
Differentially Private Stochastic Convex Optimization for Network
Routing Applications

Matthew Tsao, Karthik Gopalakrishnan, Kaidi Yang and Marco Pavone

Abstract— Network routing problems are common across
many engineering applications. Computing optimal routing
policies requires knowledge about network demand, i.e., the
origin and destination (OD) of all requests in the network.
However, privacy considerations make it challenging to share
individual OD data that would be required for computing
optimal policies. Privacy can be particularly challenging in
standard network routing problems because sources and sinks
can be easily identified from flow conservation constraints,
making feasibility and privacy mutually exclusive. In this
paper, we present a differentially private algorithm for network
routing problems. The main ingredient is a reformulation of
network routing which moves all user data-dependent param-
eters out of the constraint set and into the objective function.
We then present an algorithm for solving this formulation
based on a differentially private variant of stochastic gradient
descent. In this algorithm, differential privacy is achieved by
injecting noise, and one may wonder if this noise injection
compromises solution quality. We prove that our algorithm is
both differentially private and asymptotically optimal as the
size of the training set goes to infinity. We corroborate the
theoretical results with numerical experiments on a road traffic
network which show that our algorithm provides differentially
private and near-optimal solutions in practice.

I. INTRODUCTION

Network routing problems appear in many important top-
ics in engineering, including traffic routing in transporta-
tion systems, power routing in electrical grids, and packet
routing in distributed computer systems. Network routing
problems study settings where resources must be delivered
to customers through a network with limited bandwidth.
The goal is typically to route resources to their respective
customers as efficiently as possible, or equivalently, with as
little network congestion as possible. One key challenge in
network routing problems is that the requests (i.e., network
demand) are often not known in advance. Since information
about the demand is often necessary to develop optimal
or near-optimal network routing solutions, network routing
algorithms often need a way of obtaining or estimating
future demand. With the advent of big data and internet-
of-things systems, crowd-sourcing has gained popularity as a
demand forecasting approach for network routing systems. In
crowd-sourcing, customers submit their request history to the
network operator. The network operator uses this historical

M. Tsao is with Lyft Data Science. mattxtsao@gmail.com
K. Gopalakrishnan and M. Pavone are with the Dept.

of Aeronatutics and Astronautics at Stanford University.
{kgopalakrishnan,pavone}@stanford.edu

K. Yang is with the Dept. of Civil Engineering at the National University
of Singapore. kaidi.yang@nus.edu.sg

K. Yang would like to acknowledge the support from Singapore Ministry
of Education under NUS Start Up Grant (A-8000404-01-00).

data to train a statistical or machine learning model to predict
future demand from historical demand.

While crowd-sourcing provides a bountiful supply of
data for training demand forecasting models, it can also
introduce potential privacy concerns. Since crowd-sourcing
uses individual-level customer data to train demand forecast-
ing models, the model’s outputs may reveal sensitive user
information, especially if it overfits the training data [1].
Such privacy risks are problematic because they may deter
users from sharing their data with network operators, hence
reducing the supply of training data for demand forecasting
models.

To address such concerns, the demand forecasting pipeline
should be augmented with privacy-preserving mechanisms.
Differential privacy [2] is a principled and popular method
to occlude the influence of a single user’s data on the result
of a population study while also maintaining the study’s
accuracy. This is done by carefully injecting noise into the
desired computation so that data sets that differ by at most
one data point will produce statistically indistinguishable
results. Providing differential privacy guarantees for the
standard formulation of network routing is difficult because,
as we show in Section II-C, the constraints contain user
data, meaning that in general feasibility and privacy become
mutually exclusive.

A. Statement of Contributions

In this paper, we make the following contributions. First,
we define a new concept of privacy for individual users in
a network, called request-level differential privacy. Next, we
present a reformulation of the standard network flow problem
by moving all data-dependent parameters from the con-
straints to the objective function. To solve the reformulated
problem, we adapt prior works to develop a differentially
private stochastic gradient descent algorithm. We prove that
the difference between a differentially private routing policy
and a non-private routing policy asymptotically goes to zero
with more data points. Finally, we illustrate the practicality
of our algorithm in the context of road traffic routing. In
particular, we show that our algorithm achieves a total travel
time that is within 2% of the optimal even with less than 50
data points.

B. Related Work

Traffic assignment in transportation systems is one of the
most well-known applications of network routing. Privacy
works in transportation mainly focus on location privacy,
where the objective is to prevent untrusted and/or external

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 7469

entities from learning geographic locations or location se-
quences of an individual [3]. Privacy-preserving approaches
have been proposed for various location-based applications
[4], e.g., trajectory publishing, mobile crowdsensing, traffic
control, etc. These techniques are based on spatial cloak-
ing [5] and differential privacy [6]. While not the setting of
interest for this paper, there are many works that use Secure
Multi-Party Computation [7] to achieve privacy in distributed
mobility systems.

Spatial cloaking approaches aggregate users’ exact loca-
tions into coarse information. These approaches are often
based on k-anonymity [8], where a mobility dataset is
divided into equivalence classes based on data attributes (e.g.,
geological regions, time, etc.) so that each class contains
at least k records [9], [10]. These k-anonymity-based ap-
proaches can guarantee that every record in the dataset is
indistinguishable from at least k − 1 other records. How-
ever, k-anonymity is generally considered a weak privacy
guarantee, especially for small k. Furthermore, coarse data
aggregation is required to address outliers or sparse data, and
in these cases, spatial cloaking-based approaches provide low
data accuracy.

Differential privacy provides a principled privacy guaran-
tee by producing randomized responses to queries, whereby
two datasets that differ in only one entry produce statistically
indistinguishable responses [2]. In other words, differential
privacy ensures that an adversary with arbitrary background
information (e.g., query responses, other entries) cannot infer
individual entries with high confidence. Within transportation
research, [11], [12], [13], [14] share noisy versions of loca-
tion data for mobile crowd-sensing applications. [15], [16],
[17], [18] use differential privacy to publish noisy versions
of trajectory data. [19] and [20] apply differential privacy to
gradient descent for federated learning in mobility systems.

Many of the works mentioned in the previous paragraph
establish differential privacy of their proposed algorithms by
using composition properties of differential privacy. Com-
position theorems for differential privacy describe how well
privacy is preserved when conducting several computations
one after another. In [19] and [20], composition theorems are
applied as black boxes without considering the mathematical
properties of the gradient descent algorithm. As a result,
the privacy guarantees are overly conservative, meaning that
large amounts of noise are added to the algorithm, leading to
suboptimal behavior both in theory and in practice. Similarly,
[15], [16], [17], [18] use composition rules as a black
box, and while privacy is achieved, there are no accuracy
guarantees for the algorithms presented in those works.

While blackbox applications of differential privacy can
lead to impractical levels of noise injection, specialized ap-
plications of differential privacy were discovered that provide
privacy with much less noise. [21] show how a simple
adjustment to stochastic gradient descent can give rise to
an algorithm which is both differentially private, and under
reasonable regularity assumptions, is also asymptotically
optimal. [22] and [23] refined this idea to develop stochastic
gradient descent algorithms that are differentially private,

computationally efficient, and have optimal convergence
rates. These techniques cannot directly be used to solve
the standard formulation of network routing because they
study unconstrained optimization problems or optimization
problems with public constraint sets (i.e., constraints that do
not include any private data).

II. MODEL

In this section, we define notations, network models, and
assumptions that will allow us to formulate network routing
as a data-driven convex optimization problem.

A. Network, Demand, and Network Flow

In this section, we will introduce a) a graph model of
a network, b) a representation of network demand, c) the
standard formulation for network routing and d) privacy
requirements.

Definition 1 (Network Representation): We use a directed
graph G = (V,E) to represent the network, where V and
E represent the set of vertices and edges in the network,
respectively. We will use n := |V | and m := |E| to denote
the number of vertices and edges in the graph, respectively.
For vertex pairs (o, d) ∈ V × V we will use PG(o, d) to
denote the set of simple paths (i.e., paths with no cycles)
from o to d in G.

Definition 2 (Operation Period): We use T := [tstart, tend]
to denote the operation period within which a network
operator wants to optimize its routing decisions. We will
also use T to denote the number of minutes in the operation
period. For example, tstart = 8 : 00am, tend = 9 : 00am
could represent a morning commute period where T = 60.

Definition 3 (Demand Representation): We study a sta-
tionary demand model where demand within the operation
period T is specified by a matrix Λ ∈ Rn×n

+ . For each
ordered pair of vertices (o, d) ∈ V ×V , Λ(o, d) is the number
of requests arriving per minute (i.e., the arrival rate) during
T that need routing from vertex o to vertex d.

Remark 1 (Estimating Λ from historical data): The
arrival rates from historical demand are computed
empirically, i.e., if Λt represents the demand for day
t, then Λt(o, d) is calculated by counting the number of
(o, d) requests appearing on day t, and then dividing it by
T to obtain requests per minute.

Definition 4 (Link Latency Functions): To model conges-
tion effects, each link e ∈ E has a latency function fe :
R+ → R+ which specifies the average travel time through
the link as a function of the total flow on the link.

In this paper we study a setting where a network operator
wants to route demand while minimizing the total travel
time for the requests. With these definitions, the standard
formulation of minimum travel time network routing is
described in Definition 5.

Definition 5 (Standard Formulation of Network Flow):
For a network G = (V,E) with link latency functions
{fe}e∈E and demand Λ, the standard network flow problem
is the following minimization program with decision
variable x =

{
x(o,d)

}
(o,d)∈V×V

:

7470

minimize
x

∑
e∈E

yefe(ye) (1a)

subject to ye =
∑

(o,d)∈V×V

x(o,d)
e for all e ∈ E, (1b)

∑
v:(u,v)∈E

x
(o,d)
(u,v) −

∑
w:(w,u)∈E

x
(o,d)
(w,u) = Λ(o, d)(1[u=o] − 1[u=d])

(1c)
for all u ∈ V, (o, d) ∈ V × V.

In (1), the decision variable x is a collection of flows{
x(o,d)

}
(o,d)∈V×V

, one for each non-zero entry of Λ. x(o,d)
e

is th amount of flow that x(o,d) sends on an edge e. (1c)
are flow conservation constraints to ensure that x(o,d) sends
Λ(o, d) units of flow from o to d. Constraints (1b) ensure
that {ye}e∈E represents the total amount of flow on each
edge. Finally, the objective function (1a) is to minimize the
total travel time as a function of total network flow.

In Section II-B, we will describe the rigorous privacy re-
quirements that we will mandate while designing algorithms
for network flow. We then describe in Section II-C why
privacy and feasibility are mutually exclusive in the standard
network flow formulation.

B. Privacy Requirements
We will use differential privacy to reason about the

privacy-preserving properties of our algorithms. At a high
level, changing one data point of the input to a differentially
private algorithm should lead to a statistically indistinguish-
able change in the output [2]. To make this concept concrete
we will need to define data sets and adjacency.

Definition 6 (Data sets): Given a space of data points Z ,
a data set L is any finite set of elements from Z . In practice,
each element of a data set is data collected from a single
user, or data collected during a specific time. We use L to
denote the space of data sets.

Definition 7 (Data Set Adjacency): Given a space of data
sets L, an adjacency relation Adj is a mapping Adj : L×L →
{0, 1}. Two data sets L1, L2 are said to be adjacent if and
only if Adj(L1, L2) = 1.

For our application we will choose Adj to be Request
Level Adjacency.

Definition 8 (Request Level Adjacency (RLA)): The func-
tion RLA : L × L → {0, 1} maps pairs of data sets to
booleans. For two historical datasets of network demand
L := (Λ1, ...,ΛN) and L′ := (Λ′

1, ...,Λ
′
N), we say L and

L′ are request-level-adjacent (RLA) if either L contains all
of the requests in L′, and contains one extra request that is
not present in L′ or vice versa. Mathematically, L,L′ are
request-level-adjacent, i.e., RLA(L,L′) = 1, if and only if
they satisfy all of the following relations:

• There exists t so that Λk = Λ′
k for all k ̸= t.

• There exists two vertices o and d so that Λt(o
′, d′) =

Λ′
t(o

′, d′) for all (o′, d′) ̸= (o, d).
• |Λt(o, d)− Λ′

t(o, d)| ≤ 1
T .

Indeed, these relations dictate that one of the datasets con-
tains an extra request from o to d which happened on the tth

day. A difference of 1 request within a T minute operation
period leads to a change of 1

T in the arrival rate. Aside from
this difference, the datasets are otherwise identical.

With these definitions in place, we are now ready to define
differential privacy.

Definition 9 (Differential Privacy): For a given adjacency
relation Adj, a function M : L → X is (ϵ, δ)-differentially
private if for any L1, L2 ∈ L with Adj(L1, L2) = 1, the
following inequality holds for every event E ⊂ X :

P [M(L1) ∈ E] ≤ eϵP [M(L2) ∈ E] + δ.

C. Differential Privacy Challenges in Standard Network
Flow

In the introduction, we mentioned that privacy and feasi-
bility can be mutually exclusive in the standard formulation
of network flow described in (1). In Theorem 1 we formally
show that if Λ is constructed from a data set of trips as
described in Remark 1, then trips to or from uncommon
locations can be easily detected from any feasible solution
to (1). As a result, announcing or releasing a feasible solution
to (1) is not, in general, differentially private. Formally, we
will prove the following theorem in this section.

Remark 2: The vulnerability of trips to and from uncom-
mon locations is not a purely theoretical concern. A study
on the New York City Taxi and Limousine data set was able
to identify trips from residential areas to night clubs [24].

Theorem 1 (Privacy-Feasibility Contention): Let M be a
function that takes as input a matrix Λ with non-negative
entries and returns a feasible solution to the optimization
problem (1) where Λ is used as a demand matrix. Then M
cannot be (ϵ, δ)-differentially private for any δ < 1.

We note that (ϵ, δ)-differential privacy only provides a
meaningful privacy guarantee when ϵ < 1 and δ < 1 [6].

Proof: [Proof of Theorem 1] Let G = (V,E) be a
network, and Λ be constructed from a historical data set
of requests in G. Suppose there exist uncommon locations o
and d for which Λ contains no trips to or from either o or
d. Mathematically, this means that

Λ(o, u) = Λ(u, o) = Λ(d, u) = Λ(u, d) = 0 for all u ∈ V.

Such situations are not uncommon in transportation net-
works, if, for example, o and d are the homes of two different
people who do not drive (perhaps they walk or bike to and
from work).

If we now add a trip from o to d to the data set, and let
Λ′ be the resulting demand matrix, then we have

i Λ(o′, d′) = Λ′(o′, d′) for all (o′, d′) ̸= (o, d), and
ii Λ(o, d) = 0, Λ′(o, d) = 1

T .
Let Prob1,Prob2 be the optimization problem (1) using

demand Λ,Λ′ respectively. Because Λ,Λ′ are request-level-
adjacent, any differentially private algorithm must behave
similarly when acting on Prob1 and Prob2. However, this
is impossible because the feasible sets of Prob1,Prob2 are
disjoint. If we look at constraint (1c) with u = d and (o, d)
then any feasible solution to Prob1 satisfies∑

u:(u,d)∈E

x
(o,d)
(u,d) −

∑
w:(d,w)∈E

x
(o,d)
(u,d) = Λ(o, d)1[d=d] = 0.

7471

However, any feasible solution to Prob2 satisfies∑
u:(u,d)∈E

x
(o,d)
(u,d) −

∑
w:(d,w)∈E

x
(o,d)
(u,d) = Λ(o, d)1[d=d] =

1

T
.

In other words, checking the net flow leaving node d will
detect the presence of any trips going to or from d. We
will now show that any algorithm which returns a feasible
solution to (1) cannot be differentially private. To this end,
define the event E to be the event that flow is conserved
at node d. Then for any algorithm M that takes as input a
demand matrix and returns a feasible solution to (1) with
the specified demand matrix, we have P[M(Λ) ∈ E] =
1,P[M(Λ′) ∈ E] = 0. Recalling Definition 9, M is (ϵ, δ)-
differentially private only if P[M(Λ) ∈ E] ≤ eϵP[M(Λ′) ∈
E] + δ. This equation can only be satisfied if δ ≥ 1.

III. ROUTING POLICY FORMULATION OF NETWORK
FLOW

To sidestep the impossibility result described in Theo-
rem 1, we present an alternative formulation for the network
flow problem in this section. The alternative formulation
avoids the issues mentioned in Theorem 1 by moving all
parameters related to user data from the constraints to the
objective function, as described in (4). We note that (4)
can only be solved if the demand Λ is known, which may
not always be the case. For this reason, we present two
variations of (4): (5) is the stochastic version of (4) where
Λ is drawn from a distribution Q, and (6) is the data driven
approximation to (5) that one would solve if Q is unknown.

Before formally defining the model, we provide a high
level description of how this formulation works. In this
formulation, a feasible solution x =

{
x(o,d)

}
(o,d)∈V×V

specifies, for each (o, d) ∈ V × V , a flow x(o,d) that routes
1 unit of flow from o to d. We note that a flow is specified
for (o, d) even if there is no demand for this origin and
destination in Λ, i.e., Λ(o, d) = 0. We refer to x as a routing
policy due to its connection to randomized routing. Given
a feasible solution x, the objective function first calculates
the total traffic on each edge by taking a linear combination
of

{
x(o,d)

}
(o,d)∈V×V

flows, where the coefficients of the
linear combination are determined by the demand Λ, with
high demand (o, d) pairs having larger coefficients. The total
travel time can be computed from the total traffic in the same
way as (1a). These ideas are formalized by the following
definitions.

Definition 10 (Unit (o, d) flow): For a given origin-
destination pair (o, d), we say that a flow x(o,d) ∈ Rm

+ is a
unit (o, d) flow if and only if it routes exactly 1 unit of flow
from o to d. Formally, this condition can be represented for
all u ∈ V as∑
v∈V :(v,u)∈E

x
(o,d)
(v,u) −

∑
v∈V :(u,v)∈E

x
(o,d)
(u,v) =

 −1 if u = o
1 if u = d
0 otherwise.

(2)

Indeed, (2) requires that the net flow entering o is −1, the
net flow entering d is 1, and that flow is conserved at all
other vertices in the graph.

Definition 11 (Unit Network Flow): A unit network flow
is a collection of flows x =

{
x(o,d)

}
(o,d)∈V×V

so that x(o,d)

is a unit (o, d) flow for each (o, d) ∈ V × V . We use X to
denote the set of all unit network flows.

Remark 3: We can represent x as a concatenation of the
vectors

{
x(o,d)

}
(o,d)∈V×V

. Since each unit (o, d) flow is a

m dimensional vector, we have x ∈ Rn2m.
We will refer to unit network flows as routing policies,

due to their connection with randomized routing, described
in Remark 5 of the extended version [25].

A. Minimum Total Travel Time Network Flow

In the minimum travel time network flow problem, the
network operator wants to find a stationary routing policy for
each (o, d) pair that will lead to small total travel times for
the requests. Due to the equivalence between stationary (o, d)
routing policies and unit (o, d) flows, the network operator
can instead search over the space of unit (o, d) flows.

The total travel time of a flow y through G is given
by

∑
e∈E yefe(ye). The total amount of flow on an edge

e ∈ E when serving Λ according to x is given by
scaling each flow by the magnitude of its demand, i.e.,∑

(o,d)∈V×V Λ(o, d)x
(o,d)
e . We can thus define F (x,Λ), the

total travel time experienced by requests Λ when being
routed by x, as follows:

F (x,Λ) :=
∑
e∈E

 ∑
(o,d)∈
V ×V

Λ(o, d)x(o,d)
e

 fe

 ∑
(o,d)∈
V ×V

Λ(o, d)x(o,d)
e

 .

(3)

With these definitions in place, the unit network flow that
minimizes the total travel time when serving the demand Λ
can be found by solving the following optimization problem

minimize
x∈X

F (x,Λ) (4)

B. Network Flow with Stochastic Demand

In practice, demand may vary from day to day, and such
variations can be modeled by Λ being a random variable
with distribution Q. If Q is known by the network operator,
then rather than solving (4), the operator is interested in
minimizing expected total travel time through the following
stochastic optimization problem:

minimize
x∈X

EΛ∼Q [F (x,Λ)] (5)

We note that (5) is a generalization of (1) to the case when
Λ is random.

In the more realistic case that Q is not known, the problem
(5) can be approximated from historical data. We study
a situation where the network operator has demand data
Λ1,Λ2, ...,ΛN

i.i.d∼ Q collected from operations of previous
days. Using this data it can solve the following empirical
approximation to (5):

minimize
x∈X

1

N

N∑
k=1

F (x,Λk) (6)

7472

The optimization problem in (6) uses historical data to
estimate (5). In line with Assumption 1 we will assume that
Λt(o, d) ≤ λmax for all values of t, o and d. In Section IV we
show how (6) can be solved in a request-level differentially
private way.

C. Assumptions on Travel Time Functions

In this section, we will introduce some assumptions that
will help us establish our technical results. We will make the
following assumptions on the network demand:

Assumption 1 (Bounded Demand): We assume there ex-
ists a non-negative constant λmax so that Λ(o, d) ≤ λmax

for every (o, d) ∈ V × V . In practice, this constant can be
estimated from historical data.
The following are assumptions we make on the objective
function F (see (3)). These assumptions are related to
properties of the link latency functions {fe}e∈E . We present
a typical model for link latency functions in Section III-D
that satisfies all of the following assumptions.

Assumption 2 (Bounded Variance Gradients): We
assume there exists a non-negative constant K so that
for every x, the variance of ∇F (x,Λ) is upper bounded by
K2, i.e., EΛ∼Q

[
||∇F (x,Λ)||22

]
≤ K2.

Assumption 3 (Twice Differentiability): We assume that
F (·,Λ) is twice-differentiable for every Λ so that the hessian
H(x,Λ) := ∂2

∂x2F (x,Λ) is defined on the entire domain of
x.

Assumption 4 (Strong Convexity): We assume there exists
α > 0 for which F (·,Λ) is α-strongly convex for every Λ,
i.e., for every Λ, and any unit network flows x, x′ we have

F (x′,Λ) ≥ F (x,Λ) +∇xF (x,Λ)⊤(x′ − x) +
α

2
||x′ − x||22

Assumption 5 (Smoothness): We assume there exists β >
α for which F (·,Λ) is β-smooth for every Λ, i.e., for every
Λ, and any unit network flows x, x′ we have

F (x′,Λ) ≤ F (x,Λ) +∇xF (x,Λ)⊤(x′ − x) +
β

2
||x′ − x||22 .

Assumption 6 (Bounded second order partial derivative):
We assume that there exists C > 0 so that∣∣∣∣DΛ(o,d) [∇xF] (x,Λ)

∣∣∣∣
op

≤ C for all x,Λ and
(o, d) ∈ V × V .

D. Transportation Model Satisfying Assumptions from Sec-
tion III-C

In this section, we present a transportation network model
that satisfies Assumptions 3,4,5 and 6. We study a network
where the link latency functions are all affine where for each
e ∈ E, there are non-negative constants qe, ce so that fe(y) =
qey + ce. Let Q ∈ Rm×m be defined so that Qee = qe, and
let c ∈ Rm be the concatenation of all of the zero order
coefficients in the link latency functions.

As mentioned in Remark 3, we will represent x as
a concatenation of

{
x(o,d)

}
(o,d)∈V×V

. As such, x ∈
Rn2m. Let {(oi, di)}n

2

i=1 be the order in which the unit
(o, d) flows are concatenated to produce x so that x =[
x(o1,d1)⊤, x(o2,d2)⊤..., x(on2 ,dn2)

]⊤
.

The total flow on the links in the network when serving
demand Λ according to x can then be written as:

y :=
∑

(o,d)∈V×V

Λ(o, d)x(o,d) = BΛx

where BΛ = vec(Λ)⊗ Im. Here vec(Λ) is a n2 dimensional
row vector whose ith entry is Λ(oi, di), and ⊗ represents the
Kronecker product. Then when Λ is being routed according
to x, the travel times on the links can be computed as Qy+
c = QBΛx + c, which means that the total travel time can
be written as

F̂ (x,Λ) :=
∑
e∈E

yefe(ye) = y⊤ (Qy + c) (7)

= x⊤B⊤
ΛQBΛx+ c⊤BΛx. (8)

Adding ℓ2 regularization gives

F (x,Λ) = F̂ (x,Λ) +
α

2
||x||22

= x⊤
(
B⊤

ΛQBΛ +
α

2
I
)
x+ c⊤BΛx.

Defining β := n2 (maxe qe)λ
2
max + α/2 and C =

2λmax ||Q||op
√
mn(n + 1) + ||c||2, it is straightforward to

show that Assumptions 3,6,5,4 are satisfied. See Section 3.4
of the extended version [25] for further details.

IV. DIFFERENTIALLY PRIVATE NETWORK ROUTING
OPTIMIZATION

Given the setup from Section III, our objective is to design
a request-level differentially private algorithm that returns a
near optimal solution to (5). Since the true distribution Q of
demand is unknown, we will design an algorithm for (6) and
show that under the assumptions described in Section III-B,
the algorithm’s solution is also near optimal for (5).

We present a Private Projected Stochastic Gradient De-
scent algorithm, which is described in Algorithm 1. The
algorithm conducts a single pass over the historical data,
using each data point to perform a noisy gradient step (see
line 6). The key difference between Algorithm 1 and standard
stochastic gradient descent is in line 10, where instead of
returning the final gradient descent iterate, Algorithm 1
returns a noisy version of the last iterate. Algorithm 1 has
the following privacy and performance guarantees.

Theorem 2 (Privacy Guarantee for Algorithm 1):
Algorithm 1 is (ϵ, δ)-differentially private under request
level adjacency defined in Definition 8.

Theorem 3 (Performance Guarantee for Algorithm 1):
If Λ1, ...,ΛN

i.i.d∼ Q, and x∗ is a solution to (5), then the
output xalg of Algorithm 1 satisfies:

E
[∣∣∣∣∣∣xalg − x

∗∣∣∣∣∣∣
2

]

≤
1

α
√

N
KC exp

 β2π2

12α2

 +
n
√

m

N

β exp

(
β2π2

12α2

)
αmin(1, 2α)

+
C

ϵαT

√
2 ln

(1.25

δ

)
≤O

(
1

√
N

)
+ O

 1

ϵN

√
ln

1

δ

In particular, xalg is (ϵ, δ)-differentially private and converges
to x∗ as N → ∞, meaning that privacy and asymptotic
optimality are simultaneously achieved.

See Sections B and C of the extended version [25] for
proofs of Theorem 2 and Theorem 3 respectively.

7473

Algorithm 1: Private Projected Stochastic Gradient
Descent

1 Input: Historical demand Λ1, ...,ΛN , privacy level
(ϵ, δ);

2 Output: Unit network flow x ∈ X ;
3 Initialize x0 ∈ X arbitrarily ;
4 for 1 ≤ k ≤ N do
5 ηk−1 ← min

(
1
αk ,

min(1,2α)
β

)
;

6 xk ← ΠX (xk−1 + ηk−1∇xF (xk−1,Λk));

7 s← C
T min

(
min(1,2α)

β , 1
αN

)
;

8 σ2 ← 2 s2

ϵ2 ln
(
1.25
δ

)
;

9 Z ∼ N
(
0, σ2I

)
;

10 xalg ← ΠX (xN + Z);
11 Return xalg;

A. Discussion

Carefully adding noise to specific parts of existing algo-
rithms is a principled approach for developing differentially
private algorithms [2], [22], [23]. The main challenge in such
an approach is determining a) where and b) how much noise
to add. Suppose the goal is to (approximately) compute a
query function f(L) on a data set L in a differentially private
way. The latter question can be addressed by measuring the
sensitivity of the desired query function.

Definition 12 (ℓ2 sensitivity): Consider a function f :
L → Rd which maps data sets to real vectors. For a
given adjacency relation Adj, the ℓ2 sensitivity of f , denoted
sAdj(f), is the largest achievable difference in function value
between adjacent data sets. Namely,

sAdj(f) := max
L1,L2∈L

Adj(L1,L2)=1

||f(L1)− f(L2)||2 .

Once the sensitivity of the query function is known,
the required noise distribution can be determined using the
Gaussian mechanism as described in Theorem 4.

Theorem 4 (From [26]): Suppose f : D → Rp maps
datasets to real vectors. If sAdj is the ℓ2 sensitivity of f , then

f̂(D) := f(D) + Z where Z ∼ N
(
0, 2

s2Adj

ϵ2 ln
(
1.25
δ

)
Ip

)
is (ϵ, δ)-differentially private with respect to the adjacency
relation Adj.

Algorithm 1 is an application of the Gaussian mechanism.
Indeed, the main ingredient in the proof of Theorem 2 is the
following sensitivity bound:

Lemma 1: Let xN (L) be the N th gradient descent iterate
when applied to data set L (as defined in Algorithm 1). Then
sAdj(xN) ≤ C

T

(
min(1,2α)

β , 1
αN

)
where Adj is RLA.

The privacy of Algorithm 1 is achieved by calibrating the
variance of the added Gaussian noise to sAdj(xN). The proof
of Lemma 1 can be found in Section B of the extended
version [25].

Moreover, Theorem 3 shows that the suboptimality of
Algorithm 1 is O

(
1√
N

)
. The asymptotic optimality of

Algorithm 1 comes from the fact that the ℓ2 sensitivity of the
final gradient descent iterate is actually converging to zero

as N approaches infinity. This fact enables us to add less
noise as N → ∞. Indeed, the Gaussian noise added to the
final gradient descent iterate in Algorithm 1 has a standard
deviation which is O

(
1
ϵN

)
.

V. EXPERIMENTS

We present empirical studies on privacy-performance
trade-offs by comparing our algorithm’s performance to
that of a non-private network routing approach. To this
end, we simulate a transportation network to evaluate the
performance of our algorithm and the non-private optimal
solution to the network flow problem (6).

A. Setup

We use data for the Sioux Falls network, which is available
in the Transportation Network Test Problem (TNTP) dataset
[27]. This network has 24 nodes, 76 edges, and 528 OD
pairs (see Figure 1 for an overview of the network topology).
The distribution of mean hourly demand across different OD
pairs is shown in Figure 1. The average OD has 682 requests
per hour and the travel time on edges range from 2 to 10
minutes. Trip data is generated each hour, i.e., T = 60, from
a Poisson distribution with a mean value that is given by
the data. Our goal is to learn a routing policy for these trips
that minimizes the total travel time. To model congestion, we
use the link latency model described in Section III-D. For
each e ∈ E, we estimate the free flow latency as ce directly
from the data set, and the slope of the latency function qe is
chosen such that the travel time on the link is doubled when
the link flow equals the link capacity.

Throughout Sections V-B and V-C we compare the
performance of two different algorithms, described below.

Baseline: This algorithm computes the minimum travel
time solution to (6) for the Sioux Fall model described in
Section III-D. Recall that in the Section III-D model, (8)
describes the travel time incurred when serving demand
Λ with a routing policy x. Given a data set Λ1, ...,ΛN ,
it computes the solution to the following minimization
problem: minx∈X

1
N

∑N
i=1 x

⊤B⊤
Λi
QBΛi

x+ c⊤BΛi
x.

Algorithm 1: The travel time function described in (8)
is not strongly convex because B⊤

ΛQBΛ is rank deficient.
In order to satisfy Assumption 4, we introduce an ℓ2
regularization. Namely, given a data set Λ1, ...,ΛN , we
apply Algorithm 1 to the following minimization problem:
minx∈X α ||x||22 +

1
N

∑N
i=1 x

⊤B⊤
Λi
QBΛi

x+ c⊤BΛi
x.

The parameters for Algorithm 1 are set as follows. The
smoothness parameter β is set to be the largest eigenvalue
of B⊤

ΛQBΛ, which is equal to 2.08 × 107. We set C = β,
and the regularizer parameter α = 104. It is easy to check
that these values satisfy the assumptions described in Section
III-D. Note that several different values of α could have been
used to convexify the latency function. However, our choice
is governed by two factors. A small value of α will ensure
that the regularized objective is a good estimate of the true
objective, which is desirable. However, smaller values of

7474

α will lead to a larger condition number (which is β/α),
resulting in slower convergence and necessitating more data
for achieving a similar performance. Thus, the particular
value of α = 104 balances both these factors for our problem
instance. In section V-C, we present a sensitivity analysis
with different values of α.

(a) Network topology

(b) Travel time on edges

(c) Mean demand between OD pairs

Fig. 1: Description of the Sioux Falls dataset

B. Performance of Algorithm 1

We study the convergence of the routing policy with each
step of the gradient descent performed by Algorithm 1. Since
the impact of a routing policy is directly reflected in the
total travel time, we plot the travel cost induced by the
learned routing policy as a function of the iterates. In our
experiments, we use the average demand to both evaluate a
routing policy and solve the benchmark optimization (instead
of using the sample average approximation) for improved
computational performance. Section D of the extended ver-
sion [25] shows that this approximation induces at most
10−4% error while giving a 30X computational speedup.

For our first set of experiments, we compare the objective
values obtained by Algorithm 1 and the Baseline as a
function of sample size N . In Figure 2a, we plot the ratio
of Algorithm 1’s cost to Baseline’s cost over the course
of iterations for different values of N . For this set of
experiments, we set the privacy parameters to ϵ = 0.1 and
δ = 0.1. Note that Baseline’s cost is fixed for a given N
and is computed offline to serve as a benchmark. For a
given N , we only have N iterations since each data point
is only used once in Algorithm 1 to maintain privacy. For
all three experiments (N = 10, N = 25, N = 50), the cost
decreases monotonically with additional iterations. We note
that Algorithm 1 finds solutions that are 2% suboptimal, and
we suspect that this gap is due to differences in objective
functions arising from Algorithm 1’s regularization. Thus
our results show good performance for small sample sizes,
complementing the theoretical result from Theorem 3.

In the next set of experiments, we study the effect of
different privacy parameters on total travel time. To this end,
we compare the costs of the pre and post-noise solutions
xN , xalg from Algorithm 1. We conduct this comparison for

δ
ϵ 0.01 0.1 0.5

0.1 7.83× 10−2 9.06× 10−3 2.44× 10−3

0.5 3.97× 10−3 5.96× 10−3 2.05× 10−3

TABLE I: Percentage increase in total travel time due to
incorporating privacy.

(a) Number of data points N (b) Regularizer coefficient α

(c) Slope of latency function (d) Traffic demand

Fig. 2: Convergence dynamics of Algorithm 1 for different
parameters

ϵ ∈ {0.01, 0.1, 0.5} and δ ∈ {0.1, 0.5}. Table I presents the
percentage increase in total travel time due to the addition
of privacy noise.

The results indicate that the price of privacy, i.e., the
increase in total travel time due to the introduction of dif-
ferential privacy noise is less than 7.8× 10−2% in the worst
case. In fact, for more commonly used privacy parameters
of ϵ = 0.1 and δ = 0.1, the cost of privacy is even smaller.
One reason for this low cost of privacy is the high demand
in the traffic network, which leads to a high signal to noise
ratio for the Gaussian mechanism. Indeed, Figure 1c shows
that every OD pair typically has a few hundred trips.

C. Sensitivity

We now discuss the sensitivity of our algorithm to input
parameters. We fix the number of data points to N = 50
since prior results suggest that most benefits are obtained
with 50 data points. First, we study the effect of the regu-
larizer term by setting α ∈ {102, 103, 104} in Figure 2b. We
see that for larger values of α, the costs decrease faster. This
makes sense because larger α results in a lower condition
number β

α , which leads to faster convergence. We also note
that the cost ratio does not go to 1 because Algorithm 1 is
minimizing a regularized objective, while the Baseline has
no regularization.

In Figure 2c, we vary the slope for the latency function
qe. We consider three cases where the slope is chosen such
that the link latency at capacity is 1.5, 2, and 3 times the
free flow latency. Note that changing the latency sensitivity
factor (ratio of latency at capacity to latency at free flow)
changes the matrix Q. Thus, for each of these experiments,
we recompute the value of β and C and set it to be equal

7475

to the largest eigenvalue of the appropriate B⊤
ΛQBΛ. We

set α = 104 and recompute the optimal costs for all three
cases. We observe that when the latency function is steeper,
i.e., the sensitivity factor is higher, the algorithm takes more
iterations to reduce the costs, but eventually ends up with
the lowest costs. This is because a larger β leads to a
larger condition number β

α , which makes convergence slow.
However, a larger β means that the ℓ2 regularizer is a smaller
proportion of the total cost, meaning that the objectives of
Algorithm 1 and Baseline become more similar, causing the
cost ratio to improve.

Finally, we vary the traffic demand in Figure 2d and
compare three cases where the demand is 0.5X, 1X, and 1.5X
the nominal demand. As the demand changes, B changes,
and we recompute β and C. We observe that for the same
value of α, higher demand leads to better convergence and
lower costs. This is because higher demand increases the
travel time, making the ℓ2 regularizer a smaller proportion
of Algorithm 1’s objective. The objective functions becoming
more similar leads to the cost ratio being closer to 1.

VI. CONCLUSION

In this paper, we study the problem of learning net-
work routing policies from privacy-sensitive user data. We
presented a new asymptotically optimal algorithm to learn
privacy-preserving routing policies by solving a reformulated
network flow problem using a differentially private variant
of stochastic gradient descent. Finally, our simulations on
a Sioux Falls road network suggests that for realistic travel
demands, we can learn differentially private routing policies
that result in only a 2% suboptimality in terms of total travel
time. There are several interesting directions for future work.
First, our algorithm can be naturally used for tracking non-
stationary demand distributions (as opposed to the stationary
demand model uses in this paper). Second, we can extend
our formulation of request-level differential privacy, where
the goal is to occlude the influence of a single trip on
the algorithm’s output, to a broader notion of user-level
differential privacy, where the goal is to occlude the influence
of all trips belonging to the same user on the algorithm’s
output. Finally, we chose to design a private version of
gradient descent since its properties lead to a clean analysis,
but similar ideas can be used for algorithms like Frank-Wolfe
which are more specialized for network flow problems.

REFERENCES

[1] N. Carlini, F. Tramèr, E. Wallace, M. Jagielski, A. Herbert-Voss,
K. Lee, A. Roberts, T. B. Brown, D. Song, Ú. Erlingsson, A. Oprea,
and C. Raffel, “Extracting training data from large language models,”
in 30th USENIX Security Symposium, USENIX Security 2021, August
11-13, 2021. USENIX Association, 2021, pp. 2633–2650.

[2] C. Dwork, F. McSherry, K. Nissim, and A. D. Smith, “Calibrating
noise to sensitivity in private data analysis,” in Theory of Cryptography
Conference, vol. 3876. Springer, 2006, pp. 265–284.

[3] A. R. Beresford and F. Stajano, “Location privacy in pervasive
computing,” IEEE Pervasive computing, vol. 2, no. 1, pp. 46–55, 2003.

[4] J. W. Kim, K. Edemacu, and B. Jang, “Privacy-preserving mechanisms
for location privacy in mobile crowdsensing: A survey,” Journal of
Network and Computer Applications, p. 103315, 2022.

[5] C.-Y. Chow, M. F. Mokbel, and X. Liu, “Spatial cloaking for anony-
mous location-based services in mobile peer-to-peer environments,”
GeoInformatica, vol. 15, no. 2, pp. 351–380, 2011.

[6] C. Dwork, “Differential privacy: A survey of results,” in International
conference on theory and applications of models of computation.
Springer, 2008, pp. 1–19.

[7] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game or A completeness theorem for protocols with honest majority,”
in STOC 1987, New York, New York, USA, A. V. Aho, Ed. ACM,
1987, pp. 218–229.

[8] L. Sweeney, “k-anonymity: A model for protecting privacy,” Inter-
national Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, vol. 10, no. 05, pp. 557–570, 2002.

[9] M. Ghasemzadeh, B. C. Fung, R. Chen, and A. Awasthi, “Anonymiz-
ing trajectory data for passenger flow analysis,” Transportation re-
search part C: emerging technologies, vol. 39, pp. 63–79, 2014.

[10] B. Y. He and J. Y. Chow, “Optimal privacy control for transport
network data sharing,” Transportation Research Part C: Emerging
Technologies, vol. 113, 2020.

[11] Z. Wang, J. Hu, R. Lv, J. Wei, Q. Wang, D. Yang, and H. Qi, “Per-
sonalized privacy-preserving task allocation for mobile crowdsensing,”
IEEE Transactions on Mobile Computing, vol. 18, no. 6, pp. 1330–
1341, 2018.

[12] K. Yan, G. Lu, G. Luo, X. Zheng, L. Tian, and A. M. V. V. Sai,
“Location privacy-aware task bidding and assignment for mobile
crowd-sensing,” IEEE Access, vol. 7, pp. 131 929–131 943, 2019.

[13] S. Cai, X. Lyu, X. Li, D. Ban, and T. Zeng, “A trajectory released
scheme for the internet of vehicles based on differential privacy,” IEEE
Transactions on Intelligent Transportation Systems, 2021.

[14] C. Xu, Y. Ding, C. Chen, Y. Ding, W. Zhou, and S. Wen, “Personalized
location privacy protection for location-based services in vehicular
networks,” IEEE Transactions on Intelligent Transportation Systems,
2022.

[15] Y. Gong, C. Zhang, Y. Fang, and J. Sun, “Protecting location privacy
for task allocation in ad hoc mobile cloud computing,” IEEE Trans-
actions on Emerging Topics in Computing, vol. 6, no. 1, pp. 110–121,
2015.

[16] M. E. Gursoy, L. Liu, S. Truex, and L. Yu, “Differentially private and
utility preserving publication of trajectory data,” IEEE Transactions
on Mobile Computing, vol. 18, no. 10, pp. 2315–2329, 2018.

[17] K. Al-Hussaeni, B. C. Fung, F. Iqbal, G. G. Dagher, and E. G. Park,
“Safepath: Differentially-private publishing of passenger trajectories in
transportation systems,” Computer Networks, vol. 143, pp. 126–139,
2018.

[18] Y. Li, D. Yang, and X. Hu, “A differential privacy-based privacy-
preserving data publishing algorithm for transit smart card data,”
Transportation Research Part C: Emerging Technologies, vol. 115,
p. 102634, 2020.

[19] R. Dong, W. Krichene, A. M. Bayen, and S. S. Sastry, “Differential
privacy of populations in routing games,” in 2015 54th IEEE Confer-
ence on Decision and Control (CDC), 2015, pp. 2798–2803.

[20] S. Han, U. Topcu, and G. J. Pappas, “Differentially private distributed
constrained optimization,” IEEE Transactions on Automatic Control,
vol. 62, no. 1, pp. 50–64, 2017.

[21] X. Wu, F. Li, A. Kumar, K. Chaudhuri, S. Jha, and J. F. Naughton,
“Bolt-on differential privacy for scalable stochastic gradient descent-
based analytics,” in Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD Conference 2017,
Chicago, IL, USA, May 14-19, 2017. ACM, 2017, pp. 1307–1322.

[22] V. Feldman, I. Mironov, K. Talwar, and A. Thakurta, “Privacy amplifi-
cation by iteration,” in 59th IEEE Annual Symposium on Foundations
of Computer Science, FOCS. IEEE Computer Society, 2018, pp.
521–532.

[23] V. Feldman, T. Koren, and K. Talwar, “Private stochastic convex
optimization: optimal rates in linear time,” in Proccedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing, STOC.
ACM, 2020, pp. 439–449.

[24] V. Pandurangan, “Riding with the stars: Passenger privacy in the nyc
taxicab dataset,” Available Online, 2014.

[25] M. Tsao, K. Gopalakrishnan, K. Yang, and M. Pavone, “Differ-
entially private stochastic convex optimization for network routing
applications,” arXiv preprint, 2022, extended version. Available at
https://arxiv.org/abs/2210.14489.

[26] C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy,” Found. Trends Theor. Comput. Sci., vol. 9, no. 3-4, pp. 211–
407, 2014.

[27] “Transportation networks for research,” github.com/bstabler/
TransportationNetworks, 2016, accessed January 20, 2021.

7476

