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Abstract— Manual tuning required for Model Predictive
Control (MPC) schemes can be labor-intensive and prone to
errors due to the requisite domain expertise. In this paper,
we propose a new procedure called SelfMPC: an automated,
data-driven method for tuning MPC for an unknown system
within a specific nonlinear class. We pursue a maximum
likelihood approach using Gaussian processes to uncover system
dynamics and to optimize a tracking cost function. We show the
effectiveness of our approach through extensive simulations on
a benchmark case study, illustrating its superior performance
over traditional manual tuning techniques. Furthermore, we
offer formal assurances regarding the stability and robustness
of the resulting controller, ensuring its versatility across diverse
operating conditions and uncertainties within the system.

Index Terms— MPC, Automated cost tuning, Data-driven
control, Nonlinear systems

I. INTRODUCTION

Model Predictive Control (MPC) is recognized as a ver-
satile control strategy [1], [2], with broad applications,
spanning industrial processes [3], traffic management [4],
[5], energy management systems [6], and biomedical pro-
cesses [7], [8] etc. However, the practical implementation of
MPC methods still faces significant challenges.

One of the fundamental obstacles lies in acquiring a reli-
able system model capable of accurately predicting the future
trajectory based on the input and current state. The perfor-
mance of the conventional MPC methods heavily depends
on the accuracy of the model, prompting the development
of robust MPC [9], [10] or stochastic MPC designs [11].
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These approaches enhance the MPC method’s ability to tol-
erate model imprecision. Clearly, when the system model is
inaccessible, conventional MPC design would fail to achieve
its objectives due to the unavailability of future system
trajectory predictions. To overcome this obstacle, data-driven
methodologies that assume unknown models, but leverage
pre-collected data demonstrate their efficacy. Recent exam-
ples include Data-enabled Predictive Control (DeePC) [12]
or Data-driven Predictive Control (DDPC) [13].

Another significant, yet often elusive challenge in the prac-
tical implementation of MPC lies in tuning or selecting crit-
ical hyperparameters, notably the weighting matrices within
the cost function and the prediction horizon. Achieving the
right balance among these hyperparameters is imperative to
ensure that the control strategy aligns seamlessly with the
specific constraints and requirements of the controlled sys-
tem. Successfully overcoming these hurdles is critical in fully
capitalizing on the potential of MPC, thereby unleashing its
advantages across a diverse array of real-world applications.

In situations where datasets containing desired closed-loop
control examples are available, alternative methodologies like
inverse optimal control or inverse reinforcement learning [14]
can be utilized to decipher the preferences and objectives
of the controller based on observed actions. In cases where
such datasets are not available, conventional practice often
resorts to potentially cumbersome trial-and-error procedures.
More recently, innovative black-box optimization tools [15],
[16] have been introduced to improve the efficiency of
this calibration process. However, employing the aforemen-
tioned iterative optimization techniques typically requires
conducting closed-loop experiments, which may not always
be feasible due to safety concerns related to implementing
intermediate suboptimal controllers or due to the inherent
costs associated with experiments.

Moreover, as we narrow our focus to model-free predictive
control for nonlinear systems, the existing challenge persists.
Although some recent literature has begun addressing this
issue [17], [18], the tuning of costs still hinges on experi-
ments conducted on the target system. This dependency on
experimental data for cost tuning often causes suboptimal
performance in certain application scenarios.

In this paper, we extend the method introduced in [19] to
address the design of the MPC cost function for reference
tracking. We specifically target scenarios where the system
model is unknown but belongs to a certain nonlinear class,
and where some dataset, collected either offline or online, is
available to the designer. We assume that the system model
can be learned using Gaussian process regression [20], [21].
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Within this framework, we demonstrate that the outcomes of
model learning can be utilized to formulate the task of MPC
tuning by framing cost design as a Maximum Likelihood
Estimation Problem. Essentially, we propose that the objec-
tive of tracking a specific reference output can be expressed
as maximizing the likelihood that the model’s output coin-
cides with this given reference. This formulation naturally
incorporates not only the nominal predictions produced by
the model, but also the estimates of the covariance func-
tion generated by the Bayesian learning approach. The key
distinction between our approach and existing data-driven
methods lies in the automatic determination of weighting
matrices without the need for closed-loop experiments. These
automatically generated weighting matrices are “optimal”
in a maximum likelihood sense, and inherently account for
the accuracy of the learned model through the covariance
matrix. As a result, our formulation of the MPC problem
does not require additional regularization terms, which sets it
apart from other methods such as stochastic implementations
of DeePC [22], [23]. Furthermore, we illustrate, through a
simulation example, how this formulation, which we refer
to as Self cost-tuning MPC (SelfMPC), outperforms using
a randomly chosen or slightly tuned weighting matrix, even
with the same prediction strategy to obtain the future trajec-
tories.

Organization. In Section II, we formally define the prob-
lem targeting a class of nonlinear systems. Section III is
devoted to illustrating the data-driven method that automat-
ically tunes the cost of the MPC within a Bayesian learning
framework. Moreover, we briefly discuss the extension of our
proposed control strategy to an autoregressive framework in
Section IV. Subsequently, Section V showcases a simulation
case study illustrating the effectiveness of our proposed
algorithm. Finally, some concluding remarks are stated in
Section VI.

Notation. We denote by R and N the set of real and natural
numbers, respectively (0 ∈ N). Given n,m ∈ N, Rn×m is the
set of n ×m matrices and Rn is the set of column vectors
of dimension n. Furthermore, 0n×m ∈ Rn×m is the zero
matrix, 1n×m is an n ×m matrix of ones, and In ∈ Rn×n

is the identity matrix. Given n, i, j ∈ N and a sequence
x : N → Rn, xi ∈ Rn is the ith component of x and, if j ≥ i,
xi:j = (xh)

j
h=i ∈ Rn(j−i+1), otherwise xi:j is an empty

tuple. With a slight abuse of notation, we use tuples of real
numbers and column vectors interchangeably. The matrix
diag(M1, . . . ,Mn) is a block diagonal matrix composed of
the matrices M1, . . . ,Mn. Given two matrices A,B, A⊗B is
their Kronecker product. Given a symmetric positive definite
matrix Q ∈ Rn×n and x ∈ Rn, ∥x∥2Q = x⊤Qx and
∥x∥2 = x⊤x. For the sake of brevity, we denote with
“density” the probability density function. Given a random
variable x ∈ X with density π : X → [0,∞], we write
x ∼ π(·). Given p ∈ N, µ ∈ Rp and Σ ∈ Rp×p, N (· |µ,Σ)
denotes the density of the p-dimensional Normal distribution
with mean µ and covariance matrix Σ.

II. PROBLEM STATEMENT

Consider a nonlinear system described with the following
equations

∀t ∈ N≥s−1, yt+1 = g(ut−s+1:t) + wt (1a)
∀t ∈ N, zt = Cyt (1b)

where yt ∈ Rny , ut ∈ Rnu and zt ∈ Rnz denote the
measurements, the input variables and the variables that the
designer intend to control at time t, respectively. Moreover,
wt is the noise that affects yt, and s ∈ N is the order of
the model, i.e. the number of past input measurements that
affect the output. Note that g : Rsnu → Rny is an unknown
function to the designer. Then we consider the following
stochastic assumption on the stochastic process w.

Assumption 1: The stochastic process w is a white process
and, for every t ∈ N, wt ∼ N

(
·
∣∣0nw×1,W

)
where W ∈

Rnw×nw is a positive definite matrix.
Since the system we intend to control is unknown, we

assume that data collected from the underlying plant are
available to the designer. In particular, at every time instant
t ∈ N, we assume to have at our disposal two datasets:

(i) Identification dataset:

Dt
id :=

{
(ui, yi) : ta(t) ≤ i ≤ tb(t)

}
. (2)

This dataset contains the input/output data used for
identification, which will be exploited for learning the
behavior of the system (see Section III-A.1).

(ii) Prediction dataset:

Dt
pr :=

{
ui : t− s+ 1 ≤ i ≤ t− 1

}
. (3)

This dataset is composed of the input data used for
predicting the future system state (see Section III-A.3).

Note that ta, tb : N → N defines the time range of
the measurements used for identification. Therefore, at time
t ∈ N, we have at our disposal tb(t)−ta(t)+1 measurements
for identification. Furthermore, the two datasets are not
necessarily disjointed. If tb(t) = t, the algorithm is set to
use newly collected samples to update the controller logic.
Now, given ta and tb, we define the set

T =
{
t ∈ N :

(
t > tb(t)

)
∧
(
tb(t)− ta(t) + 1 > s

)}
.

The set T is the set of time instants where is possible to
apply the proposed controller. In particular, the first condition
(t > tb(t)) guarantees that we are in a time instant when all
the measurements are available, and the second condition
(tb(t)− ta(t) + 1 > s) guarantees that we have enough data
to initiate the controller design (we will clarify this point
later).

Throughout this paper, we aim to devise an MPC-
fashioned controller to drive the unknown system described
in (1) to a desired trajectory r(t) by only using Dt

id and Dt
pr.

Moreover, the proposed method is capable of tuning the MPC
gains automatically, which will be illustrated explicitly in the
next section.
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III. DATA-DRIVEN SELFMPC DESIGN FOR NONLINEAR
FIR MODELS

In this section, we provide a comprehensive overview of
the design of the proposed data-driven SelfMPC applied
to the nonlinear system (1). As introduced in [19], he
SelfMPC design consists of two key stages: (i) Firstly, we
detail the method for predicting the future output distribution
utilizing the available data. This step is crucial for effectively
steering the system towards the desired reference trajectory.
(ii) Subsequently, we elucidate the auto-tuning procedure for
the cost function based on the derived output distribution.
This procedure ensures that the MPC controller adapts dy-
namically to changes in the system dynamics, enhancing its
robustness and performance.

A. Identification and Prediction

In order to define the distribution of the unknown function
g in (1) given the available dataset Dt

id at time t ∈ T, we
need to define the distribution of the data given g and assign
a priori distribution on g.

1) Data Distribution: Firstly, for all t ∈ T, we use Dt
id

to define the following vectors:

Yt :=
[
yi+1 : i ∈ Iid

]
∈ RNtny ,

Gt :=
[
g(ui−s+1:i) : i ∈ Iid

]
∈ RNtny ,

Wt :=
[
wi : i ∈ Iid

]
∈ RNtny ,

where Iid :=
{
ta(t)+s−1, . . . , tb(t)−1

}
and Nt := tb(t)−

ta(t) − s + 1 denote the index set and the number of data
that we desire to use at time t, respectively. These vectors
are always well-defined since Nt ≥ 1 for all t ∈ T. With the
definitions of Yt, Gt, and Wt, we have

∀t ∈ N, Yt = Gt +Wt (4)

from the system described in (1). Since Gt is a deterministic
vector and Wt is a vector of Normal random variable, we
have

Yt

∣∣Gt ∼ N
(
·
∣∣Gt, W̄Nt

)
where

W̄Nt
:= diag(W,W, . . . ,W︸ ︷︷ ︸

Nt

).

Note that the variance of Wt equals the variance of Yt

∣∣Gt.
2) Prior Distribution: Before defining the prior on the

unknown function, it is useful to introduce the concept of
reproducing kernel for vector-valued Gaussian Processes.

Definition 1: Let na, nb ∈ N. Then, a function k : Rna ×
Rna → Rnb×nb is called reproducing kernel if and only if:

(i) given a, b ∈ Rna , k(a, b) = k(b, a)⊤;
(ii) given a ∈ Rna , k(a, a) is positive semi-definite;

(iii) given n ∈ N, {aj : 1 ≤ j ≤ n} ⊂ Rna and {cj : 1 ≤
j ≤ n} ⊂ Rnb ,

n∑
i=1

n∑
j=1

c⊤i k(ai, aj)cj ≥ 0.

Definition 2: Let na, nb ∈ N, µ : Rna → Rnb , and a
reproducing kernel k : Rna × Rna → Rnb×nb . Then a
random function f : Rna → Rnb is distributed according
to a Gaussian Process with mean µ and variance k if and
only if

∀n ∈ N, ∀{aj : 1 ≤ j ≤ n} ⊂ Rna ,f(a1)...
f(an)

∼N

·
∣∣∣∣∣∣∣
µ(a1)...
µ(an)

,
k(a1, a1) · · · k(a1, an)

...
. . .

...
k(an, a1) · · · k(an, an)


.

Then, we write f ∼ GP(µ, k).
For a good reviews on Gaussian Processes for vector-valued
process refer to [24], [25]. With these definitions in mind,
we assume that

g ∼ GP(µ, k)

where µ : Rsnu → Rny and k : Rsnu × Rsnu → Rny×ny

is a reproducing kernel. Therefore, using the definition of
Gaussian Process, we obtain

Gt ∼ N
(
·
∣∣mt,Kt

)
where

mt := [m(ui−s+1:i) : i ∈ Iid] ∈ RNtny ,

Kt :=

[
k(ui−s+1:i, uj−s+1:j) :

{
i ∈ Iid
j ∈ Iid

]
∈ RNtny×Ntny .

3) Posterior Distribution: Firstly, for all t ∈ T, we define
the following vectors that contain the “future” data:

Yt :=
[
yi+1 : i ∈ Ipr

]
∈ Rmny ,

Gt :=
[
g(ui−s+1:i) : i ∈ Ipr

]
∈ Rmny ,

Wt :=
[
wi : i ∈ Ipr

]
∈ Rmny

where Ipr :=
{
t, . . . , t + m − 1

}
. Notice that Gt depends

on the inputs ut−s+1:t+m−1. This vector can be divided into
two parts: the past input measurements ut−s+1:t−1 that are
already available, and the control variable ut+1:t+m−1 that
we need to select to steer the system. Then, by consider-
ing (4) we write[

Yt

Yt

]
=

[
Gt

Gt

]
+

[
Wt

Wt

]
Since

[
Gt,Gt

]⊤
is a deterministic vector and

[
Wt,Wt

]⊤
is a vector of Normal random variable, we have[

Yt

Yt

]∣∣∣∣[Gt

Gt

]
∼ N

(
·
∣∣∣∣[Gt

Gt

]
,

[
W̄Nt

0nw×m

0m×nw
W̄m

])
(5)

where the variance of Wt is given by

W̄m := diag(W,W, . . . ,W︸ ︷︷ ︸
m

).

Furthermore, from the definition of Gaussian process, we
obtain [

Gt

Gt

]
∼ N

(
·
∣∣∣∣[ mt

mt

]
,

[
Kt K⋆

t

(K⋆
t )

⊤
Kt

])
(6)
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where

mt := [m(ui−s+1:i) : i ∈ Ipr] ∈ Rmny ,

Kt :=

[
k(ui−s+1:i, uj−s+1:j) :

{
i ∈ Ipr
j ∈ Ipr

]
∈ Rmny×mny ,

K⋆
t :=

[
k(ui−s+1:i, uj−s+1:j) :

{
i ∈ Iid
j ∈ Ipr

]
∈ RNtny×mny .

From the Normal distribution given in (5) and (6), we obtain[
Yt

Yt

]
∼ N

(
·
∣∣∣∣[mt

mt

]
,

[
Kt + W̄Nt

K⋆
t

(K⋆
t )

⊤
Kt + W̄m

])
.

Finally, from the conjugacy properties of the Normal distri-
bution, we have

Yt

∣∣Yt ∼ N
(
·
∣∣m̂t, Σ̂t

)
(7)

where

m̂t = mt + (K⋆
t )

⊤ (
Kt + W̄Nt

)−1(
Yt −mt

)
∈ Rmny

Σ̂t = Kt + W̄m − (K⋆
t )

⊤(
Kt + W̄Nt

)−1
K⋆

t ∈ Rmny×mny

B. Automated Data-driven MPC Design

From (1b), we know that

∀t ∈ N, ∀m ∈ N, zt+1:t+m = C̄m yt+1:t+m = C̄mYt

where

C̄m := diag(C,C, . . . , C︸ ︷︷ ︸
m

) ∈ Rmnz×mny .

Therefore, using (7), we have

zt+1:t+m|Yt ∼ N
(
·
∣∣∣C̄mm̂t, C̄mΣ̂tC̄

⊤
m.

)
Naturally, the future control variable is selected by solving
the optimization problem

argmax
ut:t+m−1

N
(
rt+1:t+m

∣∣∣C̄mm̂t, C̄mΣ̂tC̄
⊤
m

)
. (8)

Instead of solving this optimization problem, it is convenient
to consider the equivalent problem

argmin
ut:t+m−1

−2 logN
(
rt+1:t+m

∣∣∣C̄mm̂t, C̄mΣ̂tC̄
⊤
m

)
.

By logarithm the cost, we preserve the monotonicity while
simplifying the calculation, which gives

argmin
ut:t+m−1

δt(ut:t+m)
⊤
(
C̄mΣ̂tC̄

⊤
m

)−1

δt(ut:t+m)+

+ log det
(
C̄mΣ̂tC̄

⊤
m

)
(9)

where δt(ut:t+m) := rt+1:t+m − C̄mm̂t.
Note that the terms m̂t and Σ̂t depend on ut:t+m−1. This

implies that we are reshaping the posterior distribution by
optimally choosing the future control variable following (8).
It is worth mentioning that if we use the offline data, we are
able to compute almost all the parameters composing m̂t and
Σ̂t except K⋆

t beforehand. It is well known that this method

heavily depends on the choice of kernel for constructing Kt,
K⋆

t and Kt.
Remark 1: The structure of System (1) inherently implies

the stability of our design. Thus, for nonlinear FIR systems
the proposed approach does not impact the stability proper-
ties of the model.

The optimization (9) is non-convex, and it can be chal-
lenging to solve. However, it shares a similar structure of
the well-known model selection problem described in [20,
Sec. 5.4.1].

IV. AUTOREGRESSIVE SYSTEM ANALYSIS

In this section, we discuss the challenges and potential
methods for extending our SelfMPC algorithm to an un-
known autoregressive system.

Consider an autoregressive system driven by input with
Gaussian noise, described by the equation:

∀t ∈ N yt = gt(y0:t−1, u0:t) + wt

where yt ∈ Rny and ut ∈ Rnu represent the measurable out-
put and input variables at time t, respectively, wt denotes the
noise affecting yt, and, for every t ∈ N, gt : Rtny ×R(t+1)nu

is an unknown function to the designer. We maintain the
same stochastic assumption on the process w as outlined in
Assumption 1.

Given the general nonlinear nature of (gt)t∈N, the distri-
bution of the prediction of yt:t+m given the past available
measurements cannot be assessed analytically. Consequently,
estimating the distribution of future measurements based on
current measurements can only be achieved numerically. As
a result, the cost function following the SelfMPC algorithm
cannot have an analytical expression, rendering analysis
challenging.

In the linear scenario where the function gt is linear for
every t ∈ N, we have

∀t ∈ N yt = aty0:t−1 + btu0:t + wt

where at ∈ Rnyt and bt ∈ Rnu(t−1) for all t ∈ N. For com-
pactness, we define θ = (at, bt)t∈T. Here, the prediction of
yt:t+m given the past available measurements is distributed
according to a Normal distribution with variance that depends
on W and mean as a nonlinear function of at and bt. Hence,
it is not possible to define a prior distribution on θ such
that the joint distribution of yt:t+m, θ can be determined
analytically. Thus, even in the linear case, retrieving the cost
function of SelfMPC is difficult.

Alternatively, frequentist methods for identifying θ could
be considered as an approach to tackle this challenge. As-
suming we collect a sufficient amount of data to estimate the
true parameter θ◦, with the frequentist perspective in mind,
we treat the parameter as deterministic values and aim to
minimize the gap between our estimate of the parameter and
their true values. According to the central limit theorem, we
have √

Nt

(
θ◦ − θ̂

)
∼ N

(
·
∣∣0(na+nb)×1,Σθ

)
(10)
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where θ̂ denotes the estimate of θ◦ and Nt is the number of
independent observations. It is worth noting that the process
or measurement noise is not requrired to be Gaussian for (10)
to hold. Thus, we approximate the parameter of the system
as:

θ ∼ N
(
·
∣∣∣∣ θ̂, 1

Nt
Σθ

)
.

We then proceed to derive the probability density of the
controlled variable zt with future m steps:

p(zt+1:t+m|D) =

∫
p(zt+1:t+m|θ) · N

(
·
∣∣∣∣ θ̂, 1

Nt
Σθ

)
dθ.

It is important to note that p(zt+1:t+m|D) is also modified
based on the choice of ut:t+m−1, allowing us to select future
inputs to maximize the likelihood of zt+1:t+m aligning with
the reference signal.

V. NUMERICAL EXAMPLE

To evaluate the efficacy of the proposed SelfMPC scheme,
we present a numerical example in the form of (1). The
unknown nonlinear model under consideration is described
by the following representation

yt+1 =
−ut−2

3
√
1 + ut−1

+
(ut + 10)(1− ut−1)

10e
ut−2
10 +1 − 1

+

+ ut−2e
ut
8 + wt

zt = yt

(11)

where the stochastic influence wt is represented by Gaussian
noise, with a standard deviation of 5 · 10−2.

In this simulation example, we incorporate the SelfMPC
algorithm, as detailed in Section III, to control the unknown
nonlinear model specified in (1). We implement the SelfMPC
algorithm with two fixed prediction horizons m = 5 or
m = 10 and impose input bounds of 3 ≤ u ≤ 5 to
generate the control input sequence. We gather a dataset of
N = 500 measurements from the plant, introducing white
noise uniformly distributed within the input bounds. Note
that this collected dataset is also influenced by the additive
noise wt as outlined in (11). In all the simulation, we use
the kernel k(a, b) = λ exp−β∥a− b∥2 where λ, β ∈ (0,∞)
are selected using the empirical Bayes approach [20, Section
5.4.1] based on the collected data. All the optimization
problems are solved using the Matlab optimization toolbox.
Furthermore, the variance of the noise W is selected using
the same procedure. Subsequently, we assess the perfor-
mance of the proposed SelfMPC method by steering the
unknown system described in (11) to track a reference signal
which is a square wave ranging from 2.5 to 4 with different
amplitude levels as shown in Fig. 2. The evaluation is
conducted using the performance index T−1∥zt − rt∥ where
T = 120 is the length of the considered time window.
The oscillatory performance in Fig. 2 can be improved by
increasing the prediction horizon m, allowing the controller
to better anticipate future dynamics.

To compare the performance of our design with conven-
tional approaches, we adopt a predictive control strategy

0.25 0.3 0.35

S-8
S-7
S-6
S-5
S-4
S-3
S-2
S-1

Fig. 1. Box plots of the control performance index on the controlled
variable zt over 100 Monte Carlo simulations.

0 20 40 60 80 100 120

1

2

3

4

5

zt S-1 (med)
zt S-4 (med)
rt (reference)

Fig. 2. Performance of the proposed SelfMPC tracking the reference signal
rt with m = 5 over 100 Monte Carlo simulations (shaded area).

using the same identification and prediction strategy outlined
in Section III-A. However, we employ a fixed set of cost
weights instead. In other words, instead of considering the
cost function in (9), we minimize

argmin
ut:t+m

∥∥δt(ut:t+m)
∥∥2
Q
+
∥∥ut+1:t+m

∥∥2
R

(12)

where Q,R ∈ Rm×m are weight matrices. We consider three
different choices for Q and R to emulate a trial and error
tuning procedure. In particular, we selected the following
three choices:

Q = 0.1Im, R = 0.01Im, (13)
Q = 5Im, R = 0.01Im, (14)
Q = Im, R = 0.01Im. (15)

Moreover, we investigate the impact of different prediction
horizons, considering both a shorter horizon (m = 5) and a
longer horizon (m = 10). The comprehensive evaluation of
the controller performance using the index described before
is visualized in Fig. 1 where the examined control strategies
with different settings are listed as

S-1. SelfMPC with m = 5.
S-2. MPC of (12) with weights in (13) with m = 5.
S-3. MPC of (12) with weights in (14) with m = 5.
S-4. MPC of (12) with weights in (15) with m = 5.
S-5. SelfMPC with m = 10.
S-6. MPC of (12) with weights in (13) with m = 10.
S-7. MPC of (12) with weights in (14) with m = 10.
S-8. MPC of (12) with weights in (15) with m = 10.
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S-8
S-7
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S-4
S-3
S-2
S-1

Fig. 3. Box plots (x-axis with logarithm scale) of the variance of the input
variable ut when tracking a constant (from t = 61 to t = 90) over 100
Monte Carlo simulations.

From the results depicted in Fig. 1, it is evident that the
performance of predictive control with fixed cost gains is in-
fluenced by the choice of gain values. However, tuning these
gains, even for simulation purposes, can be prohibitively
costly. In contrast, the data-driven SelfMPC method exhibits
decent performance compared to using pre-selected fixed
cost gains. Particularly noteworthy is the observation that
the performance of fixed cost gains may degrade as the
prediction horizon increases, whereas the proposed SelfMPC
method consistently enhances its performance. This discrep-
ancy in performance can be attributed to the fact that fixed
gain selection fails to account for the uncertainty inherent in
predictions, often relying too heavily on unreliable predic-
tions, especially those further into the future. In contrast, our
proposed SelfMPC approach automatically adjusts the cost
weights, taking into consideration the reliability of predic-
tions, thereby yielding significantly improved performance.
Moreover, we illustrate the variance of the input signal when
tracking a constant reference (from t = 61 to t = 90) for all
the listed control strategies in Fig. 3.

VI. CONCLUSIONS

In this paper, we address the challenges associated with
the robust control method Model Predictive Control (MPC).
Particularly, when faced with an unknown system and the
tuning of hyperparameters becomes costly or even impracti-
cal, conventional MPC methods are inadequate for handling
such scenarios. To overcome these challenges, we introduce
Maximum Likelihood MPC (SelfMPC) tailored for a class of
unknown nonlinear systems. This innovative approach selects
the control sequence by maximizing the likelihood that the
system output aligns with the desired reference trajectory.
We demonstrate that this algorithm automatically tunes the
gains of the cost function while providing a guarantee of
stability. In this sense, SelfMPC becomes a valuable tool
for data-driven control, utilizing Gaussian process regression
for model learning and eliminating the need for additional
tuning. As part of our future work, we aim to extend the
application of the SelfMPC method to autoregressive systems
with unknown parameters.
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