.3, 2.4, 2.5 hold.
Given ∆1 > 0, there exists threshold ᾱ(∆1) > 0 such that,
if 0 < α ≤ ᾱ(∆1), and x̂∗ is a local minimizer of Qα, then
dist(x̂∗

i ,X ∗
f ) ≤ ∆1 for each i ∈ V .

Proof: Given α > 0, by the triangle inequality,
dist(x̂∗

i ,X ∗
f ) ≤ ∥x̂∗

i − x̄∗∥ + dist(x̄∗,X ∗
f ), where x̄∗ =

1
m (1m ⊗ In)

T x̂∗. By coercivity and properness of each fi
(see Assumption 2.4), F is coercive and proper. Therefore,
X̂ ∗

Qα
is bounded, and there exists an upper bound G > 0 such

that for all x̂∗ ∈ X̂ ∗
Qα

, ∥∇F (x̂∗)∥ ≤ G. By Lemma 2.3.1, if

0 < α ≤ ᾱ1(∆1) :=
∆1(1− λ2)

2G

and x̂∗ ∈ X̂ ∗
Qα

defined in (7), then ∥x̂∗
i − x̄∗∥ ≤ ∆1/2

holds for each i ∈ V . Now, note that x̄∗ ∈ Xα
f in view of

Lemmas 2.3.2 and 2.3.3, with Xα
f as defined in Lemma 2.3.4.

As such, by application of Lemma 2.3.4 with X = {x̄∗},
there exists ᾱ2(∆1) > 0 such that if 0 < α ≤ ᾱ2(∆1), then
dist(x̄∗,X ∗

f ) ≤ ∆1/2 holds. Therefore, if

0 < α ≤ ᾱ(∆1) := min{ᾱ1(∆1), ᾱ2(∆1)},

then dist(x̂∗
i ,X ∗

f ) ≤ ∆1 as claimed.

III. METHOD AND MAIN RESULT

The Noisy Distributed Gradient Descent (NDGD) method
is formulated in Algorithm 1, as a variant of fixed step-
size DGD. The key innovation is the addition of random
perturbations to the distributed gradient descent directions
at each iteration. The required properties of the noise ξki in
Algorithm 1 are presented in Theorem 3.1, which establishes
the second-order properties of the NDGD algorithm.

Algorithm 1 Noisy Distributed Gradient Descent (NDGD)
Initialization;
for k = 0, 1, · · · do

for i = 0, 1, · · · ,m do
Sample i.i.d ξki ;
x̂k+1
i =

∑m
j=1 Wijx̂

k
j − α(∇fi(x̂

k
i ) + ξki );

end for
end for

As per (7), recall that X ∗
f and X̂ ∗

Qα
denote the set of local

minimizers of f and Qα, respectively. Further, given ϵ > 0,
γ > 0, µ > 0, δ > 0, and α > 0, define

L1
α,ϵ := {x̂ : ∥∇F (x̂) + α−1(Imn − Ŵ)x̂∥ ≥ ϵ},

L2
α,γ := {x̂ : λmin(∇2F (x̂)) ≤ −γ − α−1},

L3
α,µ,δ := {x̂ : λmin(∇2F (x̂)) ≥ µ, dist(x̂, X̂ ′) ≤ δ},

(8)

where X̂ ′ := {x̂ : ∥∇F (x̂) + α−1(Imn − Ŵ)x̂∥ =
0, λmin(∇2F (x̂)) > 0}. With this, the main result of the
paper is formulated below; a proof is given in Section IV.
Note that the focus of the result relates to the role of the
given step-size α and confidence parameter ζ; as such, the
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factors with polynomial dependence on all other parameters
(including ∆1, ϵ, γ, µ, δ and σ) are hidden.

Theorem 3.1 Let Assumptions 2.1, 2.2, 2.3, 2.4, 2.5 hold,
and given ∆1 > 0 and 0 < ζ < 1, suppose the following:

1) There exist ϵ > 0, γ ∈ (0, Lg
F ], µ ∈ (0, Lg

F ], δ > 0,
and α ∈ (0, α̂(∆1, ζ)], such that L1

α,ϵ∪L2
α,γ∪L3

α,µ,δ =
(Rn)m, where

α̂(∆1, ζ) :=

min{ᾱ(∆1),

√
2− 1

Lg
F

,
λmin(W)

Lg
F ·max{1, log(ζ−1)}

} > 0

with ᾱ(∆1) as per Theorem 2.1;
2) The random perturbation ξki at step k > 0 is i.i.d.

and zero mean with variance σ2 ≤ σ2
max(ϵ) :=

(λmin(W)ϵ2)/(mn);
3) The generated sequence {Qα(x̂

k)} is bounded.
Then, with probability at least 1 − ζ, after K(α, ζ) =
O(α−2 log ζ−1) iterations, Algorithm 1 reaches a point
x̂K(α,ζ) ∈ (Rn)m that is ∆2(α, ζ)-close to X ∗

Qα
, where

∆2(α, ζ) = O(
√

α log(α−1ζ−1)). Moreover, x̂∗ =

inf x̂∈X∗
Qα

∥x̂K(α,ζ)
i − x̂∥ is such that x̂∗

i is ∆1-close to X ∗
f ,

whereby for all i ∈ V ,

dist(x̂
K(α,ζ)
i ,X ∗

f ) ≤ ∆1 +∆2(α, ζ).

Remark 1 Intuitively, condition 1) in Theorem 3.1 requires
all points where the gradient of Qα is small to either result
in sufficient descent or reside within a neighborhood of a
local minimizer, where local strong convexity holds.

Remark 2 For condition 2) in Theorem 3.1, one way to
generate the required i.i.d. noise is to sample ξki uniformly
from an n-dimensional sphere with the radius r. This ensures
E(ξki ) = 0, E(ξki (ξki )T ) = (r2/n)In, and ∥ξki ∥ ≤ r for all
i ∈ V and k ∈ N. By choosing r2 ≤ nσ2

max(ϵ), we have
E(ξk(ξk)T ) = (r2/n)Imn ⪯ σ2

max(ϵ)Imn.

Second-order guarantees of DGD have been studied in
[18] and [22] based on the almost sure non-convergence
to saddle points with random initialization. In this paper,
we propose to use random perturbations to actively evade
saddle points. The second-order guarantees of NDGD stated
in Theorem 3.1 do not require any additional initialization
conditions. Second-order guarantees of the stochastic variant
of DGD have been studied in [23] and [24], although they
only show the convergence to an approximate second-order
stationary point. Here, an upper bound is given for the
distance between the iterate at each agent and the set of
local minimizers after a sufficient number of iterations.

IV. PROOF OF THEOREM 3.1

A proof of Theorem 3.1 is provided in this section.
First, we consider the behavior of NDGD for the following
three different cases, in line with the development of the
related result in [20] for centralized gradient descent: i)
large in norm ∇Qα(x̂

k) (see Lemma 4.1.1); ii) sufficiently
negative λmin(∇2Qα(x̂

k)) (see Lemma 4.1.2); and iii) x̂k

in a neighborhood of the local minimizers of Qα with local
strong convexity (see Lemma 4.1.3). Combining the outcome
of this with Theorem 2.1, we then prove that with probability
at least 1− ζ, after K(α, ζ) iterations, the state x̂k

i of each
agent i ∈ V in the NDGD algorithm is ∆1+∆2(α, ζ)-close
to some local minimizer of f .

A. Behavior of NDGD for three different cases

The following lemmas rely on the proofs of Lemma 16
and Lemma 17 in [20]. Detailed proofs can be found in the
extended version of this work [25]. Given ϵ > 0, γ > 0,
µ > 0, δ > 0, and α > 0, define

I1
α,ϵ := {x̂ : ∥∇Qα(x̂)∥ ≥ ϵ},

I2
α,γ := {x̂ : Λα(x̂) ≤ −γ},

I3
α,µ,δ := {x̂ : Λα(x̂) ≥ µ, dist(x̂, X̂ ∗

Qα
) ≤ δ},

(9)

where Λα(x̂) = λmin(∇2Qα(x̂)).

Lemma 4.1.1 Let Assumption 2.2 hold. Given ϵ > 0,
suppose the random perturbation ξki in Algorithm 1 is
i.i.d. and zero mean with variance σ2 ≤ σ2

max(ϵ) :=
(λmin(W)ϵ2)/(mn). Then, given 0 < α ≤ 1/Lg

F , for any
x̂k such that ∥∇Qα(x̂

k)∥ ≥ ϵ, after one iteration,

E[Qα(x̂
k+1) | x̂k]−Qα(x̂

k) ≤ −l1(α),

where l1(α) = Ω(α).

Lemma 4.1.2 Let Assumptions 2.2, 2.3 hold. Let γ ∈
(0, Lg

F ]. Given ϵ > 0, suppose the random perturbation
ξki in Algorithm 1 is i.i.d. and zero mean with variance
σ2 ≤ σ2

max(ϵ) := (λmin(W)ϵ2)/(mn). Further, given 0 <
α ≤ (

√
2 − 1)/Lg

F , suppose that the generated sequence
{Qα(x̂

k)} is bounded. Then, for any x̂k with ∥∇Qα(x̂
k)∥ <

ϵ and λmin(∇2Qα(x̂)) ≤ −γ, there exists a number of steps
T (x̂k) > 0 such that

E[Qα(x̂
k+T (x̂k)) | x̂k]−Qα(x̂

k) ≤ −l2(α),

where l2(α) = Ω(α). The number of steps T (x̂k) has a
fixed upper bound Tmax(α) that is independent of x̂k, i.e.,
T (x̂k) ≤ Tmax(α) = O(α−1) for all x̂k.

Lemma 4.1.3 Let Assumptions 2.2 hold. Let µ ∈ (0, Lg
F ].

Given ϵ > 0, suppose the random perturbation ξki in
Algorithm 1 is i.i.d. and zero mean with variance σ2 ≤
σ2
max(ϵ) := (λmin(W)ϵ2)/(mn). Further, given δ > 0,

0 < α ≤ (λmin(W))/(Lg
F · max{1, log(ζ−1)}) and local

minimizer x̂∗ ∈ X ∗
Qα

, suppose λmin(∇2Qα(x̂)) ≥ µ for all x̂
such that ∥x̂−x̂∗∥ < δ. Then, there exists δ1(α) = O(

√
α) ∈

[0, δ) such that, for any x̂k with ∥x̂k − x̂∗∥ < δ1(α), with
probability at least 1− ζ/2,

∥x̂k+s − x̂∗∥ ≤ ∆2(α, ζ)

for all s ≤ K(α, ζ) = O(α−2 log(ζ−1)), where ∆2(α, ζ) =
O(

√
α log(α−1ζ−1)) < δ.

Intuitively, the above results show that when the norm of
∇Qα(x̂

k) is large enough (see Lemma 4.1.1), the expectation
of the function value decreases by a certain amount after one
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iteration. For x̂k with small gradient and sufficiently negative
λmin(∇2Qα(x̂

k)) (see Lemma 4.1.2), there exists upper
bound Tmax(α) such that the expectation of the function
value decreases by a certain amount after T ≤ Tmax(α)
iterations. Finally, when the iterate x̂k is close enough to
a local minimizer (see Lemma 4.1.3), with high probability
subsequent iterates do not leave the neighborhood.

B. Main proof

Proof: The main proof includes two steps: i) it is shown
that three sets defined in (9) cover all possible points with
respect to Qα; ii) it is shown that the upper bound of the
decrease in Qα can be used to derive a lower bound for the
probability that the K(α, ζ)-th update at each agent is close
to a local minimizer of f .

Step 1. By the supposition in Theorem 3.1, given ∆1 > 0
and 0 < ζ < 1, there exist ϵ > 0, 0 < γ ≤ Lg

F ,
0 < µ ≤ Lg

F , δ > 0, and 0 < α ≤ α̂(∆1, ζ) such that
L1
α,ϵ ∪L2

α,γ ∪L3
α,µ,δ = (Rn)m, with respect to (8), and thus

L3
α,µ,δ ⊇ (L1

α,ϵ ∪ L2
α,γ)

c, where the superscript c denote
set complement. If x̂ ∈ L1

α,ϵ, ∥∇Qα(x̂)∥ = ∥∇F (x̂) +

α−1(Imn − Ŵ)x̂∥ ≥ ϵ; if x̂ ∈ L2
α,γ , then by Weyl’s

inequality, λmin(∇2Qα(x̂)) = λmin(∇2F (x̂) + α−1(Imn −
Ŵ)) ≤ −γ; if x̂ ∈ L3

α,µ,δ , then again by Weyl’s inequality,
λmin(∇2Qα(x̂)) = λmin(∇2F (x̂) + α−1(Imn − Ŵ)) ≥ µ
and dist(x̂, X̂ ∗

Qα
) ≤ δ. Therefore, L1

α,ϵ ⊆ I1
α,ϵ, L2

α,γ ⊆ I2
α,γ ,

L3
α,µ,δ ⊆ I3

α,µ,δ , whereby I1
α,ϵ ∪ I2

α,γ ∪ I3
α,µ,δ = (Rn)m,

I3
α,µ,δ ⊇ (I1

α,ϵ ∪ I2
α,γ)

c.
Step 2. Define stochastic process {κi} ⊂ N as

κi :=


0, i = 0

κi−1 + 1, x̂κi−1 ∈ I1
α,ϵ ∪ I3

α,µ,δ

κi−1 + T (x̂κi−1), x̂κi−1 ∈ I2
α,γ

, (10)

where T (x̂) ≤ Tmax(α) = Õ(α−1) for all x̂ as per Lemma
4.1.2. By Lemma 4.1.1 and Lemma 4.1.2, Qα decreases by
a certain amount after a certain number of iterations for x̂ ∈
I1
α,ϵ, and x̂ ∈ I2

α,γ , respectively, as follows

E[Qα(x̂
κi+1)−Qα(x̂

κi) | x̂κi ∈ I1
α,ϵ] ≤ −l1(α),

E[Qα(x̂
κi+1)−Qα(x̂

κi) | x̂κi ∈ I2
α,γ ] ≤ −l2(α),

(11)

where l1(α) = Ω(α) and l2(α) = Ω(α) are defined in
Lemma 4.1.1 and Lemma 4.1.2.

Defining event Ei := {(∃j ≤ i) x̂κj ∈ L3
α,µ,δ}, by law of

total expectation,

E[Qα(x̂
κi+1)−Qα(x̂

κi)]

= E[Qα(x̂
κi+1)−Qα(x̂

κi) | Ei] · P[Ei]
+ E[Qα(x̂

κi+1)−Qα(x̂
κi) | Ec

i ] · P[Ec
i ].

Combining (10) and (11) gives

E[Qα(x̂
κi+1)−Qα(x̂

κi) | Ec
i ] ≤ −l(α) ·∆κi,

where l(α) = min{l1(α), l2(α)/Tmax(α)} = Ω(α2) and
∆κi = κi+1 − κi. Since P[Ei−1] ≤ P[Ei], we obtain

E[Qα(x̂
κi+1)]− E[Qα(x̂

κi)]

≤ E[Qα(x̂
κi) | Ei] · (P[Ei]− P[Ei−1])− l(α) ·∆κi.

Since the generated sequence {Qα(x̂
k)} is assumed

bounded, there exists b > 0 such that ∥Qα(x̂
k)∥ ≤ b for

all k = 0, 1, · · · . As such,

E[Qα(x̂
κi+1)]− E[Qα(x̂

κi)]

≤ b · (P[Ei]− P[Ei−1])− l(α) ·∆κi · P[Ec
i ].

Summing both sides of the inequality over i gives

E[Qα(x̂
κi)]− E[Qα(x̂

κ1)]

≤ b · (P[Ei−1]− P[E0])− l(α) · (κi − κ1) · P[Ec
i ].

Since ∥Qα(x̂
k)∥ ≤ b for all k = 0, 1, · · · , it follows that

−2b ≤ b− l(α) · (κi − κ1) · P[Ec
i ], which leads to

P[Ec
i ] ≤

3b

l(α)(κi − κ1)
.

Therefore, if κi−κ1 grows larger than 6b/l(α), then P[Ec
i ] ≤

1/2. Since κ1 ≤ Tmax(α) = O(α−1), after K ′(α) =
6b/l(α)+Tmax(α) = O(α−2) steps, {x̂k} must enter L3

α,µ,δ

at least once with probability at least 1/2. Therefore, by
repeating this step log ζ−1 times, the probability of {x̂k}
entering L3

α,µ,δ at least once is lower bounded:

P[{(∃k ≤ K(α, ζ)) x̂k ∈ L3
α,µ,δ}] ≥ 1− ζ

2
,

where K(α, ζ) = O(α−2 log ζ−1). Combining this with
Lemma 4.1.3, we have that, after K(α, ζ) iterations, Al-
gorithm 1 produces a point that is ∆2(α, ζ)-close to
X̂ ∗

Qα
with probability at least 1 − ζ, where ∆2(α, ζ) =

O(
√

α log(α−1ζ−1)). For given ∆1 > 0, since α ≤
ᾱ(∆1) satisfies requirements of Theorem 2.1, x̂∗ =

inf x̂∈X∗
Qα

∥x̂K(α,ζ)
i − x̂∥ is such that x̂∗

i is ∆1-close to X ∗
f .

To summarize, we have for i ∈ V ,

dist(x̂
K(α,ζ)
i ,X ∗

f ) ≤ ∆1 +∆2(α, ζ)

as claimed.

V. NUMERICAL EXAMPLE

Consider the following non-convex optimization problem
over x = (x1, x2):

min
x∈R2

f(x) = min
x∈R2

5∑
i=1

fi(x) = x4
1 − x2

1 + x4
2 + x2

2,

where f1(x) = 0.25x4
1−x2

1−x2
2, f2(x) = 0.25x4

1+0.5x4
2+

1.5x2
2, f3(x) = −x2

1 + x2
2, f4(x) = 0.5x4

1 − 0.5x2
2, and

f5(x) = x2
1 + 0.5x4

2. The mixing matrix is taken to be

W =


0.6 0 0.2 0 0.2
0 0.6 0 0.2 0.2
0.2 0 0.6 0.2 0
0 0.2 0.2 0.6 0
0.2 0.2 0 0 0.6

 .

It can be verified that x = (0, 0) is a saddle point of
f , and that x = (−

√
2
2 , 0) and x = (

√
2
2 , 0) are two

local minimizers. We compare the performance of DGD and
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NDGD with constant step-size α = 0.005, both initialized
from x0 = (10−6, 10−6) (i.e., close to a saddle point). For
NDGD, we generate the i.i.d noise from a sphere of radius
0.5 according to Remark 2.

Fig. 1: Evolution of two agents’ optimization errors by DGD
and NDGD.

From Fig. 1, although not trapped forever, it does take
DGD about 5000 iterations to escape the vicinity of the
saddle point and converge to the neighborhood of a local
minimizer. In contrast, NDGD escapes the vicinity of the
saddle point after about 1000 iterations and converges to
the neighborhood of a local minimizer. The effectiveness of
NDGD over DGD is evident through this example.

VI. CONCLUSION

A fixed step-size noisy distributed gradient descent
(NDGD) algorithm is formulated for solving optimization
problems in which the objective is a finite sum of smooth
but possibly non-convex functions. Random perturbations are
added to the gradient descent at each step to actively evade
saddle points. Under certain regularity conditions, and with a
suitable step-size, each agent converges (in probability with
specified confidence) to a neighborhood of a local minimizer.
In particular, we determine a probabilistic upper bound on
the distance between the iterate at each agent, and the set of
local minimizers, after a sufficient number of iterations.

The potential applications of the NDGD algorithm are vast
and varied, including multi-agent systems control, federated
learning and sensor networks location estimation, particularly
in large-scale network scenarios. Further exploration of dif-
ferent approaches to introducing random perturbations, and
analysis of convergence rate performance can be pursued in
future work.
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