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Abstract— This paper addresses the problem of reaching con-
sensus under input saturation and intermittent communication,
which can hinder the convergence of the system. We propose a
method that translates the consensus into an equivalent stability
problem. Then, we compute bounded sets that enclose the initial
conditions and the evolution of trajectories leading to local
input-to-state stability for systems interconnected over directed
intermittent topologies. Our contributions include sufficient
conditions for stability and stabilization of multi-agent systems
under intermittent interactions and saturating inputs, with the
ability to evaluate disturbance tolerance and rejection based
on the regions that enclose the system’s trajectories. We define
disturbance rejection in terms of the L2 gain, and formulate
stability and controller design conditions as convex optimization
problems. Our method enable the maximization of regions
that ensure local input-to-state stability, we provide numerical
examples highlighting the trade-offs between mean frequency of
intermittent interactions, disturbance energy, and convergence
region size.

I. INTRODUCTION
Multi-agent systems consist of multiple agents that can

interact, coordinate, cooperate, and/or compete with one
another to perform complex tasks (see [1], [2] for recent
advances). These systems have wide applicability across dif-
ferent disciplines, such as robotic swarms [3], environmental
monitoring [4], and surveillance [5]. In many applications,
the agents need to reach agreement on the value of a variable
of interest, resulting in the multi-agent system achieving
consensus. There is a vast and increasing literature on the
consensus problem [6], [7], [8], [9].

In distributed consensus, agents within a team must in-
teract with each other, and thus the majority of the litera-
ture assumes all-time network connectivity between agents.
Nevertheless, all-time connectivity, either by control or by
assumption, can be overly conservative, and even impractical,
especially for monitoring large-scale environments like the
ocean [10], underground tunnels [11], or urban cities where
wireless signal can be severely attenuated due to obstacle
occlusions and other environmental factors.

In real-world applications, multi-agent systems must con-
tend with intermittent network connectivity, input saturation,
modeling errors, and exogeneous disturbances, all of which
can lead to significant performance degradation of the team.
In terms of consensus, these conditions can give rise to
deteriorating convergence rate, creation of limit cycles, and
even instability [12], [13]. Existing work in multi-agent
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systems mostly address these challenges individually. Works
focused on the effects intermittent network connectivity on
multi-agent systems include [14], [15], [16]. Unfortunately,
these strategies are only developed for individual agents with
either first- or second-order dynamics, with some exceptions
[17], [18], and thus do not generalize to systems composed
of agents with more complex dynamics. Literature that
focus on input saturation effects include [19], [20], [21],
[22]. However, these works either assumes directed [19]
or strongly connected [20], [21] network topologies. And
while [22] proposed an adaptive fault-tolerant control in the
presence of L2-limited disturbances and input saturation, all
these works assume asymptotically null controllable agents,
i.e., open-loop linear systems with no poles on the right-half
plane in the continuous-time domain.

An objective of this work is to investigate the impact
of intermittent communication topologies on a multi-agent
system’s ability to achieve consensus. In particular, we are
interested in systems composed of individuals with more
general dynamics models subject to constraints and exoge-
nous disturbances. The current limitations in existing litera-
ture is partly due to the fact that [23], [24] has shown that
global convergence of linear systems with saturating inputs
can only be achieved by asymptotically null controllable
systems. As such, the system’s dynamics needs to be open-
loop stable, in the Lyapunov sense, due to saturation. Hence,
global asymptotic convergence in these systems can only
happen under overly conservative conditions. To overcome
this limitation, it is necessary to characterize regions for
initial conditions from which the convergence can be guar-
anteed, especially when the objective is to design stabilizing
feedback strategies for open-loop unstable linear systems.
From a consensus perspective, this means that it is critical
to estimate relative regions that encompass the agents’ states
from which the group’s convergence can be achieved. This is
a fundamentally more general and challenging problem than
assuming asymptotic null controllability.

Towards this end, we propose a methodology capable of
characterizing local stability for the general case of poten-
tially open-loop unstable agents (e.g., agents with poles of the
open-loop system on the right-half plane), subject to stochas-
tic nonsynchronous link formations, unlike most existing
work [14], [15], [16], [17], [18]. To the best of the authors’
knowledge, the combined impact of saturating inputs and
intermittent communications have only been addressed in
[25], [26], [27] but only for asymptotically null control-
lable agents and assume communication link activation and
deactivation happen in a synchronized fashion [25], [26],
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[27]. We consider the synthesis of distributed stabilizing con-
trollers for multi-agent systems subject to saturating inputs
over time-varying stochastic communication topologies, with
agents subject to disturbances limited in energy and non-zero
initial conditions. This is a particularly challenging task since
saturating inputs require the characterization of regions that
guarantee the system convergence for stability [12], while
disturbances and intermittent communication among agents
directly affects the structure of these regions. We propose a
convex approach to address this problem and ensure that
trajectories starting within a specific set remain inside a
larger outer set. Disturbance rejection is then defined as the
measurement of relative sizes of these two sets for whenever
the initial conditions of the network are different from zero,
building upon previous work on single systems [13].

Notation: For a matrix M , M > 0 (M ≥ 0) denotes
that M is positive definite (semi-definite). M ′ stands for
the transpose of M . The ith row (element) of the matrix
(vector) N is denoted by N(i), while N ′

(i) represents the
transpose of the ith row of N . diag(M1, . . . ,Mk) represents
a block diagonal matrix with matrices M1, . . . ,Mk in the
main diagonal. Transposed entries in a symmetric matrix are
represented by ∗. The Kronecker product of matrices M1 and
M2 is denoted by M1 ⊗M2.

II. PRELIMINARIES AND PROBLEM FORMULATION
This section introduces the representation for agent in-

teraction and the control model for closed-loop agents,
including the transformation of consensus into a stability
problem.

A. Algebraic Graph Theory
A graph is denoted by G = (V, E), in which V =

{1, ..., N} is a set of N vertices and E ⊆ V × V is a set of
directed edges. Each element of the edge set, eij , represents
a directed edge from i to j if (i, j) ∈ E . A graph G is called
undirected graph if (i, j) ∈ E ⇐⇒ (j, i) ∈ E and directed
graph if the equivalence does not hold. In this work, we are
interested in directed graphs. The set of agents that have the
ith agent as the child vertex is Ni = {j ∈ V : (j, i) ∈ E}
and we call it neighborhood of the ith vertex, and we call
neighbor of i an agent j that belongs to the neighborhood Ni.
The adjacency matrix A = [aij ] associated with the graph G
is defined by

aij =

{
0, if i = j or ∄ (j, i) ∈ E
1, if (j, i) ∈ E .

We can represent the graph G through the Laplacian matrix,
defined by L = D − A, where the diagonal degree matrix,
D, has elements dii =

∑N
j=1 aij .

B. Dynamical Network
Consider N agents with the following open-loop dynamics
ẋi(t) = Axi(t) +Bsat(ui(t)) +Dwi(t), for i = 1, ..., N, (1)

where xi(t) ∈ Rm is the state variable of the ith agent,
ui(t) ∈ Rp is its input, wi(t) ∈ Rq is an exogenous signal,
and A, B, and D are the system matrices with appropriate
dimensions. The function sat(·) is given by,

sat(ui(t)) = [sat(ui(1)(t)) · · · sat(ui(p)(t))]
′,

sat(ui(r)(t)) = sign(ui(r)(t))min(umax, |ui(r)(t)|),

for r = 1, ..., p, where the scalar umax is the limit of the
actuator. This study investigates the impact of saturation
on networked systems subject to stochastic communication
topologies and input disturbances. The time-varying inter-
connections are modeled by a dependency of the elements
of the communication graph in a continuous-time Markov
process {θt : t ≥ 0} over a finite set of states S = {1, . . . , s},
where the random variable θt is the state of the Markov chain
at time t. This dependency is represented by aij(θt). We
consider a distributed control setting and adopt the following
variant of the conventional consensus protocol [28]:

ui(t) = −
N∑

j=1

aij(θt)K
(
xi(t)− xj(t)

)
, (2)

in which K ∈ Rp×m is a constant gain matrix. The value
aij(k) = 1 if, and only if, (j, i) ∈ E when θt = k, for
k ∈ S . An implicit assumption on θt in equation (2) is that
it models accurately enough intermittent interactions in the
networked system, these parameters can be computed using
identification techniques [29]. In addition, we work under
the following assumption:

Assumption 2.1: The union of graphs,
⋃

θt∈S G(θt), asso-
ciated with the time-varying communication topology of the
network has a directed spanning tree, i.e., there is a node
with a directed path to every other node in the network.

The Markov process is defined by a time-varying transition
rate matrix Π(t) = [πij(t)] , i, j ∈ S, which evolution is
described by the following infinitesimal generator,

Pr{θt+∆ = j|θt = i} =

{
πij(t)∆ + o(∆), i ̸= j,
1 + πii(t)∆ + o(∆), i = j,

(3)

where Pr{θt+∆ = j|θt = i} stands for the probability of
the next state be θt+∆ = j given that the current state is
θt = i, ∆ > 0 and lim∆→0

o(∆)
∆ = 0, πij(t) ≥ 0 for

i ̸= j is the transition rate from state i to j, and πii(t) =
−
∑s

j=1,j ̸=i πij(t). In addition, the probability distribution
of the Markov chain is denoted by µ = {µ1, . . . , µs}. The
time-varying transition matrix Π(t) is not precisely known,
but belonging to a polytopic uncertainty domain denoted by

Π(α(t)) =

r∑
i=1

αiΠ
i, αi ∈ Ξr, (4)

where the unit simplex Ξr is defined as Ξr =
{
α ∈ Rr : 0 ≤

αi ≤ 1,
∑r

i=1 αi = 1
}
, in which r is the number of vertices

of the polytope which are given by known matrices Πi with
elements πi

jq, for i ∈ {1, ..., r}. This approach allows us to
robustly tackle the problem of time-varying and uncertain
switching topologies.

The L2 gain is traditionally used to evaluate the distur-
bance rejection of a system [30]. However, for the multi-
agent system (1), the L2 gain might not be well-defined,
since sufficiently large disturbances might lead to unbounded
states [22], [31]. To address this, we focus on disturbances
whose energy is bounded, belonging to the following set:

W =

{
wi ∈ Rq :

∫ ∞

0

wi(τ)
′wi(τ)dτ < ρ

}
,

where ρ is a positive constant representing the energy bound
of the disturbance. Our goal is to find the largest ρ for which
the trajectories of the networked agents remain bounded in
the presence of switching topologies and input saturation, by
seeking the L2 gain as the ratio between a bounded output
of interest and input limited in energy. We provide a formal
definition in Sec. III-A.2.
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Now, formalize the problem investigated in this work:
Definition 1: Under stochastic switching topology, the

networked system (1) in closed-loop with (2), for all i ∈
V , reaches the mean-square consensus if, for all i ̸= j,
limt→∞ E

(
∥xi(t)− xj(t)∥2

)
→ 0 holds in the mean square

sense, for any initial distribution µ.
Here, E(·) stands for the mathematical expectation.
C. Mean-Square consensus as a stability problem

We translate the consensus problem into a stability anal-
ysis and derive sufficient conditions that guarantee the sta-
bilization of the equivalent system. Consider the following
disagreement transformation [32] and its equivalent stacked
form,

zi(t) = x1(t)− xi+1, for i = 1, ..., N − 1,

z(t) = (U ⊗ Im)x(t), (5)
where ⊗ denotes the Kronecker product, Im is an iden-
tity matrix, z(t) = [z1(t)

′ · · · zN−1(t)
′]′, x(t) =

[x1(t)
′ · · · xN (t)′]′, and U = [1N−1 − IN−1] with 1N−1

being an all-ones vector of size N − 1. The transformation
from the disagreement variables z(t) back to the stacked
agent states can be computed by

x(t) = 1N ⊗ x1(t) + (W ⊗ Im)z(t), (6)
in which W =

[
0N−1 −IN−1

]′
, and 0N−1 is an all-

zeros vector of size N − 1. The disagreement variable z(t)
provides the errors between a pivot agent and all other agents.
Such a transformation allows us to reformulate the consensus
problem in Definition 1 according to the following lemma:

Lemma 2.1 ([32]): The multi-agent system (1), in
closed-loop with the control law (2), asymptotically
reaches the mean-square consensus if, and only if,
limt→∞ E

(
∥zi(t)∥2

)
→ 0, for all i = 1, . . . , N − 1.

We compute the equivalent multi-agent system by express-
ing (1) in stacked form with the closed-loop control law (2)
as follows,

ẋ(t) =
(
IN ⊗A

)
x(t)− (IN ⊗B)sat

(
(Lθt ⊗K)x(t)

)
+
(
IN ⊗D

)
w(t), (7)

where w(t) = [w1(t)
′ · · · wN (t)′]′ and Lθt is a shorthand

for L(θt) which represents the Laplacian matrix associated
to the current state of the Markov process {θt : t ≥ 0}.
Taking the time-derivative of (5) and substituting ẋ(t) by
(7) gives

ż(t) = (U ⊗ Im)
[(
IN ⊗A

)
x(t)− (IN ⊗B)

×sat
(
(Lθt ⊗K)x(t)

)
+
(
IN ⊗D

)
w(t)

]
,

then, considering x(t) in (6) and applying the Kronecker
identity

(
M ⊗ N)

(
P ⊗ Q

)
=

(
MP ⊗ NQ), for matrices

M, N, P, and Q with appropriate dimensions, we have
ż(t) =

(
U1N ⊗Ax1(t) + (UW ⊗A)z(t)

)
−(U ⊗B)sat

((
Lθt1N ⊗Kx1(t)

)
+ (LθtW ⊗K)z(t)

)
+
(
U ⊗D

)
w(t).

Finally, noticing that U1N = 0, Lθt1N = 0, and UW =
IN−1, we have
ż(t) =

(
IN−1 ⊗A

)
z(t)−

(
U ⊗B

)
sat
((

LθtW ⊗K)z(t)
)

+
(
U ⊗D

)
w(t). (8)

Hence, we study the consensus problem of the multi-agent
system (1) by analysing the stability of (8), where agents’
coordinates are transformed to a relative coordinate system.

The non-linearity produced by the saturation satisfies a
sector condition, which allows us to analyze the dynamics

of the multi-agent system as a Lur’e problem [30]. To do so,
we can use the following dead-zone function [12],

Φ(u(t)) = u(t)− sat(u(t)), (9)

with u(t) = (LθtW ⊗ K)z(t). Then, by summing and
subtracting (U ⊗B)u(t) in equation (8) we get

ż(t) =
(
IN−1 ⊗A

)
z(t)−

(
ULθtW ⊗BK)z(t) (10)

+
(
U ⊗B

)
Φ
((

LθtW ⊗K)z(t)
)
+
(
U ⊗D

)
w(t).

With the multi-agent system represented as in (10), we can
define the following polyhedral set together with a sector
condition.

Lemma 2.2 (Generalised Sector Condition [33]): For a
given auxiliary signal ϑ(t) ∈ RNp and saturation limits
umax, define the set

S(ϑ(t), umax) =
{
u(t) ∈ RNp : |(u(t)− ϑ(t))(q)|≤ umax,

for q = 1, ..., Np
}
. (11)

If u(t) belongs to S(ϑ(t), umax), then Φ
(
u(t)

)′
T
[
Φ
(
u(t))+

ϑ(t)
]
≤ 0 is satisfied for any positive diagonal matrix T ∈

RNp×Np, where Φ
(
u(t)

)
is given by (9).

Since it might not be possible to achieve convergence
from every initial conditions for a system subject to input
saturation [24], [23], the state space under stabilizing linear
feedback control can be partitioned into a region that leads
to convergence and other that may lead to divergence.
Therefore, we define the region of convergence as follows.

Definition 2: The region of convergence is a subset of the
state space, C ⊆ RNm, such that for any initial conditions
starting from C , the multi-agent system without disturbances
attain the mean-square consensus. Namely,

C =
{
x(0) ∈ RNm : lim

t→∞
E
(
∥xi(t)− xj(t)∥2

)
→ 0,

∀i, j ∈ V
}
. (12)

Exact characterization the region of convergence is a chal-
lenging, even for single systems [12]. We address this issue
by defining a convex optimization problem to compute a
subset of C less conservative as possible.

III. MAIN RESULTS
In this section, we derive stochastic stability criteria for

the disagreement system (8). In addition, we tackle the
following problems: i) the disturbance tolerance from the
consensus point, ii) the disturbance tolerance from arbitrary
initial conditions, iii) the L2 gain, and iv) the maximization
of the region of convergence and the region with guaranteed
bounded states for the agents.

Theorem 3.1: Let the multi-agent system (1) in closed-
loop with the consensus protocol (2) subject to input satu-
ration and stochastic time-varying communication topology
be represented by equation (10). For given positive scalars
ρ, η, and time-varying transition matrix Π(t), if there exist
symmetric positive definite matrices S ∈ RNp×Np, Yℓ ∈
Rm(N−1)×m(N−1), and matrices Xℓ ∈ RNp×m(N−1) for all
ℓ ∈ {1, ..., s}, such that the following matrix inequalities
hold for all i ∈ {1, . . . , r}:

Λ ∗ ∗ ∗
S
(
U ⊗B

)′ −Xℓ −2S ∗ ∗√
ρ(U ⊗D

)′
0 1−γ

γ
I ∗

R′
ℓ 0 0 −Qℓ

 ≤ 0, (13)

[
Yℓ ∗

(LℓW ⊗K)(q)Yℓ −Xℓ(q) u2
maxγ

]
≥ 0, (14)

for q = 1, ..., Np, where Yℓ = P−1
ℓ ,
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Λ = He
((

IN−1 ⊗A− ULℓW ⊗BK
)
Yℓ

)
+ πi

ℓℓYℓ,

Rℓ =
[√

πi
ℓ1Yℓ · · ·

√
πi
ℓ(ℓ−1)Yℓ

√
πi
ℓ(ℓ+1)Yℓ · · ·

√
πi
ℓsYℓ

]
, and

Qℓ = diag
(
Y1, · · · , Yℓ−1, Yℓ+1, · · · Ys

)
,

then:
(i) every trajectory of the multi-agent system starting from

the region R(z(t), 1) remains within R(z(t), γ−1) for
all t ≥ 0, with γ = 1/(1 +Nρη);

(ii) every trajectory of the multi-agent system starting from
the origin will remain within the region R(z(t), γ−1)
for all t ≥ 0, with γ = 1/(Nρη); and

(iii) in absence of disturbances, w(t) = 0, the region
R(z(t), 1) is an estimate included in the region of
convergence C , and the multi-agent system attains the
mean-square consensus asymptotically.

Moreover, the set R(z(t), σ), for constant σ, is defined as
R(z(t), σ) =

⋂
ℓ∈S

E (Pℓ, σ), with

E (Pℓ, σ) =
{
z(t) ∈ Rm(N−1) : z(t)′Pℓz(t) ≤ σ

}
. (15)

Proof: Consider the following stochastic Lyapunov
candidate functional:

V (z(t), θt = ℓ) = z(t)′Pℓz(t), with ℓ ∈ S, (16)
where Pℓ is a constant positive definite matrix for each θt ∈
S. Let D be the weak infinitesimal generator of the random
process {θt : t ≥ 0}. Following [34], [35], the difference of
(16) along the trajectories of (10) yields
DV (z(t)) = lim

∆→0

1

∆
[V (z(t+∆), θt+∆)− V (z(t), θt = ℓ)]

= 2ż(t)′Pℓz(t) + z(t)′
s∑

j=1

πℓj(α(t))Pjz(t)

= 2z(t)′Pℓ

[(
IN−1 ⊗A− ULℓW ⊗BK

)
z(t)

+
(
U ⊗B

)
Φ
((

LℓW ⊗K)z(t)
)
+
(
U ⊗D

)
w(t)

]
+z(t)′

s∑
j=1

πℓj(α(t))Pjz(t),

noting that 2z(t)′Pℓ

(
U ⊗ D

)
w(t) ≤ 1

η
z(t)′Pℓ

(
U ⊗ D

)
(U ⊗

D
)′
Pℓz(t) + ηw(t)′w(t), with η > 0, we have

DV (z(t)) ≤ 2z(t)′Pℓ

[(
IN−1 ⊗A− ULℓW ⊗BK

)
z(t) (17)

+
(
U ⊗B

)
Φ
((

LℓW ⊗K)z(t)
)]

+
1

η
z(t)′Pℓ

(
U ⊗D

)
(U ⊗D

)′
Pℓz(t)

+ηw(t)′w(t) + z(t)′
s∑

j=1

πℓj(α(t))Pj(α(t))z(t).

For the sake of continuity, we assume that u(t) ∈
S(ϑ(t), umax), a sufficient condition for this assumption
is given in the sequence. As a result, the inequality
−2Φ

(
u(t)

)′
T
[
Φ
(
u(t)) + ϑ(t)

]
≥ 0 holds, in accordance

with Lemma 2.2. Considering the auxiliary signal ϑ(t) =
Gz(t) and adding the previous inequality to equation (17)
gives,

DV (z(t)) ≤ χ(t)′Ψχ(t) + ηw(t)′w(t), (18)
with χ(t)′ = [z(t)′ Φ(u(t))′] and

Ψ =

[
Ω1 ∗(

U ⊗B
)′
Pℓ − TG −2T

]
.

With Ω1 = He
(
Pℓ

(
IN−1 ⊗ A − ULℓW ⊗ BK

))
+ 1

η
Pℓ

(
U ⊗

D
)
(U ⊗D

)′
Pℓ +

∑s
j=1 πℓj(α(t))Pj(α(t)). By left- and right-

multiplying Ψ by diag(P−1
ℓ , T−1), making the change of

variables Yℓ = P−1
ℓ , S = T−1, Xℓ = GP−1

ℓ , also noticing
from (4) that πℓj(α(t)) =

∑r
i=1 αiπ

i
ℓj , it is sufficient to test

the conditions on the vertices of Π(t) [36], then applying
Schur complement two consecutive times on the non-linear
terms gives inequality (13). Therefore, if inequality (13)
is satisfied, we have that DV (z(t)) ≤ ηw(t)′w(t). From
Dynkin’s formula, we have that for all ℓ ∈ S,

E
(
V (z(t))

)
≤ V (z(0)) + ηE

(∫ t

0

w(τ)′w(τ)dτ

)
< V (z(0)) +Nηρ.

Finally, we establish the three cases in the Theorem 3.1,
namely: (i) if for each ℓ ∈ S we have V (z(0)) ≤ 1, that is
z(0) ∈ E (Pℓ, 1), all trajectories will remain within E (Pℓ, 1+
Nρη) =

{
z(t) ∈ Rm(N−1) : z(t)′Pℓz(t) ≤ 1 + Nρη

}
for

all ℓ ∈ S and t ≥ 0; (ii) if, for each ℓ ∈ S, V (z(0)) = 0,
which implies that z(0) = 0, then z(t) ∈ E (Pℓ, Nρη) ={
z(t) ∈ Rm(N−1) : z(t)′Pℓz(t) ≤ Nρη

}
, ∀ℓ ∈ S , and

finally; (iii) in absence of disturbances DV (z(t)) ≤ 0, and
V (z(t)) = 0 if, and only if z(t) = 0, whenever for each ℓ ∈
S, z(0) ∈ E (Pℓ, 1). Hence, the set E (Pℓ, 1) is an estimate
included in the region of convergence.

Henceforth, we demonstrate that if inequality (14) is satis-
fied, then our previous assumption that u(t) ∈ S(ϑ(t), umax)
holds. Replacing Yℓ and Xℓ by P−1

ℓ and P−1
ℓ G′ in

(14), respectively, left- and right-multiplying the result by
diag(Pℓ, 1), and recalling that γ has a different description
according the cases (i)-(iii), we get[

Pℓ ∗
(LℓW ⊗K)(q) −G(q) γu2

max

]
≥ 0.

By applying Schur complement and left- and right-
multiplying the result by z(t)′ and z(t), respectively, we
get that
z(t)′

(
(LℓW ⊗K)(q) −G(q)

)′
γ−1u−2

max

(
(LℓW ⊗K)(q) −G(q)

)
×z(t) ≤ z(t)′Pℓz(t) ≤ V (z(t)).

Hence, condition (14) ensures that u(t) ∈ S(ϑ, umax), and
therefore the inequality in Lemma 2.2 is satisfied.

Theorem 3.1 establishes conditions for bounded trajec-
tories and mean-square consensus in networked systems,
according to agents disturbances. However, important ques-
tions remain unanswered, including identifying the largest
disturbance bounds for bounded trajectories, minimizing
the difference between estimated and actual convergence
regions, and estimating the L2 gain on W . Addressing these
problems is crucial for designing and deploying multi-agent
systems. The following sections will discuss each of these
issues.
A. Optimization methods for design

1) Maximization of the disturbance tolerance: Maximiz-
ing the disturbance tolerance involves maximizing value of
ρ, such that computing estimates for the convergence set and
the set that contains the trajectories of the network is feasible.
We formulate this as the following optimization problem:

sup
γ∈(0,1)

ρ̄

s.t. (a) E (Z, 1) ⊆ E (Pℓ, 1),
(b) LMIs (13), (14),

(19)

for all ℓ ∈ {1, . . . , s}, with ρ̄ =
√
ρ. The constraint (a)

corresponds to placing an ellipsoid inside the intersection
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of ellipsoids defined by Pℓ for all ℓ ∈ {1, . . . , s}, and it is
equivalent to [

Z ∗
I Yℓ

]
≥ 0, for ℓ = 1, . . . , s,

with Yℓ = P−1
ℓ . Clearly, all constraints in (19) are linear

matrix inequalities for fixed values of γ ∈ (0, 1).
Another relevant issue is finding the maximal disturbance

tolerance when the initial condition is the equilibrium point,
i.e., z(0) = 0. This value is critical to estimating the L2 gain
of the network. This can be cast similarly as the optimization
problem (19), by letting η = 1 and γ = 1/Nρ. By applying
Schur complement on inequality (13) we get,Λ + (U ⊗D

)
(U ⊗D

)′ ∗ ∗
S
(
U ⊗B

)′ −Xℓ −2S ∗
R′

ℓ 0 −Qℓ

 ≤ 0. (20)

Therefore, the problem of estimating the maximal distur-
bance tolerance from the consensus point can be cast as,min γ

s.t. (a) E (Z, 1) ⊆ E (Pℓ, 1),
(b) LMIs (20), (14),

(21)

for all ℓ ∈ {1, . . . , s}, and ρ is given by ρ = 1/Nγ.
2) Estimation of the L2 gain: The L2 gain represents

the ratio between a bounded output and a bounded input
for a system starting from the origin. In our scenario, we
define an output for the multi-agent system (1) on the
disagreement variable as, y(t) = Cz(t), in which C is
an matrix with appropriate dimension that properly weight
disagreement variables of interest. Therefore, we compute
the L2 gain of the multi-agent system, subject to energy
bounded disturbances according the following corollary:

Corollary 3.2 (L2 gain): For given positive scalars ρ and
ϱ, and time-varying transition matrix Π(t), if there exist
symmetric positive definite matrices S ∈ RNp×Np, Yℓ ∈
Rm(N−1)×m(N−1), and matrices Xℓ ∈ RNp×m(N−1) for all
ℓ ∈ {1, ..., s}, such that the following matrix inequalities
hold for all i ∈ {1, . . . , r}:

Λ + (U ⊗D
)
(U ⊗D

)′ ∗ ∗ ∗
S
(
U ⊗B

)′ −Xℓ −2S ∗ ∗
R′

ℓ 0 −Qℓ ∗
CYℓ 0 0 −ϱ2I

 ≤ 0, (22)

[
Yℓ ∗

(LℓW ⊗K)(q) −Xℓ(q) u2
maxγ

]
≥ 0, (23)

for q = 1, ..., Np, where γ = 1/Nρ, Yℓ = P−1
ℓ , and Λ, Rℓ,

and Qℓ are defined in 13. Then, the L2 gain from w(t) to
y(t) for all wi(t) ∈ W is no larger than ϱ.

Proof: Similarly to Theorem 3.1, inequality (23)
ensures that u(t) ∈ S(ϑ(t), umax) whenever z(t) ∈
E (Pℓ, Nρ). We have that (22) is equivalent to

2z(t)′Pℓ

[(
IN−1 ⊗A− ULℓW ⊗BK

)
z(t)

+
(
U ⊗B

)
Φ
(
u(t)

)]
+ z(t)′Pℓ

(
U ⊗D

)
(U ⊗D

)′
Pℓz(t)

+
1

ϱ2
z(t)′C′Cz(t) + z(t)′

s∑
j=1

πℓj(α(t))Pj(α(t))z(t)

−2Φ
(
u(t)

)′
T
[
Φ
(
u(t)) +Gz(t)

]
≤ 0, (24)

which can be shown by applying Schur complement on (22)
two times consecutively, making the change of variables
Yℓ = P−1

ℓ , S = T−1, Xℓ = GP−1
ℓ , left- and right-

multiplying it by diag(Pℓ, T ) and by [z(t)′ Φ(u(t))′] and

its transpose, respectively. Notice that this condition contains
inequality (13) with η = 1. Therefore, admitting that (22) is
satisfied and considering inequalities (18) and (24) we have
that

DV (z(t)) ≤ − 1

ϱ2
z(t)′C′Cz(t) +w(t)′w(t),

which from Dynkin’s formula yields
E
(
V (z(t))

)
≤

− 1

ϱ2
E

(∫ t

0

z(τ)′C′Cz(τ)dτ

)
+ E

(∫ t

0

w(τ)′w(τ)dτ

)
.

Noticing that V (z(t)) ≥ 0 and wi(t) ∈ W , for all i ∈ V ,
implies

E

(∫ t

0

y(τ)′y(τ)dτ

)
< ϱ2Nρ,

which concludes the demonstration.
3) Synthesis of the controllers’ gains: The problem of

synthesizing the gains of the feedback matrices can be
tackled by letting the matrix K be an additional variable on
the previous formulations. We provide this procedure as a
corollary, since a particular choice for the structure of some
variables is necessary to produce linear convex problems.
The adaptation of Theorem 3.1 to compute the feedback
gains is given as follows.

Corollary 3.3: Let the networked system (1) in closed-
loop with the consensus protocol (2) subject to input satura-
tion and stochastic time-varying communication topology be
represented by equation (10). For given positive scalars ρ and
η, time-varying transition matrix Π(t), if there exist symmet-
ric positive definite matrices S ∈ RNp×Np, Ȳℓ = IN−1⊗F ∈
Rm(N−1)×m(N−1), and matrices Xℓ ∈ RNp×m(N−1) for all
ℓ ∈ {1, ..., s}, such that the following matrix inequalities
hold for all i ∈ {1, . . . , r}:

Λ̄ ∗ ∗ ∗
S
(
U ⊗B

)′ −Xℓ −2S ∗ ∗√
ρ(U ⊗D

)′
0 1−γ

γ
I ∗

R′
ℓ 0 0 −Qℓ

 ≤ 0, (25)

[
Ȳℓ ∗

(LℓW ⊗ K̄)(q) −Xℓ(q) u2
maxγ

]
≥ 0, for q = 1, ..., Np, (26)

where,
Λ̄ = He

((
IN−1 ⊗A

)
Ȳℓ − ULℓW ⊗BK̄

)
+ πi

ℓℓȲℓ

Rℓ =
[√

πi
ℓ1Ȳℓ · · ·

√
πi
ℓ(ℓ−1)Ȳℓ

√
πi
ℓ(ℓ+1)Ȳℓ · · ·

√
πi
ℓsȲℓ

]
, and

Qℓ = diag
(
Ȳ1, · · · , Ȳℓ−1, Ȳℓ+1, · · · , Ȳs

)
,

then items (i)-(iii) in Theorem 3.1 hold with agents in closed-
loop with feedback matrix K = K̄F−1.

Proof: The demonstration follows the same lines of
Theorem 3.1. Replacing the matrices variables Yℓ by the
structured variables Ȳℓ = IN−1 ⊗F for all ℓ ∈ S. Then, the
conditions are obtained by applying the Kronecker identity
in all products with the gain matrix K and, subsequently,
making the change of variables K̄ = KF .

Remark 1: The conditions proposed in Theorem 3.1 and
Corollary 3.3 are Linear Matrix Inequalities, hence their
computational complexity grow with the number of decision
variables [37]. In our scenario, the number of agents, the
dimension of their state-space, as well as the number of
vertices of the convex hull of the the time-varying transition
matrix determine the computational complexity of the condi-
tions. Precisely, we have ℓ

2

(
(Np)2+(m(N−1))2+2N2pm+
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Np + m(N − 1) − 2Npm
)

variables in the conditions of
Theorem 3.1, and ℓ

2

(
(Np)2 + 2N2pm + m2+m

ℓ − 2Npm
)

variables in the conditions of Corollary 3.3. Although these
numbers might be high for some systems, the proposed
results achieve less conservative results in a more general
context than similar works from the literature. In addition,
all conditions are computed off-line.

IV. SIMULATION RESULTS

Example 4.1: We consider the problem of maximizing the
disturbance tolerance of a multi-agent system starting from
the equilibrium point. The network is described by (1) with

A =

[
0.1 −0.1
0.1 −3.0

]
, B =

[
5 0
0 1

]
, K =

[
0.1 0.5
0 0

]
,

and D = I2, where K is computed using Corollary 3.3
and then fixed. In addition, we assume that the switching of
the time-varying communication topology is captured by the
Markov process defined by the following transition matrix:

Π =

−2 1 1
2 −4 2
1 1 −2

 ,

and the topologies associated with each state of the Markov
process are given by

L1 =

1 0 −1
0 0 0
0 −1 1

 ;L2 =

0 0 0
0 0 0
0 0 0

 ;L3 =

0 0 0
0 1 −1
0 0 0

 .

Notice that no single topology is connected, however, the
union of the graphs has a directed spanning tree.

By setting a limit for the actuators and solving optimiza-
tion problem (21) for the multi-agent system starting from
the equilibrium point, we obtain the maximum energy bound,
Nρ, for disturbances affecting the network shown in Figure
1. Unsurprisingly, this indicates that the ability of disturbance
rejection of the network grows with the actuation limit.
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Fig. 1. Variation of disturbance level rejection according saturation limit.

For umax = 3 we have Nρ = 145.1, hence if the energy
of the disturbances that impacts the network is less than
145.1, the agents’ states are guaranteed to remain within the
designed region.

-25 -20 -15 -10 -5 0 5 10 15 20 25

zi(1) for i = 1, ..., N

-5

0

5

z
i
(
2
)
fo
r
i
=

1
,
..
.,
N

Fig. 2. Two realizations of the multi-agent system trajectories subject to
ramp (in black line) and constant (in blue line) disturbances with energy
limited by 145.

Figure 2 depicts a realization of the trajectories of the
multi-agent system from the equilibrium point subject to a
ramp disturbance impacting only agent 1 in black line, i.e.,
w1(t) = [t t]′ and wi(t) = [0 0]′ for i = 2, 3, and a constant

disturbance impacting only agent 2 in blue line, i.e., w2(t) =
[10 10]′ and wi(t) = [0 0]′ for i = 1, 3, both with specific
duration such that Nρmax ≤ 145. The control inputs and
switching topologies are shown in Figure 3 for both cases.
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Fig. 3. Control signals and switching topologies for the multi-agent system
subject to ramp (in the bottom) and constant (in the top) disturbances with
energy limited by 145.

Example 4.2: We show the impact of the switching fre-
quency of the stochastic communication on the convergence
region size. Using the same system as in Example 4.1,
we optimize the region R(z(t), 1) for different transition
matrices, according to case (i) of Theorem 3.1. By replacing
the objective function in (19) by min Trace(Z) and setting
γ = 0.8, we solve optimization problem with ρ as variable.
Figure 4 shows the trace of Z as function of ε, a positive
constant that scales the transition matrix as follow

Π = ε

−2 1 1
2 −4 2
1 1 −2

 .

Figure 4 shows a non-linear relation between the size of of
the estimate of the region of convergence and the probability
of link formation. Decreasing the frequency of interactions
reduces the regions of convergence, however the biggest
region for this network occurs when ε = 0.51. For larger
values the size starts to contract. The estimate of the region

0 5 10 15 20 25 30

Time

1

2

3

T
op

ol
og
y

0 5 10 15
ε

3
3.5
4

4.5
5

5.5
6

6.5
7

T
ra
ce
(Z

)

10-3

Fig. 4. Trace of Z as function of different scales parameters of the
transition matrix Π.

of convergence are shown in Figure 5 for ε = 0.25, ε = 0.51,
and ε = 15.00.

V. CONCLUSIONS
In this paper, we investigated the effects of disturbances

and stochastic intermittent communications on agents per-
forming consensus under saturating inputs. We formulated
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Fig. 5. Estimates of the region of convergence for three different values
of ε, in black for ε = 0.25, in blue for ε = 0.51, and in ε = 15.00 in red
line.

the problem as a stability problem of Markov jump lin-
ear systems, proposed conditions to estimate the region of
convergence and the region that bounds the trajectories of
the agents’ states, and demonstrated the formulation of opti-
mization convex methods to design networks with optimized
parameters. Numerical simulations illustrate our proposed
approach. Future work includes finding specific control gains
for different network topologies, formulating the consensus
problem for heterogeneous networks, and investigating event-
triggered control approaches.
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