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Abstract— The fixed-horizon constrained Markov Decision
Process (C-MDP) is a well-known model for planning in
stochastic environments under operating constraints. Chance-
constrained MDP (CC-MDP) is a variant that allows bounding
the probability of constraint violation, which is desired in many
safety-critical applications. CC-MDP can also model a class
of MDPs, called Stochastic Shortest Path (SSP), under dead-
ends, where there is a trade-off between the probability-to-
goal and cost-to-goal. This work studies the structure of (C)C-
MDP, particularly an important variant that involves local
transition. In this variant, the state reachability exhibits a
certain degree of locality and independence from the remaining
states. More precisely, the number of states, at a given time, that
share some reachable future states is always constant. (C)C-
MDP under local transition is NP-Hard even for a planning
horizon of two. In this work, we propose a fully polynomial-
time approximation scheme for (C)C-MDP that computes (near)
optimal deterministic policies. Such an algorithm is among the
best approximation algorithms attainable in theory and gives
insights into the approximability of constrained MDP and its
variants.

I. INTRODUCTION

The Markov decision process (MDP) [18] is a classical
model for planning in uncertain environments. An MDP
consists of states, actions, a stochastic transition function,
a utility function, and an initial state. A solution of MDP
is a policy that maps a state to an action that maximizes
the global expected utility. The stochastic shortest path
(SSP) [5] is an MDP with non-negative utility values and
involves a set of absorbing goal states. The problem has an
interesting structure and can be formulated with a dual linear
programming (LP) formulation [10] that can be interpreted as
a minimum cost flow problem. Moreover, MDPs admit many
heuristics-based algorithms [6], [16] that utilize admissible
heuristics to guide the search without exploring the whole
state space.

Besides, constrained MDP (C-MDP) [2] provides the
means to add mission-critical requirements while optimizing
the objective function. Each requirement is formulated as a
budget constraint imposed by a non-replenishable resource
for which a bounded quantity is available during the entire
plan execution. Resource consumption at each time step
reduces the resource availability during subsequent time steps
(see [9] for a detailed discussion). A stochastic policy of C-
MDP is attainable using several efficient algorithms (e.g.,
[14]). A heuristics-based search approach in the dual LP can
further improve the running time for large state spaces [25].
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For deterministic policies, however, it is known that C-MDP
is NP-Hard for the finite-horizon case [21] (even when the
planning horizon is only 2). The problem is also NP-Hard
for the discounted infinite-horizon case [13].

A special type of constraint occurs when we want to bound
the probability of constraint violations by some threshold ∆,
which is often called a chance constrained MDP (CC-MDP).
To simplify the problem, [12] proposes approximating the
constraint using Markov’s inequality, which converts the
problem to C-MDP. Another approach by [8] applies Hoeffd-
ing’s inequality on the sum of independent random variables
to improve the bound. Both methods provide conservative
policies that respect safety thresholds at the expense of
the objective value (which could be arbitrarily worse than
optimal).

In the partially observable setting, the problem is called
chance-constrained partially observable MDP (CC-POMDP).
Several algorithms address CC-POMDP under risk con-
straints [24], [21]. However, due to partial observability,
these methods require an enumeration of histories, making
the solution space exponentially large with respect to the
planning horizon. To speed up the computation, [17] pro-
vides an anytime algorithm using a Lagrangian relaxation
method for CC-MDP and CC-POMDP that returns feasible
sub-optimal solutions and gradually improves the solution’s
optimality when sufficient time is permitted. Unfortunately,
the solution space is represented as an And-Or tree of all
possible history trajectories, causing the algorithm to slow
down as we increase the planning horizon.

The constrained MDP has a wide range of applications in
AI and robotics. One application of CC-MDP is navigation
in a discretized environment (e.g., space exploration using
a rover [22]). Some states (or grid coordinates) cause the
agent to fail, say a cliff. The goal is to maximize utility (or
science discovery) while avoiding dangerous states with a
probability of 1 − ∆. More applications for space landing
and exploration are presented in [22]. Another application
of CC-MDP is behavior planning for autonomous vehicles
(AVs), which has been extensively studied in deterministic
environments (see, e.g., [27]). One of the primary sources
of uncertainty arises from drivers’ intentions, i.e., potential
maneuvers of agent vehicles [19]. An effective behavior
planner should optimize the maneuvers, say, minimize total
commute time while bounding collision probability below
some threshold. The objective of CC-MDP is to minimize
the expected compute time, and the chance constraint is to
bound the probability of collision. See [3] for more empirical
details. One application for C-MDP is a battery-operated

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 1782



unmanned aerial vehicle (UAV). The vehicle’s goal is to
maximize surveillance coverage, while the constraint is to
keep energy consumption below battery capacity. See [2],
[11], [1] for a list of constrained MDP applications1.

In this work, we study a variant of (C)C-MDP in which
the reachable set of states from a given state intersects
with at most a constant number of reachable sets from any
other states, denoted as (C)C-MDP under local transitions.
This variant captures a class of MDP problems where state
reachability exhibits a certain degree of locality such that
only a constant number of states at a given time can share
future states. The main contribution of this paper is a
fully polynomial time approximation scheme (FPTAS) that
computes (near) optimal deterministic policies for finite-
horizon (C)C-MDP under local transitions in polynomial
time. Since (C)C-MDP is shown to be NP-Hard (even under
local transitions assumption [21]), our result is among the
best possible approximation algorithms attainable in theory.

II. PROBLEM DEFINITION

In this section, we provide a formal problem definition
and relevant background.
A. C-MDP.

A fixed-horizon constrained Markov decision process (C-
MDP) is a tuple M = ⟨S,A, T, U, s0, h, C, P ⟩, where S and
A are finite sets of discrete states and actions, respectively;
T : S ×A×S → [0, 1] is a probabilistic transition function
between states, T (s, a, s′) = Pr(s′ | a, s), where s, s′ ∈ S
and a ∈ A; U : S × A → R+ is a non-negative utility
function; s0 is an initial state; h is the planning horizon;
C : S × A → R+ is a non-negative cost function; P ∈ R+

is a positive upper bound on the cost.
A deterministic policy π(·, ·) is a function that maps a state

and time step into action, π : S × {0, 1, ..., h − 1} → A.
For simplicity, we write π(sk) to denote π(sk, k). A run
is a sequence of random states S0, S1, . . . , Sh−1, Sh that
result from executing a policy, where S0 = s0 is known.
The objective is to compute a policy that maximizes (resp.
minimizes) the expected utility (resp. cost) while satisfying
the constraint. More formally,

(C-MDP) max
π

E
[ h−1∑
k=0

U(Sk, π(Sk))
]

(1)

Subject to E
[ h−1∑
k=0

C(Sk, π(Sk)) | π
]
≤ P.

The MDP problem and its constrained variants can be
visualized by a direct acyclic And-Or graph (DAG) G, where
the vertices represent the states and actions. Thus, at depth
k the set of state nodes are the states that are reachable from
previous actions at depth k− 1, denoted as Sk ⊆ S. At each
depth, we have at most |S| states. Fig. 1 provides a pictorial
illustration of the MDP And-Or (search) graph. Note that
unlike And-Or search trees obtained by history enumeration
algorithms (see, e.g., [17]), with such representation, a node

1most of the C-MDP applications require non-negative parameters (costs
and reward).

may have multiple parents, leading to a significant reduction
in the search space.

Fig. 1. MDP graph where circles are state nodes and squares are actions.
Circles with thick borders represent reachable states at time k, denoted as
Sk .

The objective function and the constraint’s left-hand side
can be written recursively using the Bellman equation as
vπ(sk) :=

∑
sk+1∈Sk+1

T (sk, π(sk), sk+1)vπ(sk+1) + U(sk, π(sk)),

cπ(sk) :=
∑

sk+1∈Sk+1

T (sk, π(sk), sk+1)cπ(sk+1) + C(sk, π(sk)),

for k = 0, ..., h− 1.

B. CC-MDP.

A fixed-horizon chance-constrained MDP (CC-
MDP) problem is formally defined as a tuple
M = ⟨S,A, T, U, s0, h, r,∆⟩, where S,A, T, U, s0, h
are defined as in C-MDP, and

• r : S → [0, 1] is the probability of failure at a given
state;

• ∆ is the corresponding risk budget, a threshold on the
probability of failure over the planning horizon.

Let R(s) be a Bernoulli random variable that indicates
failure at state s, such that R(s) = 1 if and only if s is
a risky state and zero otherwise. For simplicity, we write
R(s) to denote R(s) = 1. The objective of CC-MDP is to
compute a deterministic policy (or a conditional plan) π that
maximizes (or minimizes) the cumulative expected utility (or
cost) while bounding the probability of failure at any time
step throughout the planning horizon. More precisely,

(CC-MDP) max
π

E
[ h−1∑
k=0

U(Sk, π(Sk))
]

(2)

Subject to Pr
( h∨

k=0

R(Sk) | π
)
≤ ∆. (3)

To better understand Cons. (3), define the execution risk
of a run at state sk as

ERπ(sk) := Pr
( h∨

k′=k

R(Sk′) | Sk = sk

)
.

According to the definition, Cons. (3) is equivalent to
ERπ(s0) ≤ ∆. The lemma below shows that such constraint
can be computed recursively.

Lemma II.1 ([3]). The execution risk of policy π can be
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written as

ERπ(sk) =


r(sk) + (1− r(sk))∑

sk+1∈S
ERπ(sk+1)π(sk)T (sk, a, sk+1),

if k = 0, ..., h− 1,
r(sh), if k = h.

CC-MDP captures a class of MDPs called stochastic
shortest path (SSP), where there is a set of absorbing goal
states and dead-end states. A measure of policy feasibility
under SSP is to have the probability-to-goal above some
threshold ϵ [15]. This problem can be modeled as CC-MDP,
where all non-goal states at horizon h are considered risky
states. Hence, the probability of failure is set to ∆ = 1− ϵ.
SSPs are often defined with infinite horizons. One can reduce
SSP to fixed-horizon CC-MDP by successively incrementing
the horizon h until a feasible policy is attainable.

C. Assumptions.

In this work, we study a variant of (C)C-MDP in which
the number of state-action pairs that share subsequent states
is bounded. Such extension is denoted as (C)C-MDP under
local transition. More formally, define the set of potential
next states after executing action a from state sk ∈ Sk for
k = 0, ..., h− 1 by,
Na(sk) := {sk+1 | T (sk, a, sk+1) > 0, sk+1 ∈ Sk+1},
Na(sh) := ∅.

Let REACH(sk) be a set of states in the MDP graph reachable
from state sk; more precisely,

REACH(sk) :=

{ ⋃
sk+1∈Na(sk)

a∈A
REACH(sk+1) if k < h

sk if k = h.

Definition II.2 (Local Transition). An MDP graph G under
local transition satisfies∣∣{s′k ∈ G | REACH(sk) ∩ REACH(s′k) ̸= ∅}

∣∣ ≤ ψ,
for any sk ∈ G, where ψ is a constant2.

When ψ = 0, we call our problem (C)C-MDP under
disjoint transition. The And-Or graph under the disjoint tran-
sition assumption is, in fact, an And-Or tree. Such structure
helps to easily obtain a dynamic programming structure that
is exploited in our algorithms, shown in the next subsections.

We also assume that all parameters (utility and cost values)
are non-negative. Without such an assumption, one can show
as in [7] that the problem is inapproximable (i.e., no α-
approximation algorithm exists unless P=NP).

D. Benchmark.

To analyze our algorithms, we rely on the notion of
approximation algorithms. The subject of approximation
algorithms is well-studied in the theoretical computer sci-
ence community [26]. As follows, we define some standard
terminology for approximation algorithms. Consider a max-
imization problem Π with non-negative objective function
f(·); let F be a feasible solution to Π and F ⋆ be an optimal
solution to Π. f(F ) denotes the objective value of F . Let
OPT = f(F ⋆) be the optimal objective value of F ⋆. A com-
mon definition of approximate solutions is α-approximation,

2We mean by a constant that the number is relatively small and is not a
function of MDP instance M .

where α characterizes the approximation ratio between the
approximate solution and an optimal solution.

Definition II.3 (Approximation Algorithm [26]). For α ∈
[0, 1], an α-approximation to maximization problem Π is an
algorithm that obtains a feasible solution F for any instance
such that f(F ) ≥ α · OPT.

In particular, fully polynomial-time approximation scheme
(FPTAS) is a (1−ϵ)-approximation algorithm to a maximiza-
tion problem for any ϵ > 0. The running time of an FPTAS is
polynomial in the input size and for every fixed 1

ϵ . In other
words, FPTAS allows the trade of the approximation ratio
against the running time.

In the following, we first study the problem under disjoint
transition and then extend the result to the local transition
case. III. ALGORITHM

For simplicity, we first study a special variant of (C)C-
MDP in which actions stochastically lead to a small number
of potential states, denoted as (C)C-MDP under limited
transition.

Definition III.1 (Limited Transition). There exists a constant
γ ∈ N+ such that Na(s) ≤ γ for all a ∈ A, s ∈ S.

In the next subsection, we study (C)C-MDP under limited
and disjoint transition, whereas in the following subsection,
we relax the limited transition assumption. In the last sub-
section, we present an FPTAS for (C)C-MDP under the local
transition assumption, which generalizes the former cases.
A. FPTAS for (C)C-MDP under Limited and Disjoint Tran-
sition

Algorithm 1: lim-DynMDP[M, ϵ]

Input : An instance of CC-MDP M ; a parameter ϵ for the
approximation guarantee

Output: A deterministic policy π
1 DPER(sk, ℓk)←∞; DPπ(sk, ℓk)← ∅, DPℓ̄(sk, ℓk)← 0, for

k = 0, ..., h;
2 DPER(sh, ℓh)← r(sh), for all sh ∈ Sh, ℓh ∈ Lk = {0}
3 for k = h− 1, ..., 0; sk ∈ Sk; ℓk ∈ Lk do
4 DPER(sk, ℓk), DPπ(sk, ℓk), DPℓ̄(sk, ℓk)←

Update[sk, ℓk, {DPER(s, ℓ)}s∈Sk+1,ℓ∈Lk+1
]

5 end for
6 π ← Fetch-Policy[DP]
7 return π

The procedure involves constructing a 2-dimensional
dynamic programming table, DP(·, ·), where each cell
DP(sk, ℓk) corresponds to state sk ∈ Sk, and a discrete utility
value ℓk (which we will clarify next). Each cell contains three
quantities, DPER(sk, ℓk) ∈ R+ which maintains the minimum
execution risk from state sk, executing an action that accrues
a total value of at least ℓk; DPπ(sk, ℓk) = a, the correspond-
ing policy action a; and DPℓ̄(sk, ℓk) ∈ R|Na(sk)|

+ , a value
allocation for subsequent states as we see next. The main idea
behind the algorithm lies in a utility discretization procedure
that shrinks the set of possible values at a given state into
a manageable number, exploiting the limited and disjoint
transition assumptions. A detailed description is provided
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Algorithm 2: Update
[
sk, ℓk, {DP(s, ℓ)}

ℓ∈Lk+1

s∈Sk+1

]
1 ER(sk)←∞
2 ACT ← ∅
3 ALLOC ← 0
4 for a ∈ A do
5 // Find an allocation ℓk+1 that acheives the minimum

execution risk for action a such that the total utility value is
at least ℓk

6 for ℓk+1 = (ℓ
1
k+1, ℓ

2
k+1, ...) ∈ L

|Na(sk)|
k+1 do

7 va(sk, ℓk+1)←⌊
1
Lk

(∑
si
k+1

∈Na(sk)
T (sk, a, s

i
k+1)ℓ

i
k+1 +

U(sk, a)
)⌋
· Lk

8 if va(sk, ℓk+1) ≥ ℓk then
9 ERa(sk, ℓk+1) := r(sk) + (1−

r(sk))
∑

si
k+1

∈Na(sk)
T (sk, a, s

i
k+1) ·

DPER(s
i
k+1, ℓ

i
k+1)

10 if ERa(sk, ℓk+1) < ER(sk) then
11 ER(sk)← ERa(sk, ℓk+1)
12 ACT ← a

13 ALLOC ← ℓk+1

14 end if
15 end if
16 end for
17 end for
18 return ER(sk), ACT, ALLOC

Algorithm 3: Fetch-Policy[DP]
1 Ck ← ∅ for k = 1, ..., h− 1
2 ℓ0 ← Find the maximum ℓ0 ∈ L0 such that DPER(s0, ℓ0) ≤ ∆

and DPER(s0, ℓ0 + L0) > ∆
3 C0 ← {(s0, ℓ0)}
4 for k = 0, ..., h− 1 do
5 for (sik, ℓ

i
k) ∈ Ck do

6 π(sik)← DPπ(sik, ℓ
i
k)

7 ℓk+1 ← DPℓ̄(s
i
k, ℓ

i
k)

8 Ck+1 ← Ck+1 ∪ {(sik+1, ℓ
i
k+1)}si

k+1
∈Na(s

i
k
) where

a = π(sik)
9 end for

10 end for
11 return π

in Algorithm lim-DynMDP (Alg. 1). The algorithm relies
on two subroutines, Update (Alg. 2) and Fetch-Policy
(Alg. 3). The former computes a discretized version of the
Bellman equation along with the corresponding execution
risk, and the latter recursively extracts the corresponding
policy. Line 7 of Update computes a discretized version
of the Bellman equation under discretized future rewards,
and Line 9 recursively computes the execution risk based
on Lemma II.1. The pseudo-code provided herein is for CC-
MDP; however, it also applies to C-MDP with minor mod-
ifications. Namely, Line 9 of Update should be replaced
by

ERa(sk, ℓk+1)←
∑

sik+1∈Na(sk)

T (sk, a, s
i
k+1)

· DPER(s
i
k+1, ℓ

i

k+1) + C(sk, a)
and ∆ by P in Line 2 of Fetch-Policy. Thus, all results
in this paper apply to C-MDP as well. (In the remaining text,
the term execution risk in the context of C-MDP would refer
to the total cost instead.) Let Umax := maxs∈S,a∈A U(s, a)

be the maximum utility of an action. Denote a discrete set
of values Lk for each time step k = 0, ..., h as
Lk := {0, Lk, 2Lk, ..., ⌊Umax·(h−k)

Lk
⌋Lk}, where

Lk :=
ϵUmax

(h− k)(lnh+ 1)
. (4)

Let π be a solution returned by lim-DynMDP, and
vπ(sk) := E[

∑h−1
k′=k U(Sk′ , π(Sk′))] be the corresponding

value function at state sk. Similarly, denote π∗ to be an
optimal solution, and vπ∗(sk) be the corresponding value
function. Without loss of generality, assume that vπ∗(s0) ≥
Umax

3. Define vπ(s0) (resp., vπ∗(s0)) to be a discretized
objective value computed recursively by,
vπ(sk) =

⌊
1
Lk

(∑
sk+1∈Sk+1

T (sk, π(sk), sk+1)·vπ(sk+1)+U(sk, π(sk)
)⌋

Lk.

(5)
The above equation corresponds to step 7 of Update.

Lemma III.2. Let π be a policy obtained by lim-DynMDP
and π∗ be an optimal deterministic policy. The policy π is
feasible and satisfies vπ(s0) ≥ vπ∗(s0).

Proof: We show (by induction) that for some ℓk ∈ Lk

and ℓk+1 ∈ L|Na(sk)|
k+1 , there exists an action a such that

ℓk = va(sk, ℓk+1) ≥ vπ∗(sk), where va(·, ·) is defined in
Line 7 of Update. The algorithm enumerates all values of
ℓk+1 such that it attains the minimum execution risk for
every ℓk ∈ Lk. Throughout recursion, the procedure ensures
that a feasible solution π can be constructed such that ℓk =
va(sk, ℓk+1) ≥ vπ∗(sk), as shown by Fetch-Policy.

We proceed with the induction proof; for the
base case, k = h − 1, we have va(sh−1, ℓh) =
⌊U(sh−1, a)/Lh−1⌋Lh−1. Clearly, there is an action
that satisfies the claim. For the inductive step, suppose
the claim holds at step k; we show that the claim also
holds for step k − 1. Note that algorithm lim-DynMDP
enumerates all discretized allocations ℓk at step k − 1 (as
per Step 6 of Update). Also note that vπ∗(sk) ∈ Lk

as the largest element in set Lk, defined in Eq. (4),
satisfies⌊Umax(h− k)/Lk⌋Lk ≥ vπ∗(sk). Hence, there
exists an allocation ℓk such that each i-th element
ℓ
i

k = va(s
i
k, ℓk+1) ≥ vπ∗(sik) for some ℓk+1 (inductive

assumption). Hence, there exists an ℓk−1 and an action a

3If Umax = U(sk, a) > vπ∗ (s0), then any policy that outputs action
a at state sk must be infeasible. Thus, such an action can be deleted from
the set of allowable actions at state sk . Therefore, Umax can be taken as
the second largest utility action and so on. The procedure can be performed
in polynomial time as follows. Fix a policy π(sk) = a, and set the rest
π(s′

k′ ) = a′
k′ such that action a′

k′ achieves the minimum execution risk for
k′ = h− 1, ..., 0 (computed recursively using Lemma II.1). If the solution
is infeasible, repeat the procedure at different k. If again infeasible, one can
safely drop U(sk, a), consider the next largest utility, and then repeat the
procedure.
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such that
ℓk−1 = va(sk−1, ℓk)

=

⌊
1

Lk−1

(∑
sik∈Na(sk−1)

T (sk−1, a, s
i
k)ℓ

i

k + U(sk−1, a)
)⌋
Lk−1

≥
⌊

1
Lk−1

(∑
sk∈Sk

T (sk−1, a, sk)vπ∗(sk) + U(sk−1, a)
)⌋
Lk−1

= vπ∗(sk−1), (6)
where the inequality is followed by the inductive assumption.

It remains to show that such action a is feasible. Each
cell DPπ(·, ·) corresponds to an action that achieves the
minimum execution risk that accrues a total value of at least
ℓk. Since the execution risk is a non-decreasing function
(Line 9 of Update), DPER(sk, ℓk) ≤ ERπ∗(sk) ≤ ∆ for
some ℓk = vπ∗(sk). By the disjoint transition assumption,
there is a unique state sk−1 that involves the row DPER(sk, ·),
sk ∈ Na(sk−1), in computing DPER(sk−1, ℓk−1) (Line 9
of Update). Hence, only table cells related to state sk−1

sets the values of ℓ
i

k of the subsequent states sk ∈
Na(sk−1). As each cell DPπ(sk, ℓ

i

k) corresponds to a single
action, no two sk−1, s

′
k−1 share subsequent state sk, and

only one cell among row DPπ(sk−1, ·) is backtracked by
Fetch-Policy, the policy remains consistent, i.e., it out-
puts a single action for each state. (Note that this is not the
case if sk has multiple parents in the And-Or graph, which
is the case under the local transition assumption.) Such an
action is backtracked by Fetch-Policy. Therefore, policy
π is feasible.

Lemma III.3. An optimal deterministic policy π∗ satisfies
vπ∗(sk) ≥ vπ∗(sk)−

∑h−1
k′=k Lk′ .

Proof: We proceed with an inductive proof. For the
base case, computing Eq. (5) for π∗ at k = h− 1, we have
vπ∗(sh−1) =

⌊
U(sh−1,π

∗(sh−1))
Lh−1

⌋
· Lh−1

≥ U(sh−1, π
∗(sh−1))− Lh−1 = vπ∗(sh−1)− Lh−1, (7)

which follows using the property ⌊xy ⌋y ≥ x − y for x, y ∈
R+. For the inductive step, suppose that we have, vπ∗(sk) ≥
vπ∗(sk) −

∑h−1
k′=k Lk′ . We compute the corresponding in-

equality for sk−1 as follows,

vπ∗(sk−1) =

⌊
1

Lk−1

( ∑
sk∈Sk

T (sk−1, π
∗(sk−1), sk) · vπ∗(sk)

+ U(sk−1, π
∗(sk−1))

)⌋
Lk−1 (8)

≥
⌊

1
Lk−1

( ∑
sk∈S

T (sk−1, π
∗(sk−1), sk) ·

(
vπ∗(sk)

−
h−1∑
k′=k

Lk′
)
+ U(sk−1, π

∗(sk−1))
)⌋
Lk−1, (9)

where Eq. (9) follows by the inductive assumption. Since
T (·, ·, ·) is a probability function that adds up to one, and

using the property ⌊xy ⌋y ≥ x− y for x, y ∈ R+, we obtain,

vπ∗(sk−1) ≥
∑
sk∈S

T (sk−1, π
∗(sk−1), sk) · vπ∗(sk)

+ U(sk−1, π
∗(sk−1))−

h−1∑
k′=k−1

Lk′

= vπ∗(sk−1)−
h−1∑

k′=k−1

Lk′ , (10)

which completes the inductive proof.

Corollary III.4. lim-DynMDP is an FPTAS for (C)C-MDP
under limited and disjoint transition assumptions.

Proof: First, observe that the algorithm maintains a
dynamic programming table with minimum execution risk.
Subroutine Fetch-Policy ensures that a feasible solu-
tion with such property is retrieved. The algorithm runs in
O
((

h2 lnh+1
ϵ

)γ+1|A||S|
)
. Note that by the limited transition

assumption, γ is a constant; thus, the running time is poly-
nomial. By Lemma III.3 and by the definition of Lk given
in Eq. (4), we obtain

vπ∗(s0) ≥ vπ∗(s0)−
h−1∑
k=0

Lk

= vπ∗(s0)−
h−1∑
k=0

ϵUmax

(h− k)(lnh+ 1)

= vπ∗(s0)−
ϵUmax

lnh+ 1

h−1∑
k=0

1

(h− k)

≥ vπ∗(s0)−
ϵUmax

lnh+ 1
(lnh+ 1) (11)

≥ (1− ϵ) · vπ∗(s0), (12)
where Eq. (11) follows by using an upper bound on the
harmonic series,

∑k
n=1

1
n ≤ ln k + 1. By Lemma III.2 and

Eq. (12), vπ(s0) ≥ vπ(s0) ≥ vπ∗(s0) ≥ (1 − ϵ)vπ∗(s0),
which completes the proof.

B. FPTAS for (C)C-MDP under Disjoint Transition

In this section, we relax the limited transition assumption
and show how to obtain an FPTAS for (C)C-MDP. In other
words, we assume γ is a polynomial in definition III.1.
The main idea behind our algorithm is to improve Update
subroutine to avoid full enumeration of ℓk+1, which is ex-
ponential in the number of subsequent states |Na(sk)|. Such
enumeration could be feasible under the limited transition
assumption, but not in general. We show here how the
structure of this step could be exploited. Notably, finding
an allocation that achieves the minimum execution risk
such that the total utility value is at least ℓk is a slight
generalization for a well-known problem called minimum
Knapsack (MinKS) [23], [4]. More formally,

Definition III.5. Multiple-choice minimum Knapsack prob-
lem (McMinKS) is defined as follows. Given a set of cate-
gories N , and a set of allowable choices Mi per category
i ∈ N , an item (i, j) is defined by weight wi,j ∈ R+ and
value vi,j ∈ R+ for i ∈ N and j ∈ Mi. The goal is to
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select one item from the allowable choicesMi per category
i (hence the name multiple-choice) such that the total weight
is minimized and the total value is at least D ∈ R+.

The problem can be formally defined as an integer linear
program (ILP) as follows.

(McMinKS) min
xi,j∈{0,1}

∑
i∈N

∑
j∈Mi

wi,jxi,j ,

Subject to
∑
i∈N

∑
j∈Mi

vi,jxi,j ≥ D, (13)∑
j∈Mi

xi,j = 1, for all i ∈ N . (14)

Algorithm 4, denoted by KS-Update, presents a reduc-
tion from the allocation subproblem to McMinKS in Lines 4-
8. Indeed, finding an optimal solution for the corresponding
McMinKS instance will obtain an FPTAS (Lemma III.2
holds and hence Corollary III.4 proof follows). However,
MinKS is NP-Hard [23], [20]; therefore, our best bet is
to find an approximate solution in polynomial time. Al-
though there is an FPTAS for MinKS, the approximation
guarantee is provided on the objective function, which in
our case, following the reduction, is the constraint for the
original (C)C-MDP problem. Thus, we need an algorithm
that bounds the constraint violation of McMinKS (which is
the objective of (C)C-MDP, following the reduction above).
Some modifications are needed to the algorithm to obtain
a bounded McMinKS constraint violation and handle the
multiple-choice extension (as we will see next).

Algorithm 4: KS-Update[sk, ℓk, {DP(s, ℓ)}
ℓ∈Lk+1

s∈Sk+1
]

1 ER(sk)←∞; ACT ← ∅; ALLOC ← 0
2 for a ∈ A do
3 // Find an allocation ℓk+1 that achieves the minimum

execution risk for action a such that the total utility value is
at least ℓk

4 Let N := {1, ..., |Na(sk)|}
5 Let Mi := Lk+1 for i ∈ N
6 Let wi,j := T (sk, a, s

i
k+1) · DPER(s

i
k+1, ℓ

i
k+1) for all

j = ℓ
i
k+1 ∈ Lk+1 and sik+1 ∈ Na(sk)

7 Let vi,j := T (sk, a, s
i
k+1) · ℓ

i
k+1 for j = ℓ

i
k+1 ∈Mi and i

such that sik+1 ∈ Na(sk)
8 Let D := ℓk − U(sk, a)

9 ℓk+1 ← Dyn-MinKS[(wi,j , vi,j)i∈N ,j∈Mi
, D]

10 ERa(sk, ℓk+1) := r(sk) + (1−
r(sk))

∑
si
k+1

∈Na(sk)
T (sk, a, s

i
k+1) · DPER(s

i
k+1, ℓ

i
k+1)

11 if ERa(sk, ℓk+1) < ER(sk) then
12 ER(sk)← ERa(sk, ℓk+1)
13 ACT ← a

14 ALLOC ← ℓk+1

15 end if
16 end for
17 return ER(sk), ACT, ALLOC

Algorithm 5, denoted as Dyn-MinKS, gives a dy-
namic programming procedure to solve McMinKS within
a bounded constraint violation. The algorithm rounds the
values into a discrete set of possible values that provably
can have a bounded constraint violation (as per Lemma III.6
below). The set of possible discretized values Rk is defined

Algorithm 5: Dyn-MinKS[(wi,j , vi,j)i∈N ,j∈Mi , D]

1 ℓ = (ℓi)i∈N ← 0
2 TB(i, ρ)←∞ for all i ∈ N and ρ ∈ R
3 TB(0, ρ)← 0 for all ρ
4 Let vi,j :=

⌊
vi,j
Rk

⌋
·Rk for all i ∈ N and j ∈Mi

5 for i = 1, ..., |N | do
6 for ρ ∈ Rk =

{
0, Rk, 2Rk, ...,

⌊
D+maxi,j vi,j

Rk

⌋
Rk

}
do

7 TB(i, ρ)← minj∈Mi
TB(i− 1, [ρ− vi,j ]

+) + wi,j

8 Alc(i, ρ)← argminj∈Mi
TB(i−1, [ρ−vi,j ]+)+wi,j ,

where [x]+ = x if x ≥ 0 and [x]+ = 0 otherwise, for
any x ∈ R

9 end for
10 end for
11 Find minimum ρ′ such that ρ′ ≥ D
12 for i = |N |, |N | − 1, ..., 1 do
13 j = Alc(i, ρ′); ρ′ ← ρ′ − vi,j ; ℓi ← j
14 end for
15 return ℓ

as
Rk :=

{
0, 1Rk, ...,

⌊D +maxi,j vi,j
Rk

⌋
Rk

}
, (15)

where Rk is a discretization factor defined below. Let ℓ be
an allocation returned by algorithm Dyn-MinKS and ℓ∗ be
an optimal solution.

Lemma III.6. Algorithm Dyn-MinKS obtains a solution
ℓ = (ℓ1, ..., ℓ|N |) that satisfies∑
i∈N

wi,ℓi ≤
∑
i∈N

wi,ℓi∗ , and
∑
i∈N

vi,ℓi ≥
∑
i∈N

vi,ℓi∗ − |N |Rk,

where ℓ∗ is an optimal solution.

Proof: Define vi,ℓi := ⌊vi,ℓi/Rk⌋Rk as in Line 4
of Dyn-MinKS (also define vi,ℓi∗ := ⌊vi,ℓi∗/Rk⌋Rk). The
algorithm maintains a table TB(i, ρ) of minimum total item
weights up to category i that satisfies a total value of at least
ρ. Since the algorithm discretizes values (Line 4), and the
largest element of R is an upper bound on

∑
i∈N vi,ℓi∗ (by

the definition of R in Eq. (15)), then any discretized optimal
total values are considered in the table. Therefore in steps 11-
13, the algorithm obtains a minimum ρ ≥ D that accrues the
least total weight, hence

∑
i∈N wi,ℓi ≤

∑
i∈N wi,ℓi∗ . By the

feasibility of optimal solutions
∑

i∈N vi,ℓi∗ ≥ D, and since
ρ is the least element that satisfies ρ ≥ D, we have

ρ =
∑
i∈N

vi,ℓi ≥
∑
i∈N

vi,ℓi∗ . (16)

Thus, by Eq. (16) and rounding values down (Line 4 of
Dyn-MinKS),

∑
i∈N vi,ℓi ≥

∑
i∈N vi,ℓi ≥

∑
i∈N vi,ℓi∗ ≥∑

i∈N (vi,ℓi∗ − Rk) =
∑

i∈N vi,ℓi∗ − |N |Rk, which com-
pletes the proof.

We define algorithm dis-DynMDP by replacing Update
at Line 4 of lim-DynMDP by KS-Update, and using the
following discretization factors,

Lk =
ϵUmax

3(h− k)(lnh+ 1)
and Rk =

Lk

γ
. (17)

Lemma III.7. Let π be a policy obtained by dis-DynMDP
and π∗ be an optimal deterministic policy. The solution π
satisfies vπ(sk) ≥ vπ∗(sk)− 2

∑h−1
k′=k ·Lk′ .

Proof: We show (by induction) that for some ℓk ∈
Lk and action a, we have ℓk = vπ(sk) ≥ vπ∗(sk) −
2
∑h−1

k′=k ·Lk′ .
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We proceed with the induction proof; for the base case,
k = h − 1, we have vπ(sh−1) = ⌊U(sh−1, a)/Lh−1⌋Lh−1.
Clearly, there is an action that satisfies the claim. For the
inductive step, suppose the claim holds at step k; we show
that the claim also holds for step k − 1.

Since the dis-DynMDP considers all possible values for
ℓk−1 at time k − 1, there exists an ℓk−1, an action a, and a
solution ℓk (Line 9 of KS-Update) such that,

ℓk−1 =

⌊
1

Lk−1

( ∑
si
k
∈Na(sk−1)

T (sk−1, a, s
i
k)ℓ

i
k

+ U(sk−1, a)
)⌋

Lk−1

≥
⌊

1
Lk−1

( ∑
si
k
∈Na(sk−1)

T (sk−1, a, s
i
k)ℓ

i∗
k − |Na(sk−1)|Rk

+ U(sk−1, a)
)⌋

Lk−1 (18)

where Eq. (18) follows by Lemma III.6 (where vi,j :=
T (sk−1, a, s

i
k) · vπ(sik) and wi,j := T (sk−1, a, s

i
k) ·

DPER(s
i
k, ℓ

i

k) as per Line 6 of KS-Update). By the induc-
tive assumption and Eq. (18),

ℓk−1 ≥
⌊

1
Lk−1

( ∑
sk∈S

T (sk−1, a, sk)
(
vπ∗ (sk)− 2

h−1∑
k′=k

Lk′
)

− |Na(sk−1)|Rk−1 + U(sk−1, a)
)⌋

Lk−1

Therefore,
ℓk−1 ≥

⌊
1

Lk−1

( ∑
sk∈Sk

T (sk−1, a, sk)vπ∗ (sk) + U(sk−1, a)

− 2

h−1∑
k′=k

Lk′ − γRk−1

)⌋
Lk−1 (19)

Thus, by the definition of Rk in Eq. (17), the r.h.s of Eq. (19)
can be written as,

ℓk−1 ≥
⌊

1
Lk−1

( ∑
sk∈Sk

T (sk−1, a, sk)vπ∗(sk) + U(sk−1, a)

− 2

h−1∑
k′=k

Lk′ − Lk−1

)⌋
Lk−1 (20)

≥ vπ∗(sk)− 2

h−1∑
k′=k−1

Lk′ , (21)

By the disjoint transition assumption (following the feasi-
bility argument in the proof of Lemma III.2), policy π is
feasible.

Corollary III.8. Algorithm dis-DynMDP is an FPTAS for
(C)C-MDP under disjoint transition assumption.

Proof: First, observe that the algorithm maintains a
dynamic programming table with minimum execution risk.
Lines 2 of subroutine Fetch-Policy ensures that a feasi-
ble solution with such property is constructed. The algorithm
runs in polynomial time as the sizes of Lk and Rk are
polynomial. By Lemma III.3 and Lemma III.7, expanding
for s0, and by the definition of Lk and Rk, we obtain

vπ(s0) ≥ vπ∗(s0)− 2

h−1∑
k=0

Lk (22)

≥ vπ∗(s0)−
h−1∑
k=0

Lk − 2

h−1∑
k=0

Lk (23)

Substituting Lk obtains,

= vπ∗(s0)− 3

h−1∑
k=0

ϵUmax

3(h− k)(lnh+ 1)
(24)

= vπ∗(s0)−
ϵUmax

lnh+ 1

h−1∑
k=0

1

(h− k)
(25)

Using the upper bound on the harmonic series
∑k

n=1
1
n ≤

ln k + 1 obtains
vπ(s0) ≥ vπ∗(s0)−

ϵUmax

lnh+ 1
(lnh+ 1) (26)

≥ (1− ϵ) · vπ∗(s0), (27)
Therefore, vπ(s0) ≥ vπ(s0) ≥ (1 − ϵ)vπ∗(s0), which
completes the proof.

C. FPTAS for (C)C-MDP under Local Transition

Algorithm 6: DynMDP[M, ϵ]

1 DPER(sk, ℓk)←∞; DPπ(sk, ℓk)← ∅, DPℓ̄(sk, ℓk)← 0, for all
k = 0, ..., h− 1; sk ∈ Sk; ℓk ∈ Lk

2 DPER(sh, 0)← r(sh)
3 for k = h− 1, ..., 0 do
4 Jk ← Partition states in Sk based on reachability given by

Eqn. (28)
5 for Jk ∈ Jk do
6 for ℓk = (ℓck)sck∈Jk

∈ L|Jk|
k do

7
(
DPER(s

c
k, ℓ

c
k), DPπ(s

c
k, ℓ

c
k), DPℓ̄(s

c
k, ℓ

c
k)
)
←

mKS-Update[Jk, ℓk, {DPER(·, ·)}]
8 end for
9 end for

10 end for
11 π ← Fetch-Policy[DP]
12 return π

To tackle (C)C-MDP with local transitions, we perform
a tree decomposition: a transformation of the MDP graph
into a tree where each node in the tree consists of a set of
states. The tree nodes define a family of disjoint sets of states
Jk ⊆ 2Sk at each time k (level in the MDP graph) as
Jk := {Jk ⊆ Sk | REACH(sk) ∩ REACH(s′k) ̸= ∅,

for any pair sk, s′k ∈ Jk}. (28)
According to the local transition assumption, |Jk| is at

most a constant ψ, a property that is necessary to obtain a
polynomial-time algorithm. Next, we show how to convert
the allocation subproblem into a multi-dimensional version of
McMinKS (denoted as MMcMinKS). MMcMinKS extends
definition III.5, allowing the value of each item to be a
|Jk|-dimensional vector. The goal is to compute the total
minimum weight such that the total value for each dimension
is at least Dc ∈ R+ for c = {1, ..., |Jk|}. More formally, the
problem can be defined as an ILP by replacing Cons. (13)
by

∑
i∈N

∑
j∈Mi

vci,jxi,j ≥ Dc, for c = 1, ..., |Jk|.
The key idea, presented in Alg. 6 (denoted by DynMDP),

is to operate on clusters of states Jk instead of individual
states as in dis-DynMDP. mKS-Update (Alg. 7) provides
a reduction from the allocation problem into MMcMinKS.
As we have a tree structure, the problem structure remains
similar to dis-DynMDP except that here we require to solve
an instance of multi-dimensional McMinKS. This can be
done by a slight modification of Dyn-MinKS. The basic idea
is to round off the set of possible values to obtain a range,
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Algorithm 7: mKS-Update
[
Jk, ℓk = (ℓck)sck∈Jk

, {DPER(s, ℓ)}
]

1 ER(sck)←∞ for sck ∈ Jk
2 ACT ← ∅
3 ALLOC ← 0

4 for a = (ac)sc
k
∈Jk
∈ A|Jk| do

5 // Find an allocation that achieves the minimum execution risk
of states in Jk such that the total utility at each sck ∈ Jk is
at least ℓck

6 Let N :=
⋃

sc
k
∈Jk

Nac (sck)

7 Let Mi := Lk+1 for i ∈ N
8 Let wi,j :=

∑
sc
k
∈Jk

T (sck, a
c, sik+1) · DPER(s

i
k+1, ℓ

i
k+1)

for all j = ℓ
i
k+1 ∈Mi and i such that sik+1 ∈ Na(sck)

9 for sck ∈ Jk do
10 Let vci,j := T (sck, a

c, sik+1) · ℓ
i
k+1 for all

j = ℓ
i
k+1 ∈Mi and i such that sik+1 ∈ Na(sck)

11 Let Dc := ℓck − U(sck, a
c)

12 end for
13 (ℓ

i
k+1)i∈N ← Solve
MMcMinKS[{(wi,j , v

c
i,j)i∈N ,j∈Mi

, Dc}sc
k
∈Jk

]

ERac (sck, ℓk+1) :=
r(sck) + (1− r(sck))

∑
si
k+1

∈Nac (sck)
T (sck, a

c, sik+1) ·

DPER(s
i
k+1, ℓ

i
k+1) for sck ∈ Jk

14 if
∑

sc
k
∈Jk

ERac (sck, ℓk+1) <
∑

sc
k
∈Jk

ER(sck) then
15 for sck ∈ Jk do
16 ER(sck)← ERac (sck, ℓk+1)
17 ACTc ← ac

18 ALLOCc ← (ℓ
i
k+1)si

k+1
∈Nac (sck)

19 end for
20 end if
21 end for
22 return (ER(sck), ACTc, ALLOCc)sc

k
∈Jk

by which we can optimize over in polynomial time using
dynamic programming. Thus, we create |Jk| dimensional
dynamic programming table TB(j, ρ1, ..., ρ|Jk|). Since |Jk| ≤
ψ is a constant, the size of the table is polynomial in the input
size.

Theorem III.9. Algorithm DynMDP is an FPTAS for (C)C-
MDP under local transition assumption.

A proof of the theorem can be obtained using that of
Corollary III.8 with a slight modification of Lemma III.6
to account for a higher dimensional dynamic programming
table.

IV. CONCLUSION

This work provides the first fully polynomial-time approx-
imation scheme for a class of constrained MDP under local
transition. Since the problem is NP-Hard, our algorithm is the
best polynomial-time approximation algorithm attainable in
theory. We believe our results provide fundamental insights
into the problem and can lead to the future development of al-
gorithms and faster heuristics for (C)C-MDP and constrained
reinforcement learning.
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