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Abstract— Hyper-parameter estimation is one of the funda-
mental issues for kernel-based regularized system identification
methods. Empirical Bayes (EB) estimator and Stein’s unbiased
risk estimator (SURE) are two popular hyper-parameter es-
timators, but they both have advantages and disadvantages.
Specifically, EB is not asymptotically optimal in the mean
squared error (MSE) sense but SURE is, while SURE is more
sensitive to ill-conditioned regression matrix but EB is more
robust. In this paper, to find a better estimator by combining
their strength and mitigating their weakness, we propose a
family of hyper-parameter estimators by linking EB and SURE
estimators together through an index. The finite sample and
asymptotic properties of this family of estimators have been
established. The Monte Carlo simulation results show that there
does exist a ‘middle’ hyper-parameter estimator in this family
that is superior to the EB and SURE.

Index Terms— Linear system identification, Kernel-based
regularization method, hyper-parameter estimator, empirical
Bayes estimator, Stein’s unbiased risk estimator.

I. INTRODUCTION

Kernel-based regularization methods (KRMs) for system
identification, which were initially introduced in [1] and
further developed in [2]–[6], have attracted increasing inter-
est in the system identification community during the past
decade. It has been a supplement to standard maximum
likelihood/prediction error methods (ML/PEM) [7] and has
gradually evolved into a new paradigm for system identifi-
cation [8]. The essential idea of the KRM is to incorporate
prior knowledge of the system to be identified into the kernel.
It therefore consists of two successive procedures: kernel
design and hyper-parameter estimation, which are analogous
to model structure design and model order selection in the
ML/PEM, respectively.

For the kernel design, it involves parameterizing the ker-
nel with hyper-parameter based on the prior knowledge of
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the system. Various kernels with different kinds of prior
knowledge have been developed for the KRM , such as the
stable spline kernel (SS) [1], and the diagonal correlated
(DC) kernel, and the tuned-corrected (TC) kernel [2]. In
addition, in terms of the system theory and the machine
learning, two systematic techniques have been proposed in
[9], respectively. For hyper-parameter estimation, it involves
estimating the hyper-parameters based on the observed data.
Comparing to the ML/PEM, it tunes the model complexity in
a continuous way, which can achieve a better bias-variance
trade-off. Many methods have been provided for hyper-
parameter estimation in [3], such as empirical Bayes (EB)
estimator, Stein’s unbiased risk estimator (SURE) [3], [4],
[6]. In order to understand the behavior of these estimators,
there have been many results for hyper-parameter estima-
tion, such as the robustness and the mean squared error
(MSE) properties of the hyper-parameter estimator [4], [10],
the asymptotic properties of hyper-parameter estimators [6],
[11]–[15], the influence of ill-conditioned regression matrix
on hyper-parameter estimators [16].

The motivation of this paper stems from the theoretical
and empirical results of the EB and SURE estimators, which
can be found in [2], [4]–[6], [10]–[13], [17], [18]. In theory,
SURE is asymptotically optimal in MSE sense but EB is
generally not. In practice, SURE is more sensitive to ill-
conditioned regression matrix and/or short data but EB is
more robust. In fact, the Cp statistics and the generalized
maximum likelihood (GML) for function smoothing also
exhibits this kind of behavior, see e.g. [19]. To find a
better estimator by combining the strength and mitigating
the weakness of the EB and SURE estimators, we propose
a family of hyper-parameter estimators by linking EB and
SURE estimators together through an index, where the EB
and SURE estimators correspond to the two end points of
this family. To understand this family of estimators, we
first show the decomposition of each term of the estimation
criterion and then derive the first-order optimality conditions
for a special case, which sheds light on how the index
influences this family of estimators. Then we investigate
the almost sure convergence of the estimation criterion and
the corresponding hyper-parameter estimator. Finally, we run
Monte Carlo simulations to show that there does exist a
‘middle’ hyper-parameter estimator in this family that is
superior to the EB and SURE estimators.

The rest of the paper is organized as follows. In Section
II, we introduce the KRM for linear system identification.
In Section III, we introduce a family of hyper-parameter
estimators by linking EB and SURE estimators together
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through an index and study their properties including finite
sample and asymptotic properties. In Section IV, a Monte
Carlo simulation is provided to illustrate the existence of a
superior estimator in this family than both the EB and SURE
estimators. In Section V, we conclude this paper.

II. REGULARIZED LINEAR SYSTEM IDENTIFICATION

A. Regularized Least Squares

Consider a single-input single-output, stable, causal and
discrete-time linear system

y(t) = G0(q)u(t) + v(t), t = 1, · · · , n, (1)

where t is the time index, y(t), u(t) and v(t) are the output,
input and measurement noise of the system, respectively, q
is the forward shift operator(qu(t) = u(t + 1)), G0(q) is
the transfer function of the system, and n is the number of
data. We represent the transfer function G0(q) in the impulse
response form:

G0(q) =

∞∑
k=1

g0kq
−k,

where {g0k}∞k=1 are the impulse response coefficients of the
system. Thus, the identification problem is to estimate the
impulse response coefficients {g0k}∞k=1 as well as possible
based on the available data {u(t), y(t)}nt=1. Due to the
stability of G0(q), we can truncate the impulse response
sequence at a sufficiently high order and then acquire a finite
impulse response (FIR) model:

G(q) =

p∑
k=1

gkq
−k, θ = [g1, · · · , gp]T . (2)

With FIR model (2), the system (1) can be written as follows:

y(t) = ϕT (t)θ + v(t), t = 1, · · · , n,

where ϕ(t) = [u(t − 1), · · · , u(t − p)]T . And it has the
following linear regression form:

Y = Φθ + V, (3)

Y = [y(1), · · · , y(n)]T ,
Φ = [ϕ(1), · · · , ϕ(n)]T ,
V = [v(1), · · · , v(n)]T .

Hence, our goal is transformed into the estimation of the
parameter θ in the linear regression model (3). We make the
following assumptions on model (3).

Assumption 1: 1) The dimension p of parameters is
fixed.

2) The input sequence {u(t)}nt=1 is deterministic and
ΦTΦ/n = O(1).

3) The noise sequence {v(t)}nt=1 is a sequence of in-
dependent and identically distributed (i.i.d.) random
variables with zero mean and finite variance σ2 > 0
and is independent of u(t).

The classic method to estimate the parameter θ in linear
regression is the least squares (LS), which is

θ̂ls = arg min
θ∈Rp

∥Y − Φθ∥2 (4a)

= (ΦTΦ)−1ΦTY, (4b)

where ∥ · ∥ is the Euclidean norm. The LS estimator is
unbiased, but it might suffer from the large variance problem
under some unfavorable conditions, e.g., the input signal is
low-passed and the data has low signal-to-noise ratio. To
improve it, we introduce the regularized least squares (RLS)
estimator by adding a regularization term in the least squares
criterion

θ̂rls = arg min
θ∈Rp

∥Y − Φθ∥2 + σ2θTK−1θ (5a)

= (ΦTΦ+ σ2K−1)−1ΦTY (5b)

= KΦT (ΦKΦT + σ2In)
−1Y, (5c)

where matrix K, called the kernel matrix, is symmetric and
positive semidefinite. From a Bayesian perspective, estimator
(5) is exactly the maximum a posterior mean of θ under
the assumption that θ ∼ N (0,K), V ∼ N (0, σ2In), and
θ is independent of V . For a given kernel matrix K, the
performance of RLS estimator (5b) is usually evaluated by
the following mean squared error (MSE) criteria [2]

MSE(K) = E∥Φ(θ̂rls − θ0)∥2, (6)

where E(·) is the mathematical expectation with respect to
the noise distribution and θ0 is the true parameter vector.

B. Kernel Design

Kernel design is the first procedure of the KRM, which
is to parameterize kernel matrix K by a few number of
parameters, called the hyper-parameters, denoted by η, based
on the prior knowledge, e.g., the stability and smoothness. So
far, several common kernels are introduced, e.g., the stable
spline (SS) kernel [1] , the diagonal correlated (DC) kernel
and the tuned-correlated (TC) kernel [2]:

SS : Kij(η) = c
(λi+j+max(i,j)

2
− λ3max(i,j)

6

)
η = [c, λ] ∈ Ω = {c ≥ 0, 0 ≤ λ ≤ 1};

DC : Kkj(η) = cλ(k+j)/2ρ|j−k|

η = [c, λ, ρ] ∈ Ω = {c ≥ 0, 0 ≤ λ ≤ 1, |ρ| ≤ 1};
TC : Kij(η) = cλmax(i,j)

η = [c, λ] ∈ Ω = {c ≥ 0, 0 ≤ λ ≤ 1}.

C. Hyper-parameter Estimation

Once the parameterization of K(η) is given, the next
procedure is to estimate hyper-parameters η using data
{u(t), y(t)}nt=1. Several popular hyper-parameter estimation
methods are Empirical Bayes (EB), Stein’s unbiased risk
estimators (SURE) and Cross Validation (CV) [1], [3], [4],
[12], [13]. Under the assumption that θ ∼ N (0,K), V ∼
N (0, σ2In), and θ is independent of V , the EB estimator
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aims to maximize the marginal likelihood of Y , which is
equivalent to minimizing the optimization problem:

EB : η̂eb = argmin
η∈Ω

Ceb(K(η)), (7a)

Ceb(K) = Y TQ−1Y + log det(Q), (7b)

where Q = ΦKΦT + σ2In and det(·) denotes the determi-
nant of a square matrix. While, the SURE aims to minimize
an unbiased estimator of the MSE criterion (6) as follows:

Csure(K) = ∥Y − Φθ̂rls∥2 + 2σ2Tr(I − σ2Q−1)

= σ4Y TQ−2Y + 2σ2Tr(I − σ2Q−1). (8)

Accordingly, the SURE for tuning η is defined by

SURE : η̂sure = argmin
η∈Ω

Csure(K(η)). (9)

In particular, ∥Y −Φθ̂rls∥2 characterizes the model fit of the
estimated model (5b), and Tr(I − σ2Q−1) characterizes its
model complexity, which is called the degrees of freedom of
(5b) [20]. It means that the SURE estimator (9) is to balance
the model fit and model complexity of (5b).

III. A FAMILY OF HYPER-PARAMETER ESTIMATORS

In this section, we propose a family of hyper-parameter
estimators that links the EB and SURE estimators in a unified
way through an index and further investigate the properties of
this family including finite sample and asymptotic properties.

First, we introduce the key idea to link the EB and SURE
estimators in an unified way by the following lemma.

Lemma 1: Suppose that n×n matrix A is diagonalizable
and has positive eigenvalues. Thus, there holds that

1

p
Tr(Ap − In) → log det(A) as p → 0,

where Tr(·) denotes the trace of a square matrix.
According to Lemma 1, as p → 0 we have
1

p
Tr(In − (σ2Q−1)p) → log det(Q) +N log σ2, (10)

which is because the matrix Q−1 is symmetric and positive
definite. Thus, motivated by (7b) and (8) of the EB and
SURE estimators as well as (10), we define the family of
hyper-parameter estimators with respect to an index α ∈
[1, 2] by

η̂α = argmin
η∈Ω

Cα(K(η)), (11a)

Cα(K) = σ2αY TQ−αY +
ασ2

α− 1
Tr

(
In − (σ2Q−1)α−1

)
.

(11b)

In this paper, we assume that σ2 is known. By a straightfor-
ward calculation, it can be verified that{

Cα(K) = Csure(K) for α = 2;
Cα(K) −→ σ2Ceb(K)− nσ2 log σ2 as α −→ 1+.

Therefore, the family of hyper-parameter estimators (11)
unifies the EB and SURE estimators in a continuous way
by index α and the EB and SURE methods correspond to
the cases α = 1 and α = 2, respectively.

A. Finite Sample Properties

Along with the technique for deriving the properties of
the SURE and EB estimators in [6], we investigate the
properties of the estimation criterion Cα(K) and its first-
order optimality condition with respect to η, which helps us
to understand the properties of the family. We first show that
both of the two terms of the estimation criterion (11b) can
be decomposed into two terms: one term dependent on K
and the other one independent of K.

Proposition 1: Suppose that Assumption 1 holds. Thus,
the two terms of the estimation criterion (11b) have the
following decomposition:

σ2αY TQ−αY = ∥Y − Φθ̂ls∥2︸ ︷︷ ︸
Op(n)

+ σ2αY TQ1−αΦ(ΦTΦ)−1ΦTQ−1Y︸ ︷︷ ︸
Op(1/nα−1)

, α ∈ [1, 2],

(12a)

Tr
(
In−(σ2Q−1)α−1

)
= p︸︷︷︸

O(1)

−σ2(α−1)Tr
(
(σ2Ip+ΦTΦK)−(α−1)

)︸ ︷︷ ︸
O(1/nα−1)

, α ∈ (1, 2],

(12b)
α

α− 1
Tr

(
In − (σ2Q−1)α−1

)
−→ log detQ− n log σ2, α → 1+. (12c)

Remark 1: The first term of (11b) consists of the predic-
tion error of the LS estimate independent of K and another
smaller term in scale but dependent of K, which can be
understood as the prediction error of the RLS estimate θ̂rls

with the hyper-parameter η̂α in some sense. In particular, if
we take K−1 = 0 (no regularization corresponding to the LS
estimate), then the smaller term is equal to zero. Therefore,
the smaller term can be thought of as the price paid using
regularization for fidelity to the data. The second term of
(11) is decomposed into a constant term p (the dimension of
parameters) and a smaller term for α ∈ (1, 2]. In particular,
the second term tends to the term log detQ plus the term
−n log σ2 independent of K as α → 1+.

In the following, we study the first-order optimality con-
dition of the family of hyper-parameters. In order to derive
a clear and simple expression, however, we focus on the
special case: K = ηK1 with η > 0 and a fixed positive
definite matrix K1.

Proposition 2: Suppose that K = ηK1 with η > 0 and
a fixed positive definite matrix K1. Then for α ∈ [1, 2], the
first-order derivative of (11b) with respect to η is

∂Cα(K(η))

∂η
= ασ2αTr

(
Q−α

(
Y Y TQ−1 − IN

)
ΦK1Φ

T
)
,

where Q = ηΦK1Φ
T + σ2IN . Thus, the family of hyper-

parameters η̂α are the roots of the system of equations

Tr
(
Q−α

(
Y Y TQ−1 − IN

)
ΦK1Φ

T
)
= 0 (13)

over η.
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Proposition 2 tell us that index α influences the family of
hyper-parameters through the matrix (σ2Q−1)α.

B. Asymptotic Properties: Convergence

In this subsection, we investigate the asymptotic properties
of Cα(K) and hyper-parameter estimators η̂α for α ∈ [1, 2].
Before moving forward, we make assumptions on the Gram
matrix ΦTΦ and kernel matrix K(η).

Assumption 2: The Gram matrix ΦTΦ/n → Σ as n →
∞, where Σ is positive definite.

Assumption 3: The kernel parameterization K(η) is pos-
itive definite for any η ∈ Ω.

Then based on the decomposition derived in Proposition
1, we first derive the convergence result for (11b).

Proposition 3: Suppose that Assumptions 1 and 2 hold
and the kernel matrix K is positive definite. Thus, an affine
transform of Cα(K) converges to a deterministic function
almost surely, i.e., for 1 ≤ α ≤ 2,

C α(K) → Wα(K,Σ, θ0) (14)

almost surely as n → ∞, where

C α(K) =nα−1
(
Cα(K)−∥Y −Φθ̂ls∥2−αpσ2

α−1

)
+

αpσ2α

α−1
, α ∈ (1, 2],

Cα(K)−∥Y −Φθ̂ls∥2+ σ2p log
(
σ2/n

)
, α = 1,

Wα(K,Σ, θ0) = σ2α
(
θT0 K

−1(KΣ)1−αθ0

− α

α− 1
Tr

(
(KΣ)1−α

))
+ σ2α α

α− 1
p︸ ︷︷ ︸

independent of K

, α ∈ [1, 2].

Remark 2: Limiting function Wα(K,Σ, θ0) is a unified
form for α ∈ [1, 2] since its limit as α −→ 1+ is

σ2
(
θT0 K

−1θ0 + log det(K)
)
+ σ2 log det(Σ),︸ ︷︷ ︸

independent of K

which is also the limit of C α(K) for α = 1. This unified
expression discloses that index α enters the limiting function
Wα(K,Σ, θ0) by the matrix (KΣ)1−α. In particular, as
α goes from 1 to 2, the limiting function Wα(K,Σ, θ0)
is influenced by the more and more ill-conditioned matrix
(KΣ)1−α if at least one of K and Σ is ill-conditioned.

We define the global minima of Wα(K,Σ, θ0) by

η∗α = argmin
η∈Ω

Wα(K(η),Σ, θ0), α ∈ [1, 2]. (16)

Then we show the closed-form expressions of η∗α for two
special kernel matrices.

Corollary 1: Suppose that Assumptions 1 and 2 hold.
1) If K = ηK1 with η > 0 and a fixed positive definite

matrix K1, then for α ∈ [1, 2],

η∗α = argmin
η∈Ω

(
η−αθT0 K

−1
1 (K1Σ)

1−αθ0

− α

α− 1
η1−αTr((ΣK1)

1−α)
)

(17)

=
θT0 K

−1
1 (K1Σ)

1−αθ0
Tr((ΣK1)1−α)

. (18)

2) If K = diag([η1, · · · , ηp]) with ηi ≥ 0, 1 ≤ i ≤ p
and Σ = dIp with d > 0, then for α ∈ [1, 2],

η∗α = [(g01)
2, · · · , (g0p)2]T , (19)

where g0i is the ith element of θ0.
Lastly, in order to derive the convergence of η̂α, we need

the following assumption on η∗α.
Assumption 4: For each α ∈ [1, 2], the global minima η∗α

of Wα(K,Σ, θ0) exist and moreover, are isolated interior
points of Ω.

Theorem 1: Suppose that Assumptions 1-4 hold. Thus, for
each α ∈ [1, 2], we have η̂α → η∗α almost surely as n → ∞.

Remark 3: Theorem 1 embraces the convergence of the
EB and SURE methods derived in [6] as the special cases
for α = 1, 2.

Clearly, it is interesting to investigate what value of α ∈
[1, 2] can yield the best hyper-parameter estimator in this
family. In the next section, we use numerical simulation to
show that there does exist an estimator in this family that is
superior to the EB and SURE estimators. As for how to find
out this estimator, i.e., the corresponding α, we will report
the results in the journal version of this paper.

IV. NUMERICAL SIMULATION

In this section, we test hyper-parameter estimators (11)
with α taking values equidistantly within the interval [1, 2]
at intervals of 0.1.

A. Test data-bank
We generate 1000 test system of order 30 using the method

in [2] and [4]. To generate data, we first feed each test system
with two different test inputs, which are the bandlimited
white Gaussian noise with band [0,0.6] and [0,1], denoted
by IT1 and IT2, respectively. Then we corrupt the noise-
free output by an additive white Gaussian noise such that
the signal-to-noise ratio (SNR), i.e., the ratio between the
variance of the noise-free output and the noise, is uniformly
distributed over [1, 10], and is unchanged for the two test
inputs. We limit the sample sizes at 500 and 8000 to illustrate
the finite sample and large sample performance of this family
of hyper-parameter estimators, respectively.
B. Simulation set-up

The measure of fit [21] is used to evaluate the performance
of RLS estimators (5b), which is defined as follows:

Fit = 100×
(
1− ∥θ̂rls − θ0∥

∥θ0 − θ̄0∥

)
, θ̄0 =

1

p

p∑
i=1

g0i

where p is set to 200.
The TC kernel is employed and hyper-parameters η in-

volved in kernel matrix are estimated by using this family
of estimators defined in (11a) with α = {1, 1.1, 1.2, 1.3,
1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2}, in which α = 1, 2 correspond
to EB (7) and SURE (9), respectively.

C. Simulation results
The average fits are given in Table I. The boxplots of 1000

fits are showed in Figs. 1-2 with the largest median being
marked by a green circle.
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Fig. 1. Boxplots of the 1000 fits for the bandlimited white Gaussian noise with band [0,0.6]: n = 500 (left) and n = 8000 (right).

Fig. 2. Boxplots of the 1000 fits for the bandlimited white Gaussian noise with band [0,1]: n = 500 (left) and n = 8000 (right).

TABLE I
AVERAGE FITS FOR 1000 TEST SYSTEMS AND FOUR TEST INPUTS.

α 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 optimal
IT1
n = 500 77.1107 77.1640 77.1529 77.1257 77.0656 76.9476 76.7034 76.3690 76.2262 76.0577 75.1287 1.1
n = 8000 88.2759 88.2944 88.2774 88.2511 88.2216 87.8352 87.6543 87.5159 87.2918 87.1950 86.1877 1.1
IT2
n = 500 85.1490 85.2093 85.2443 85.2625 85.2262 85.2220 85.1889 85.1699 85.1093 85.0503 84.9733 1.3
n = 8000 96.4006 96.4305 96.4549 96.4755 96.4963 96.5137 96.5272 96.5384 96.5439 96.5468 96.5443 1.9

D. Findings

It has been shown in [6] that input IT1 is bad, which
make matrix ΦTΦ ill-conditioned, while input IT2 is the
completely opposite and has a well-conditioned ΦTΦ. Then
we conclude the findings as follows.

Firstly, it can be observed in all the boxplots that the
medians varies a little when α changes from 1 to 2 for the
two inputs and sample sizes. However, it can be observed in
Table I that the average fits differ slightly for input IT2, but
considerably for input IT1. This indicates that this family
of hyperparamter estimators possess different robustness,
displayed by variance, to ill-conditioned inputs. Furthermore,
the discrepancy of the average fits among this family is
shortened when the sample size increases from 500 to 8000,

which indicates that the variance will decrease as the number
of data grows.

Secondly, for all the cases, it can be observed from Table
I that the α values giving the maximum fits lie in (1, 2).
This confirms that there does exist a “middle” estimator in
this family that is superior to the EB and SURE method.
For input IT1, the optimal value α is around 1 though the
sample size reaches 8000. In particular, when the sample
size n = 500, there is a huge gap between the average fits
of α = 1 and 2, i.e., the EB and SURE method, and the
average fit roughly decreases as α varying from 1 to 2.
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V. CONCLUSION

The paper has proposed a family of hyper-parameter esti-
mators linking the EB and SURE estimators in a unified way.
The finite sample and asymptotic properties of this family
have been established to further understand this family. And
the Monte Carlo simulations suggest that there does exists a
”middle” estimator in this family that is superior to the EB
and SURE method no matter the input is bad or not. But
how to choose α is still a problem to be solved and deserves
to investigate in the future. Moreover, further theoretical
grounds are necessary to support the simulation results.
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