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Abstract— We study the convex hulls of reachable sets of
nonlinear systems with bounded disturbances. Reachable
sets play a critical role in control, but remain notoriously
challenging to compute, and existing over-approximation
tools tend to be conservative or computationally expensive.
In this work, we exactly characterize the convex hulls of
reachable sets as the convex hulls of solutions of an ordi-
nary differential equation from all possible initial values of
the disturbances. This finite-dimensional characterization
unlocks a fast sampling-based method to accurately over-
approximate reachable sets. We give applications to neural
feedback loop analysis and robust model predictive control.

I. INTRODUCTION

Forward reachability analysis plays a critical role in
control theory and robust controller design. Generally, it
entails characterizing all states that a dynamical system
can reach at any time in the future. As such, reachability
analysis allows certifying the performance of feedback
loops under disturbances and designing controllers with
robustness properties. In robust model predictive control
(MPC) for instance, it is used to construct tubes around
nominal state trajectories to ensure that constraints are
satisfied in the presence of external disturbances.

In this work, we study the following forward reach-
ability analysis problem. Let n∈N be the state dimen-
sion, f : Rn → Rn be a function defining the dynamics,
and W ⊂ Rn be a compact set of disturbances. Given
a time T > 0 and an initial state x0 ∈ Rn, we con-
sider systems characterized by the ordinary differential
equation (ODE)

ẋ(t) = f(x(t)) + w(t), t ∈ [0, T ], x(0) = x0, (1)

where the disturbances w : [0, T ] → W are assumed
to be integrable (w ∈ L∞([0, T ],W)). Under standard
smoothness assumptions (see Assumptions 1-2), the
ODE (1) has a unique solution, denoted by xw(·). For
any time t ∈ [0, T ], we define the reachable set

Xt =

{
xw(t) = x0 +

∫ t

0

(
f(xw(s)) + w(s)

)
ds

: w ∈ L∞([0, T ],W)

}
, (2)

which characterizes all states that are reachable at time
t for some disturbance w ∈ L∞([0, T ],W).
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Fig. 1: Theorem 1 states that the convex hulls H(Xt) of
the reachable sets Xt can be computed by (a) integrating an
augmented ODE (see ODEw(0)) for different initial values of
the disturbances w(0) ∈ ∂W , and (b) taking the convex hulls
of the resulting extremal state trajectories xw(0).

Reachability analysis of nonlinear dynamical systems
is challenging. Indeed, from (2), computing the reach-
able sets seemingly requires evaluating an infinite num-
ber of state trajectories for all possible disturbances.1

Due to the complexity of the problem, many existing
tools seek convex over-approximations of the reachable
sets. However, current methods tend to be conservative
or computationally expensive, see Sections II and V.

In this work, we provide a new characterization of the
convex hulls of the reachable sets of dynamical systems
of the form (1), under smoothness assumptions of f and
W (see Assumptions 1 and 2). Specifically, denoting by
H(A) the convex hull of a set A ⊂ Rn, we show that

H(Xt) = H(F (∂W, t)) for all t ∈ [0, T ], (3)

where F (w(0), t) is the solution of an ODE with initial
conditions w(0) on the boundary of W , see Theorem 1
and ODEw(0). Thus, the convex hulls of the reachable
sets can now be computed as the convex hull of forward
propagations of an ODE for different initial disturbance
values. Equation (3) represents a significantly simpler
(finite-dimensional) characterization of the convex hulls.

This result suggests a simple approach (Algorithm 1)
to estimate the convex hulls H(Xt) by integrating an
ODE from a sample of initial conditions. This method
allows efficiently tackling notoriously challenging prob-
lems, such as with neural network controllers in the loop
(see Section V). This characterization also informs the
design of a robust MPC approach (Algorithm 3) that we
demonstrate on a robust spacecraft attitude control task.

Outline: In Section II, we review prior work. In Section
III, we state our characterization result of the reachable

1Each reachable set Xt is the image of an infinite-dimensional set.
Indeed, by defining the maps gt : w ∈ L∞([0, T ],W) 7→ xw(t) ∈
Rn, each reachable set is expressed as Xt = gt(L∞([0, T ],W)).
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convex hulls (Theorem 1) and propose an estimation
algorithm (Algorithm 1). In Section IV, these results are
derived using convex geometry and optimal control. We
provide results in Section V and conclude in Section VI.

II. RELATED WORK

The forward reachable sets of nonlinear systems are
generally difficult to characterize. For this reason, many
existing approaches seek convex over-approximations of
the reachable sets, e.g., represented as hyper-rectangles
[1], ellipsoidal sets [2], or zonotopes [3], see [4] and [5]
for recent surveys. Existing over-approximation methods
include techniques based on conservative linearization
[3], differential inequalities [6], [7], and Taylor models
[8], [9]. In particular, systems with mixed-monotone
[10]–[12] or contracting [13] dynamics have been ex-
tensively studied, as these properties simplify the fast
computation of accurate over-approximations. To tackle
smooth systems, a standard and widely applicable ap-
proach consists of linearizing the dynamics and bound-
ing the Taylor remainder using smoothness properties of
the dynamics [2], [3], [5], [14], [15]. This method has
been widely used in robust MPC but is known to be
conservative [16], see also results in Section V.

Methods that estimate the reachable sets from a sam-
ple of state trajectories have recently found significant
interest [16]–[18]. However, the sample complexity of
these methods increases with the number of uncertain
variables. For systems with disturbances of the form
of (1), the number of uncertain variables (and thus the
approximation error) increases as the discretization is
refined. Thus, naive sampling-based methods are not
well-suited for reachability of systems with continuous-
time disturbances, see also Section V for comparisons.

The results derived in this work leverage tools from
convex geometry and optimal control. This deep connec-
tion [19] between geometry, reachability analysis, and
optimal control was previously exploited in [20], [21] to
characterize the true reachable sets of dynamical systems
of dimensions n ≤ 4 with scalar control inputs (control
inputs in [20] take the role of disturbances in (1)).
Our derivations also leverage the Pontryagin Maximum
Principle (PMP), but we consider a different class of
dynamical systems with arbitrary state dimensionality n
and the same number of disturbances and states.

Our derivations start with the idea of searching for
boundary states that are the furthest in different di-
rections (see OCPd). This approach is standard in the
setting with linear dynamics where the reachable sets
are convex [21], [22]. However, in the nonlinear setting,
the reachable sets may be non-convex, and finding the
extremal disturbance trajectories that generate boundary
states requires solving boundary-value problems (BVPs,
see BVPd). This approach was explored in the three-

dimensional case [23], but solving BVPs remains com-
putationally challenging. Although sophisticated tech-
niques exist to efficiently solve BVPs [24], [25], ad-
ditional non-trivial analysis is still required for efficient
implementation. Our results show that under the right
set of assumptions (see Assumptions 1-2), solving BVPs
is not necessary and extremal trajectories take a simple
form. The key is the additional idea of sampling initial
values of the disturbances. Studying the convex hull of
the reachable sets unlocks arguments from convex ge-
ometry that allow proving the exactness of the approach.

Notations: We denote by a⊤b the Euclidean inner
product of a, b ∈ Rn, by ∥a∥ the Euclidean norm of a ∈
Rn, by In×n the identity matrix of size n, by B(x, r) =
{y ∈ Rn : ∥y−x∥ ≤ r} the closed ball of center x ∈ Rn

and radius r ≥ 0, and by Sn−1 the unit sphere in Rn.
For any v ∈ Sn−1, we define the map Projv : Rn → Rn,

Projv(u) =
(
In×n − vv⊤

)
u = u− (v⊤u)v, (4)

which denotes the orthogonal projection onto the tangent
space of Sn−1. Given A,B ⊂ Rn, we denote by Int(A),
A, ∂A = A \ Int(A), and Ac = Rn \ A the interior,
closure, boundary, and complement of A, by dA(x) =
infa∈A ∥x − a∥ the distance from x ∈ Rn to A, and
by dH(A,B) = max(supx∈A dB(x), supy∈B dA(y)) the
Hausdorff distance between compact sets A,B⊂Rn.

Convex geometry. We denote by H(A) the convex
hull of A⊂Rn and by Ext(A) the set of extreme points of
a compact set A ⊂ Rn [26]. The next result is standard.

Lemma 1 (Support hyperplane): Let C ⊂Rn be con-
vex and closed and x ∈ ∂C. Then, there exists a support
hyperplane {y ∈ Rn : d⊤(y−x) = 0} parameterized by
some d ∈ Sn−1 such that d⊤x ≥ d⊤y for all y ∈ C.

III. THE STRUCTURE OF H(Xt)

Our results rely on the two following assumptions.
Assumption 1: f is continuously differentiable (f ∈

C1), globally Lipschitz, and its Jacobian∇f is Lipschitz.
Assumption 2: W is compact and its boundary ∂W

is an ovaloid. Equivalently, ∂W is a smooth (n − 1)-
dimensional submanifold of strictly positive curvature.

Assumption 1 is a standard smoothness assumption
[27], [28] that guarantees the existence and uniqueness
of solutions to the ODEs in (1) and (7). By multiplying
f with a smooth cutoff function whose arbitrarily large
support contains states of interest, the Lipschitzianity
assumptions are always satisfied if f ∈ C2. Assumption
2 holds ifW is a sphere or an ellipsoid, and implies that
W is strictly convex [29]. Relaxing this assumption (e.g.,
to accommodate hyper-rectangular disturbance sets) is
left for future work. Assuming that W is convex is
standard to prove that the reachable sets are compact.

Lemma 2 (Xt is compact): Assume that f and W
satisfy Assumptions 1 and 2. Then, for any t ∈ [0, T ],
the reachable set Xt defined in (2) is compact.
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Lemma 2 is standard, see e.g. [30] (from Grönwall’s
inequality, state trajectories are uniformly bounded
thanks to Assumptions 1 and 2, so Lemma 2 follows
from [30, Theorem 5.2.1] with minor adaptations).

Fig. 2: Gauss map (5).

Thanks to Assumption 2, the
Gauss map (see Figure 2)

n∂W : ∂W → Sn−1 (5)

is a diffeomorphism, see [29].
Given w(t) ∈ ∂W , n∂W(w(t))
is the unit-norm outward-
pointing normal of ∂W at w(t),
such that for all v ∈ W ,

n∂W(w(t))
⊤
(w(t)−v)≥ 0. (6)

If W is a ball of radius r, then
the Gauss map is simply given by n∂W(w) = w

∥w∥ .
Given any w(0) ∈ ∂W , we define the augmented ODE

ODEw(0):


ẋ(t) = f(x(t)) + (n∂W)−1 (q(t)) ,

q̇(t) = −Projq(t)
(
∇f(x(t))⊤q(t)

)
,
t ∈ [0, T ],

(x(0), q(0)) = (x0, n∂W(w(0))). (7)

which has a unique solution (x, q)w(0) ∈ C([0, T ],Rn×
Sn−1) thanks to Assumptions 1-2, from standard results
on solutions of ODEs [31], [32]. The next result charac-
terizes the convex hull of the reachable sets as the convex
hull of solutions to ODEw(0) for all w(0) ∈ ∂W .

Theorem 1 (Convex hulls of reachable sets H(Xt)):
Assume that f and W satisfy Assumptions 1 and 2.
Given w(0) ∈ ∂W , denote by (xw(0), qw(0)) the unique
solution of ODEw(0). Define the map

F : ∂W × [0, T ]→ Rn : (w(0), t) 7→ xw(0)(t). (8)

Then, H(Xt) = H(F (∂W, t)) for all t ∈ [0, T ] (i.e., (3)).
Theorem 1 states that integrating ODEw(0) for all

values of w(0) ∈ ∂W (i.e., evaluating F (w(0), t) for
different values of w(0)) is sufficient to recover the
convex hulls of the reachable sets H(Xt). This character-
ization significantly simplifies the reachability analysis
problem, which is now finite-dimensional and amounts
to integrating an ODE from different initial conditions.

Corollary 1 (Reachable tube): Assume that f andW
satisfy Assumptions 1 and 2 and define the map F by
(8) as in Theorem 1. Then, for all t ∈ [0, T ],

H(Xt) = H

( ⋃
w(0)∈∂W

F (w(0), [0, T ])t

)
, (9)

where F (w(0), [0, T ])t = F (w(0), t).
Corollary 1 states that to recover the reachable convex

hull H(Xt) at any time t, it suffices to integrate ODEw(0)

over [0, T ] only once for each initial disturbance value
w(0) ∈ ∂W . This result implies that all the information

Alg. 1. Estimation of the reachable set convex hulls
Input: M initial disturbances {wi(0)}Mi=1 ⊂ ∂W .
Output: Approximation of the convex hulls H(Xt).

1: for all i = 1, . . . ,M do
2: xi ← Integrate(ODEwi(0))
3: return H

(
{xi(t), i = 1, . . . ,M}

)
, t ∈ [0, T ].

required to compute the entire convex reachable tube⋃
t∈[0,T ] H(Xt) (e.g., to enforce constraints at all times

for robust MPC) is available after evaluating H(XT ).
Theorem 1 and Corollary 1 justify using Algorithm

1 to reconstruct the convex hulls H(Xt). Error bounds
for the approximation follow directly from Theorem 1
using a covering argument, see, e.g., [33, Lemma 4.2].

Corollary 2 (Error bound): Assume that (f,W) sat-
isfy Assumptions 1 and 2. Let δ > 0, Zδ ⊂ ∂W be a
δ-cover of ∂W , and F be defined as in (8). Then,

dH(H(Xt),H(F (Zδ, t))) ≤ L̄tδ for all t ∈ [0, T ], (10)

where L̄t denotes the Lipschitz constant of F (·, t).
Corollary 2 implies that padding the set estimates

H({xi(t)}) from Algorithm 1 by ϵt = L̄tδ suffices to
obtain over-approximations of the reachable sets Xt.

IV. PROOF OF THEOREM 1
We prove Theorem 1 using convex geometry and opti-
mal control. We discuss these results in Section IV-D.

A. Searching for extreme points of H(X )
Let d ∈ Sn−1 be a search direction and define the

optimal control problem (OCP)

(OCPd)

inf
w∈L∞([0,T ],W)

− d⊤x(T )

s.t. ẋ(t) = f(x(t)) + w(t),

x(0) = x0, t ∈ [0, T ].

OCPd is well-posed under Assumptions 1 and 2, i.e., it
admits at least one solution wd ∈ L∞([0, T ],W) (see,
e.g., [30, Theorem 6.2.1], and note that w(·) = 0 is
feasible). Intuitively, solving OCPd gives a reachable
state xd(T ) ∈ XT that is the furthest in the direction d.

B. Reformulating OCPd using the PMP to reduce the
search of solutions from L∞([0, T ],Rn) to Rn

The Pontryagin Maximum Principle (PMP) [19], [34],
[35] gives necessary conditions of optimality for OCPd.
As the Hamiltonian of OCPd is given by H(x,w, p) =
p⊤(f(x)+w)), for any locally-optimal solution (xd, wd)
of OCPd, there exists an absolutely-continuous function
pd : [0, T ]→ Rn, called the adjoint vector, such that

ṗd(t) = −∇f(xd(t))
⊤pd(t) for a.e. t ∈ [0, T ], (11a)

pd(T ) = −d⊤ (11b)

wd(t) = argmin
v∈W

pd(t)
⊤v for a.e. t ∈ [0, T ], (11c)
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with ẋd(t) = f(xd(t)) + wd(t) and xd(0) = x0.
A tuple (xd, pd, wd) satisfying the above equations is
called (Pontryagin) extremal for OCPd. These equations
indicate that the adjoint vector is non-zero at all times.

Lemma 3 (No singular arcs): Let (xd, pd, wd) be an
extremal for OCPd with d ∈ Sn−1. Then, pd(t) ̸= 0 for
every t ∈ [0, T ], i.e., OCPd has no singular arcs.

Proof: By contradiction, pd(t) = 0 for some
t ∈ [0, T ]. Then, 0 is the unique solution to the ODE
ṗ(s)

(11a)
= −∇f(xd(s))

⊤p(s) = 0 for s ∈ [t, T ] with
p(t) = 0. Thus, −d (11b)

= pd(T ) = 0, a contradiction.
Thanks to Lemma 3 and Assumption 2, the maxi-

mality condition (11c) can be simplified. First, since
pd(t) ̸= 0 for all t ∈ [0, T ] thanks to Lemma 3,
(11c) is well-defined. Second, since W is convex and
v 7→ pd(t)

⊤v is linear, searching for disturbances in ∂W
suffices, i.e., wd(t) = argminv∈∂W pd(t)

⊤v. Then,

wd(t) = argmin
v∈∂W

pd(t)
⊤v = argmin

v∈∂W

pd(t)

∥pd(t)∥

⊤
v

=
(
n∂W)−1

(
− pd(t)

∥pd(t)∥

)
(12)

where n∂W : ∂W → Sn−1 is the Gauss map in (5),
which is a diffeomorphism since ∂W is an ovaloid [29]
by Assumption 2. The last equality in (12) follows from
(6) (note that (6) = 0 if and only if v = w(t), due to
the strict convexity of ∂W). Thus, by combining (11)
and (12), we obtain that candidate optimal solutions of
OCPd must solve the boundary-value problem (BVP)

BVPd :


ẋd(t) = f(xd(t)) + (n∂W)−1

(
− pd(t)

∥pd(t)∥

)
,

ṗd(t) = −∇f(xd(t))
⊤pd(t), t ∈ [0, T ],

(xd(0), pd(T )) = (x0,−d). (13)

With BVPd, we reduced the search of solutions to OCPd

from w ∈ L∞([0, T ],Rn) to pd(0) ∈ Rn.

C. Reformulating BVPd with knowledge of wd(0)

From (12) and BVPd, we observe that extremal
disturbances wd are continuous. Thus, we expect the
(pointwise) knowledge of wd(0) to be informative. In
this section, we flip the problem around and show
that sampling initial values of the disturbances wd(0)
suffices to recover the convex hulls of the reachable sets.
Specifically, solving BVPs is not necessary: integrating
an ODE from different values of wd(0) ∈ ∂W suffices.

BVPd indicates that extremal state trajectories follow
dynamics that only depend on pd(t)

∥pd(t)∥ . Thus, we define

qd(t) = −
pd(t)

∥pd(t)∥
, (14)

which is well-defined thanks to Lemma 3, so that ex-
tremal state trajectories follow dynamics ẋd = f(xd) +

(n∂W)−1 (qd) that only depend on qd. The next result
states that qd is the solution of an ODE that is completely
characterized by the initial value of the disturbance.

Lemma 4 (Extremals of OCP are identified by w(0)):
Let (xd, pd, wd) be an extremal for OCPd with d∈Sn−1.
Then, the map qd satisfying qd(t) = (14) ∈ Sn−1 for all
t ∈ [0, T ] is well-defined and (xd, qd) solves ODEwd(0).

Proof: Thanks to Lemma 3, qd(t) is well-defined
for all t ∈ [0, T ]. Moreover, wd(0) ∈ ∂W thanks to
(12), so n∂W (wd(0)) is well-defined. For conciseness,
we drop dependencies on d and prove the second claim.
First, thanks to (12), q(0) = n∂W (w(0)). Second,

q̇t = −
ṗt
∥pt∥

+ pt
p⊤t ṗt
∥pt∥3

(11a)
= −Projqt

(
∇f(xt)

⊤qt
)
,

denoting (x(t), q(t)) = (xt, qt). This gives ODEwd(0).
Lemma 4 yields the following intermediate result.
Lemma 5: Assume that f andW satisfy Assumptions

1 and 2 and define the map F by (8) as in Theorem 1.
Then, for all t ∈ [0, T ], F (·, t) is smooth and

(∂H(Xt) ∩ Xt) ⊆ F (∂W, t) ⊆ Xt. (15)

Proof: Without loss of generality, we prove the
result for t = T . Extending the proof to t ∈ [0, T ) (by
defining OCPd

t maximizing −d⊤x(t), which results in the
same expressions for ODE and F ) is straightforward.

First, F (·, T ) is smooth since it is the composition of
n∂W (which is a diffeomorphism thanks to Assumption
2) with the solution of an ODE with smooth coefficients.

Second, F (∂W, T ) ⊆ XT by definition. To show the
other inclusion, let y ∈ ∂H(XT ) ∩ XT . Since y ∈ XT ,
there exists some w ∈ L∞([0, T ],W) such that y =
xw(T ) where xw solves the ODE in (1). Then, since
xw(T ) = y ∈ ∂H(XT ), by the convexity of H(XT )
and Lemma 1, xw(T ) is such that w̃ 7→ d⊤xw̃(T )
is maximized over w̃ ∈ L∞([0, T ],W) for some d ∈
Sn−1, i.e., (xw, w) solves OCPd. Thus, by Lemma 4,
xw solves ODEw(0) for some w(0) ∈ ∂W . We obtain
y = xw(T ) = F (w(0), T ) ∈ F (∂W, T ).

The proof of Theorem 1 almost immediately follows
from Lemma 5 and the following geometric result.

Lemma 6: Let A ⊂ Rn be a compact set. Then,
H(A) = H(∂A) = H(∂H(A) ∩A).
The proof of Lemma 6 uses the Krein-Milman theorem
[36] and is given in the Appendix.

Proof of Theorem 1: Xt is compact (Lemma 2). (3)
follows from taking the convex hull on both sides of
(15) and as H (∂H(Xt) ∩ Xt) = H(Xt) (Lemma 6). □

Corollary 1 directly follows from Theorem 1. Corol-
lary 2 follows from Theorem 1 and [33, Lemma 4.2].

D. Discussion and insights

In Table I, we summarize the different problems used
to derive ODEw(0) and ultimately prove Theorem 1.

55



TABLE I: Problems defined to prove Theorem 1.

Problem unknown variables number of variables
OCPd w ∈ L∞([0, T ],W) infinite
BVPd p(0) ∈ Rn n
ODEwd(0)

None 0

Alg. 2. Shooting method

for all d ∈ Sn−1 do
xd ← Solve(BVPd)

return H
(
xd(T ), d∈Sn−1

)
At first sight, BVPd

suggests using the pro-
cedure outlined in Algo-
rithm 2 to reconstruct the
convex hull of the reach-
able set H(XT ). However, this procedure can be com-
putationally expensive and difficult to implement, since
solving BVPs is generally challenging. Moreover, the
non-convexity of OCPd indicates that solutions to BVPd

could be local minima, so Algorithm 2 would potentially
under-estimate the true reachable sets and be unsuitable
for applications that require over-approximations of the
reachable sets. Carrying on the analysis using samples of
wd(0) as in Section IV-C is key to our characterization.

Lemma 4 implies that extremal trajectories are com-
pletely specified by the initial value wd(0) of the distur-
bance that is necessarily on the boundary of W thanks
to (12). Thus, given wd(0) ∈ ∂W , we can determine
the corresponding reachable extremal state xd(T ) by
simply integrating ODEwd(0), which is independent of
the search direction d (d is implicitly encoded in wd(0)).
This observation is the key insight behind Algorithm
1, which consists of integrating ODEwd(0) for different
values of wd(0) ∈ ∂W to recover the convex hulls of the
reachable sets. This algorithm is justified by Theorem 1.

V. RESULTS AND APPLICATIONS

In this section, we evaluate Algorithm 1 on a neural
feedback reachability problem. We also design a robust
MPC method with Algorithm 1, that we evaluate on the
problem of robustly stabilizing the attitude of a space-
craft. Computation times are measured on a laptop with
an 1.10GHz Intel Core i7-10710U CPU and all code is
available at github.com/StanfordASL/convex_hull_reachability.

A. Neural feedback loop analysis

We first consider the problem of evaluating the reach-
able sets of the system ẋ(t) = Ax(t)+Bπ(x(t))+w(t),
where π is a neural network andW = B(0,

√
2/20). We

consider the system and neural network from [37, Sec.
VIII.A-C] and [18] (with n = 2), but replace the ReLU
activation functions with smooth Softplus activations
so that Assumptions 1 and 2 are satisfied.2 We discretize
the dynamics with an Euler scheme at ∆t = 0.25s and
predict reachable sets over a horizon T = 4s. The initial
disturbance values wi(0) for Algorithm 1 are selected
to evenly cover the circle ∂W .

2Note that by selecting appropriate hyperparameters, Softplus
activations can be made arbitrarily close to ReLU activation functions.

Fig. 3: Neural feedback loop
analysis. Left: estimation er-
ror dH(H(XT ),H({xi}Mi=1)
vs sample size M and com-
putation time. Top: estimates
of convex hulls of reachable
sets (M = 103) and Monte-
Carlo samples (in gray).

First, we empirically validate Theorem 1. We run
Algorithm 1 with M = 103 samples wi(0) ∈ ∂W .
Then, we uniformly sample 105 disturbances w(t) ∈
W at each timestep and evaluate the corresponding
trajectories. We verify that all resulting trajectories are
within the convex hulls computed by Algorithm 1, which
empirically validates Theorem 1. Thus, using Algorithm
1, it suffices to sample initial disturbance values wi(0) ∈
∂W to reconstruct the convex hulls of the reachable sets.

Second, we compare Algorithm 1 with a baseline
that randomly samples disturbances w(t) ∈ W at each
timestep and returns the convex hulls of closed-loop
trajectories (RandUP [18]). As ground truth, we use
Algorithm 1 with a very large number of samples (104),
which is justified by Theorem 1. We report results in
Figure 3. Algorithm 1 returns estimates that are orders of
magnitude more accurate than the baseline’s estimates.
Given a desired precision, Algorithm 1 is thus orders
of magnitude faster than the baseline. This difference
is a direct consequence of Theorem 1: only initial
values of the disturbances w(0) ∈ ∂W need to be
evaluated using Algorithm 1. In contrast, the baseline
requires sampling a much larger number of variables
that increases with the number of prediction timesteps,
resulting in significantly worse sample complexity (see
[18], [33] for error bounds) and trajectories that are far
from the reachable set boundaries. Recall that Algorithm
1 returns under-approximations of the convex hulls of
the reachable sets, since any extremal trajectory xw(0)

solving ODEw(0) is contained in the true reachable
sets Xt. These simulations show that naive Monte-Carlo
estimates poorly approximate the convex hulls of the
reachable sets for this problem. In Figure 3, we also
report the over-approximations from a formal method
(ReachLP [37]) that significantly over-estimate the
reachable sets. In contrast, Algorithm 1 returns accurate
approximations using a small sample size.
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B. Robust MPC for the attitude control of a spacecraft

We design an attitude controller for a spacecraft with
state x = (q, ω) ∈ R7, control u ∈ R3, and dynamics

q̇(t) = Ω(ω(t))q(t), (16a)

ω̇(t) = J−1(u(t)− S(ω(t))Jω(t) + w(t)), (16b)

where x(0) = (q0, ω0), w(t) ∈ W = B(0, 10−2), J =
diag(5, 2, 1) is the diagonal inertia matrix, and

Ω(ω) =
1

2

[
0 −ω1 −ω2 −ω3
ω1 0 ω3 −ω2
ω2 −ω3 0 ω1
ω3 ω2 −ω1 0

]
, S(ω) =

[
0 −ω3 ω2
ω3 0 −ω1

−ω2 ω1 0

]
.

As in [15], we constrain the angular velocity and input

∥ω(t)∥∞ ≤ 0.1, ∥u(t)∥∞ ≤ 0.1, t ∈ [0, T ]. (17)

We consider feedback control trajectories parameterized
by u(t) = ū(t) +Kω(t), where ū ∈ L∞([0, T ],R3) is
an open-loop control and K ∈ R3×3 is a feedback gain.
With this control law, the closed-loop dynamics of the
angular velocity ω in (16b) are independent of the space-
craft’s orientation q. Intuitively, if opting for a receding
horizon implementation, feedback on the orientation q
is not necessary since disturbances w only affect the
ω-component in (16b). Given ū ∈ L∞([0, T ],R3) and
t ∈ [0, T ], we define the reachable set

Rt(ū) =

ωw(ū, t) :
ωw(ū) solves (16b)

u(t) = ū(t) +Kω(t)
w ∈ L∞([0, T ],W)

 . (18)

Clearly, the convex hulls of the reachable sets H(Rt(ū))
can be estimated using Algorithm 1, where ODEw(0) is
defined using (16b) with u(t) = ū(t) +Kω(t).3 Thus,
given M samples wi(0) ∈ ∂W and ϵt > 0 large-enough,
the constraints (17) can be conservatively approximated
by −0.1 + ϵt ≤ ωi(ū, t)j ≤ 0.1− ϵt, (19a)

−0.1 + ϵt ≤ (ū(t) +Kωi(ū, t))j ≤ 0.1− ϵt, (19b)

for all j=1, 2, 3, i=1, . . . ,M , t∈ [0, T ]. The conser-
vatism of (19) follows from the convexity of (17) and
Corollary 2, see [33, Cor. 5.4]. Note that the convex hulls
of the ωi are never explicitly computed. Given a refer-
ence xref = (1, 0, . . . , 0) and (Q,R) = (10I7×7, I3×3),
we define the robust control problem (OCP(x0)):

inf
ū

∫ T

0

(
(x0(t)−xref)

⊤Q(x0(t)−xref) + ū(t)⊤Rū(t)
)

dt

s.t. x0 solves (16) with w(·) = 0,

ū ∈ L∞([0, T ],R3) satisfies (19).

By recursively solving OCP(x0) and applying the com-
puted control inputs, we obtain the receding horizon

3The dynamics (16b) defining ODEw(0) are time-varying due to
the control ū. As the equations (11) from the PMP are unchanged for
time-varying dynamics f(t, x), the derivations in Section IV still hold,
so Algorithm 1 can be used to reconstruct the convex hulls H(Rt(ū)).

Alg. 3. Robust model predictive control
Input: M initial disturbances wi(0), initial state x(0)

for all k = 0, 1, 2 . . . do
ūk ← Solve(OCP(x(k∆t))
Apply uk(t) = ūk(t) +Kω(t) for t ∈ [0,∆t]
Observe x((k + 1)∆t)

Fig. 4: 100 closed-loop tra-
jectories using robust MPC
(Algorithm 3) to stabilize the
attitude of the spacecraft from
different initial conditions un-
der external disturbances.

robust MPC controller in Algorithm 3. We use M = 100
samples of w(0) and the error bounds ϵt in Corollary 2.
Our MPC controller achieves a replanning rate of 10Hz
with a Python implementation. We refer to the appendix
and the open-source code for further details.

MPC results: We evaluate the proposed controller
with 100 experiments with uniformly-sampled distur-
bances and initial states. Results in Figure 4 show that
the system stabilizes at the reference xref and the original
constraints (17) are always satisfied. The optimization
problem is always feasible in these experiments. The
error bounds given in Corollary 2 introduce reasonable
conservatism. By increasing the sample size M , this
conservatism can be made arbitrarily small.

Comparisons with other reachability methods: Af-
ter discretizing the dynamics (16) with ∆t = 1s as

x((k + 1)∆t) = f̄(x(k∆t), ū(k∆t)) + w(k∆t), (20)

where f̄ is given by a Runge-Kutta (RK4) scheme, we
can compare the reachable set convex hull estimates
from our method (Algorithm 1) with those from two
other standard methods. The first baseline is a sampling-
based method (RandUP [16]) that estimates the convex
hulls H(Xt) with the convex hulls of trajectories from
(20) with samples of w(k∆t). The second standard base-
line propagates uncertainty from the disturbances using a
linear model of (20) and bounds the approximation error
using the Lipschitz constant of the Jacobian ∇xf̄(x, u)
in (20), see the Appendix for more details.

Given a control trajectory ū solving OCP(x0), we
present results in Figure 5. Due to space constraints,
we only represent the third components of ω and u.
First, the Lipschitz-based and the naive sampling-based
baselines are the fastest (both have runtime at ∼ 0.5ms),
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Fig. 5: Solution of OCP(x0). Convex hull reachable sets
estimates computed with Algorithm 1 and two baselines.

followed by Algorithm 1 (∼ 2ms). However, the over-
approximations of the reachable sets from the Lipschitz-
based method are significantly more conservative than
those from Algorithm 1. A controller using the reach-
able set estimates from this baseline would deem ū to
potentially violate constraints and would thus be more
conservative than the proposed robust MPC approach.
Also, the naive sampling-based baseline significantly
under-estimates the true convex hulls. One can show
that this baseline performs worse as the discretization
is refined, see also Section V-A. In contrast, Algorithm
1 is derived in continuous time so its sample complexity
is independent of the discretization of the dynamics.
Specifically, Algorithm 1 only requires sampling the ini-
tial disturbances values wi(0), so its precision only de-
pends on the accuracy of the discretization of ODEw(0).

VI. CONCLUSION AND OUTLOOK

Theorem 1 reveals the structure of the convex hull of
reachable sets of a general class of nonlinear dynamical
systems. The result unlocks an estimation algorithm
that consists of integrating an augmented ODE from
different initial values of the disturbances. Simulations
show that the proposed method is fast and significantly
more accurate than baselines. We also demonstrate its
applicability to robust model predictive control.

This work opens exciting future directions of research.
First, we plan to investigate extensions to reachability
problems with uncertain initial states, dynamics of the
form ẋ = f(x) + g(x)w, uncertain parameters, and
more general disturbance sets W . Second, studying
the boundary structure of the convex hulls could yield
tighter error bounds improving upon those in Corollary
2 (perhaps using analysis inspired from [33]). Finally,
Theorem 1 and the derivation of ODEw(0) could inform
the design of more efficient reachability tools that exploit
additional properties of the dynamics.
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based on robust control invariant set with application to lipschitz
nonlinear systems,” Systems & Control Letters, vol. 62, no. 2,
pp. 194–200, 2013.
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[38] A. González, “Measurement of areas on a sphere using fi-
bonacci and latitude-longitude lattices,” Mathematical Geo-
sciences, vol. 42, no. 1, pp. 49–64, 2009.

[39] R. Bonalli, T. Lew, M. Pavone, “Analysis of theoretical and
numerical properties of sequential convex programming for
continuous-time optimal control,” IEEE Transactions on Auto-
matic Control, 2022.

[40] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson,
C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas,
S. Wanderman-Milne, Q. Zhang, “JAX: composable transforma-
tions of Python+NumPy programs,” 2018.

[41] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, S. Boyd,
“OSQP: an operator splitting solver for quadratic programs,”
Mathematical Programming Computation, vol. 12, no. 4, pp.
637–672, 2020.

APPENDIX

A. Proof of Lemma 6 (H(A)=H(∂A)=H(∂H(A) ∩A))
The first equality follows from H(∂A) ⊆ H(A) since

∂A ⊆ A and from H(A) = H(Ext(A)) ⊆ H(∂A) by the
Krein-Milman theorem [36] and since Ext(A) ⊆ ∂A.

To show the second equality, we first note that
H(∂H(A)∩A) ⊆ H(A) since ∂H(A)∩A ⊆ A. Second,
H(A) = H(H(A)) (H(A) is convex)

= H(Ext(H(A))) (Krein-Milman theorem [36])
= H

(
[Ext(H(A)) \ (Ext(H(A)) ∩A)] ∪ [(Ext(H(A)) ∩A)]

)
(1)
= H(Ext(H(A)) ∩A)

(2)

⊆ H(∂H(A) ∩A)

since (1) Ext(H(A)) \ (Ext(H(A)) ∩ A) = ∅ since
Ext(H(A))⊆A and (2) Ext(H(A))⊆ ∂H(A). □

B. Details on the neural feedback loop analysis results

We consider the system and neural network from
[37, Sec. VIII.A-C]. We fix the initial condition x0 =
(11/4, 0) and use W̄ = {w(t) ∈ R2 : ∥w(t)∥∞ ≤
1/20} for ReachLP [37] (which only handles polytopic
disturbance sets) and W = B(0,

√
2/20) for Algorithm

1 and RandUP [18]. Since W̄ ⊂ W , this choice for W̄
is fair as it reduces the conservatism of ReachLP. We
refer to the open-source code for further details.

C. Details on the spacecraft attitude control results

Implementation: We use T = 10s, discretize the
problem with a Runge-Kutta (RK4) scheme with ∆t =
1 s, and enforce the constraints in (19) at each timestep
tk = k∆t, which is justified by the continuity of the state
trajectories. The feedback gain K is given by a standard
linear-quadratic regulator (LQR). We select M = 100
samples wi(0) ∈ ∂W on a Fibonacci lattice [38], which
gives an internal δ-covering of ∂W for δ = 3.5 · 10−3.
We evaluate L̄t and H̄t using 105 samples4 and directly
use the error bounds ϵt predicted in (10). This choice
of ϵt ensures that the problem with the approximated
constraints (19) gives solutions that satisfy the original
constraints in (17), see also [33, Corollary 5.3]. We only
parameterize the nominal state and control trajectories
(x0, ū) and evaluate (19) and its gradient as a function
of ū. We use a standard sequential convex programming
scheme [39] to solve the optimization problem. We use
a Python implementation with Jax [40] and solve the
convexified problems using OSQP [41]. As is common
in MPC, we warm-start the optimization with the pre-
viously computed solution and perform a single SCP
iteration per timestep, which allows solving the problem
in 0.1s with a Python implementation. Computation time
scales linearly with the sample size.

Lipschitz-based reachability baseline: After discretiz-
ing (16) as (20), this standard baseline computes a
reachable tube for the angular velocities Tt = {y ∈
R3 : (y − ω0(k∆t))⊤Q−1

k (y − ω0(k∆t)) ≤ 1} where
x0 = (q0, ω0) follows nominal dynamics x0((k +
1)∆t) = f̄(x0(k∆t), ū(k∆t)) and the shape matrices
Qk ∈ R3×3 are recursively defined as Q0 = 0, Qk+1 =
c+1
c Qnom

k +(1+c)Q
(w̄,Lip)
k for k ∈ N, where the first term

Qnom
k = ĀkQkĀ

⊤
k with Āk = ∇xf̄(x0(k∆t), ū(k∆t))

propagates uncertainty at time k∆t with a linearized
model, Q(w̄,Lip)

k = 3(w̄ + H̄
2 λmax(Qk)

2)2I3 with w̄ =
10−2 and H̄ the Lipschitz constant of ∇xf̄ accounts
for the disturbance and the linearization error, and c2 =
Trace(Qnom

k )/Trace(Q̄(w̄,Lip)
k ). This standard baseline is

described in [2] (see also [16] and [15]) and ensures that
the trajectories resulting from the discrete-time dynamics
(20) with w(k∆t) ∈ W are contained in the tube T .

4We evaluate the empirical bound L̄t = maxj ∥∇F (wj(0), t)∥
using 105 samples of the disturbances wj(0) and control inputs ūj .
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