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Abstract— This paper deals with the problem of finding
suboptimal values of an unknown function on the basis of
measured data corrupted by bounded noise. As a prior, we
assume that the unknown function is parameterized in terms
of a number of basis functions. Inspired by the informativity
approach, we view the problem as the suboptimization of
the worst-case estimate of the function. The paper provides
closed form solutions and convexity results for this function,
which enables us to solve the problem. After this, an online
implementation is investigated, where we iteratively measure
the function and perform a suboptimization. This nets a
procedure that is safe at each step, and which, under mild
assumptions, converges to the true optimizer.

I. INTRODUCTION

Optimization of unknown functions on the basis of mea-
sured data is a topic with many applications ranging from
control to machine learning. For instance, cost or reward
functions in modern model-predictive control methods are
often partially unknown due to modeling difficulties. On the
other hand, sampling the functions is often possible, giving
us access to measurements. Accurately determining subop-
timal values of such unknown functions is at best a major
part of some control objective and at worst safety-critical.
This motivates the problem: determine suboptimal points of
the unknown function on the basis of noisy measurements.
We will investigate this problem both in a one-shot setting,
where the data are given, and in an online setting that allows
for repeated measurements.

Literature review: Of course this is not a new problem,
and there are many solutions with various setups of which
we mention the ones most relevant. In order to solve the
one-shot problem, the usual approach is to first employ
the data to obtain a unique or, in some sense, ‘best’ es-
timate of the unknown function. For this, a number of
nonparametric techniques have been developed to estimate
unknown functions from data. Popular are e.g. Gaussian
processes [1] and methods based on Lipschitz constants [2]–
[4]. However, in this paper, we will make the assumption
that the unknown function can be parameterized in terms of
a number of basis functions or features. Common choices of
basis functions are for instance linear, polynomial, Gaussian,
or sigmoidal functions. These basis functions allow us to
perform regression (see e.g. [5], [6]) on the parameters,
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leading to the ‘best’ estimate. Methods differ on what is con-
sidered this best estimate: For instance least squares (minimal
Frobenius norm), ridge regression (minimal L2 norm), sparse
or Lasso regression (minimal L1 norm). Analogously are the
similar methods that have arisen in the nonlinear system-
identification literature. Methods have been developed to
determine models that are sparse [7], low rank [8]–[10], or
both [11] within a class parameterized using a basis.

After obtaining an estimate of the unknown function,
one can treat this estimate as the true unknown function
and apply any well-studied optimization technique to obtain
suboptimal values. Given the fact that the data is corrupted
by noise, it is reasonable to require some robustness from
the methods applied (see e.g. [12], [13] and the references
therein). Apart from these one-shot optimization problems,
we are also interested in online problems, in which we
iteratively measure and optimize. This is inspired by methods
such as extremum-seeking control [14]–[16], whereas our
implementation is markedly different.

In contrast to this paradigm of regression (or: learning)
followed by optimization, this paper can be viewed as being
in line with the concept of informativity (see [17], [18]),
where system properties are investigated for all systems
compatible with the measurements. This falls within a recent
surge of replacing system identification with methods on
the basis of Willems’ fundamental lemma [19]. While most
of these works deal with linear dynamics, the paper [20]
dealt with bilinear systems by embedding them into a higher
dimensional linear system. Similarly, the works [21], [22]
consider systems that are linear in their basis functions.

Statement of contributions: As mentioned, we take a
viewpoint related to that of the informativity framework.
Using the assumed basis functions, we characterize the set
of all parameters compatible with a set of measurements
with bounded noise. This is named set-valued regression.
Clearly, a point can be guaranteed to be suboptimal for the
unknown function only if it is for all functions corresponding
to compatible parameters. This motivates us to introduce
cautious suboptimization, that is, the problem of finding
such values in a way that is robust against the worst-
case realization of the parameters. In order to resolve this,
we derive closed forms and investigate convexity of this
realization. Combining these allows us to resolve the problem
using any method from convex optimization. Importantly,
this allows us to derive guaranteed upper bounds of the
optimal value of the unknown functions on the basis of
potentially very small data sets.

In addition to this one-shot problem, we investigate an on-
line variant consisting of the iteration of two steps: Collecting
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local measurements and performing cautious suboptimiza-
tion. This gives rise to a procedure which given increasingly
sharp upper bounds of the unknown function. Moreover,
assuming that the noise is randomly generated in addition
to being bounded, we prove that this procedure converges to
the true optimal value.

Proofs are omitted for reasons of space and will appear
elsewhere.

II. PROBLEM STATEMENT

Let1 ϕi : Rn → R for i = 1, . . . , k be a collection
of known basis functions (or features) and consider the
set consisting of all functions ϕγ : Rn → R linearly
parameterized by γ ∈ Rk as ϕγ(z) = Σk

i=1γiϕi(z). By
collecting the basis functions in a vector-function as

b(z) :=
[
ϕ1(z) · · · ϕk(z)

]⊤
,

we can write the shorthand ϕγ(z) = γ⊤b(z). Consider a
function ϕ̂ : Rn → R which is unknown but can be expressed
as a linear combination of the features, i.e., ϕ̂(z) = ϕγ̂(z),
for some unknown parameter γ̂.

We are interested in deducing properties of the function
ϕ̂ on the basis of measurements. Suppose we sample the
function for the variables zi with i = 1, . . . , T and collect
noisy measurements yi of the true function, that is, yi =
ϕ̂(zi) + wi. Here, the vector wi denotes an unknown noise,
or disturbance, for each i. In order to reason with these
measurements in a structured manner, we define

Y :=
[
y1 · · · yT

]
, W :=

[
w1 · · · wT

]
, (1)

Φ :=
[
b(z1) · · · b(zT )

]
=

ϕ1(z1) . . . ϕ1(zT )
...

...
ϕk(z1) . . . ϕk(zT )

.
Note that Y,W ∈ R1×T , Φ ∈ RT×k, and Y = γ̂⊤Φ+W .

We consider bounded noise. In order to formalize this, let
Π ∈ R(1+ℓ)×(1+ℓ) be a symmetric matrix. We partition Π as

Π =

[
Π11 Π12

Π21 Π22

]
, with Π11 ∈ R,Π22 ∈ Rℓ×ℓ.

If Π22 < 0, then we denote the Schur complement Π|Π22 :=
Π11 −Π12Π

−1
22 Π21. We define the set

Z(Π) :=

{
v ∈ Rℓ |

[
1
v

]⊤
Π

[
1
v

]
⩾ 0

}
.

We make the following assumption on the noise model.

Assumption 1 (Noise model). Let Π ∈ R(1+T )×(1+T ) be
symmetric, such that Π22 < 0, and Π|Π22 ⩾ 0. The noise
samples satisfy W⊤ ∈ Z(Π).

1Throughout the paper, we use the following notation. We denote by N
and R the sets of nonnegative integer and real numbers, respectively. We let
Rn×m denote the space of n×m real matrices. For vectors v ∈ Rn, we
write v ⩾ 0 (resp. v > 0) for elementwise nonnegativity (resp. positivity).
The sets of such vectors are denoted Rn

⩾0 := {v ∈ Rn|v ⩾ 0} and
Rn
>0 := {v ∈ Rn|v > 0}. On the other hand, for P ∈ Rn×n, P ⩾ 0

(resp. P > 0) denotes that P is symmetric positive semi-definite (resp.
definite). We denote the smallest singular value of M ∈ Rn×m by σ−(M).
For a set S ⊆ Rn we denote the convex hull by conv(S) and the interior
by int(S).

With Π as in Assumption 1, the set Z(Π) is nonempty,
convex, and bounded. A common example of such a noise
model is the case where WW⊤ ⩽ q, for some q ⩾ 0, or
as confidence intervals of Gaussian noise. Assuming that the
noise signal satisfies Assumption 1, we can define the set of
all parameters γ consistent with the measurements by:

Γ := {γ ∈ Rk | Y = γ⊤Φ+W,W⊤ ∈ Z(Π)}. (2)

Thus, if we define N ∈ R(1+k)×(1+k) by

N :=

[
N11 N12

N21 N22

]
=

[
1 Y
0 −Φ

]
Π

[
1 Y
0 −Φ

]⊤
, (3)

it follows immediately that Γ = Z(N). Note that γ̂ ∈ Γ and
that we have no further information on the value of γ̂. We
refer to the procedure of obtaining Γ from the measurements
as set-valued regression.

Remark II.1 (Sufficiently exciting measurements). Note that
the set Γ is closed. Moreover, it is bounded if and only if
N22 < 0. Since N22 = ΦΠ22Φ

⊤ and Π22 < 0, this holds if
and only if Φ has full row rank. In turn, this requires that
the basis functions are not identical and that the set of points
zi is ‘rich’ enough or sufficiently ‘exciting’, cf. [19]. •

Remark II.2 (Least-squares estimates). One can check that,
if N22 < 0, then γlse := −N−1

22 N21 ∈ Γ. Therefore
(γlse)⊤b(z) is consistent with the measurements. In fact,[

1
−N−1

22 N21

]⊤
N

[
1

−N−1
22 N21

]
⩾

[
1
γ

]⊤
N

[
1
γ

]
,

for any γ⊤ ∈ Z(N). As such, γlse is the value for which
the quadratic inequality is maximal. This leads us to refer to
the function ϕlse(z; Γ) := (γlse)⊤b(z) = −N12N

−1
22 b(z) as

the least-squares estimate of ϕ̂(z). •

We are interested in the optimization of the unknown
function ϕ̂. However, based on the measurements, we cannot
distinguish between the different functions ϕγ for γ ∈ Γ.
Indeed, small changes in the parameter γ might lead to
large changes in the quantitative behavior and the location
of optimal values of the functions ϕγ . In order to be robust
against such changes, we consider suboptimization problems
instead: for instance, we can conclude that ϕ̂(z) ⩽ δ only if
ϕγ(z) ⩽ δ for all γ ∈ Γ. This motivates the following.

Problem 1 (Cautious optimization for set-valued regression).
Consider an unknown function ϕ̂, a noise model Π such
that Assumption 1 holds, measurements of the true function
(Y,Φ), and Γ as in (2). Then,
(a) (Verification of suboptimality): given z ∈ Rn, find the

smallest of δ ∈ R for which ϕγ(z) ⩽ δ for all γ ∈ Γ;
(b) (One-shot cautious suboptimization): using the solution

to (a), and given a set S ⊆ Rn, find z ∈ S for which (a)
yields the minimal value of δ;

(c) (Online cautious suboptimization): determine where to
collect new measurements to iteratively improve the
bound obtained in (b).

Note that Problem 1 can be posed instead as a question
regarding properties of the measurements (Y,Φ), as in the
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data informativity framework, e.g. [17], [18]. For instance,
given δ ∈ R and S ⊆ Rn, one could say that the data (Y,Φ)
is informative for δ-suboptimization on S if there exists z ∈
S such that ϕγ(z) ⩽ δ for all γ ∈ Γ.

III. ONE-SHOT CAUTIOUS SUBOPTIMIZATION

This section addresses Problems 1.(a) and 1.(b). Consider

ϕ+(z; Γ) := sup
γ∈Γ

ϕγ(z), ϕ−(z; Γ) := inf
γ∈Γ

ϕγ(z), (4)

which correspond to the elementwise worst-case realization
of the unknown parameter γ̂. Note that if Γ is compact, cf.
Remark II.1, the supremum and infimum are both attained
over Γ. Hence they can be replaced by maximum and
minimum, respectively, which implies that both ϕ+(z; Γ) and
ϕ−(z; Γ) are finite-valued functions.

Resolving Problem 1.(a) is equivalent to determining
function values of ϕ+(·; Γ). Similarly, we can reformulate
Problem 1.(b) as finding

min
z∈S

max
γ∈Γ

ϕγ(z) = min
z∈S

ϕ+(z; Γ). (5)

This problem takes the form of a minimax or bilevel op-
timization problem. In this section we first investigate the
inner problem of finding values of ϕ+(z; Γ), i.e., solving
Problem 1.(a). After a detour regarding uncertainty, we
check this function for convexity. Then, by explicitly finding
gradients, we can efficiently resolve Problem 1.(b).

A. Verification of suboptimality

As a first step towards resolving the cautious suboptimiza-
tion problem we investigate verification of suboptimality.
That is, given z ∈ Rn, test whether the unknown function is
such that ϕ̂(z) ⩽ δ. Recall that this problem can be resolved
if we can explicitly find function values of the functions
in (4). The following result provides closed-form expressions
for these functions on the basis of measurements.

Theorem III.1 (Closed-form expressions for bounds). As-
sume that the measurements (Y,Φ) are such that Γ = Z(N)
with N22 < 0. Then

ϕ±(z; Γ) =−N12N
−1
22 b(z)±

√
(N |N22)b(z)⊤(−N−1

22 )b(z).

Note that the first term in the closed forms expressions
of the functions ϕ+(·; Γ) and ϕ−(·; Γ) is the least squares
estimate, cf. Remark II.2. The result in Theorem III.1 then
shows that the difference between the values of true unknown
function and the least squares estimate can be quantified in
terms of the basis functions and the data, as expressed in N .

As a consequence of Theorem III.1, we have the following
result expressing the gradient of the bounding functions.

Corollary III.2 (Gradients in terms of data). Assume that the
measurements (Y,Φ) are such that Γ = Z(N) with N22 < 0.
Let the basis functions ϕi be differentiable and such that
b(z) ̸= 0 for all z ∈ S. Then,

∇ϕ±(z; Γ) = [∇ϕ1(z) · · · ∇ϕk(z)]·(
−N−1

22 N21 ±
√
N |N22

(−N−1
22 )b(z)√

b(z)⊤(−N−1
22 )b(z)

)
.

B. Uncertainty of function values

The discussion in Section III-A allows us to find bounds
for the unknown function ϕ̂, but does not consider how much
these bounds deviate from its true value. By definition, we
have ϕ−(z; Γ) ⩽ ϕ̂(z) ⩽ ϕ+(z; Γ). Therefore, we define the
uncertainty at z by

U(z; Γ) := ϕ+(z; Γ)− ϕ−(z; Γ)

to quantify how well we know the function value of ϕ̂(z)
at z ∈ Rn. If the uncertainty at z is close to 0, then the
function value of ϕ̂(z) is quantifiably close to ϕlse(z; Γ) =
−N12N

−1
22 b(z). To balance the demands of a low upper

bound on the value of the true function with an associated
low uncertainty, it is reasonable to consider the following
generalization of the cautious suboptimization problem (5):
for λ ⩾ 0, consider

min
z∈S

ϕ+(z; Γ) + λU(z; Γ). (6)

Under the conditions of Theorem III.1, we obtain the fol-
lowing closed form for the objective function.

Lemma III.3 (Explicit forms and (6)). Let the measurements
(Y,Φ) be such that Γ = Z(N) with N22 < 0. Then

U(z; Γ) = 2
√
(N |N22)b(z)⊤(−N−1

22 )b(z). Moreover, if

Nλ :=

[
N11 N12

N21 N22

]
+

[
4λ(1 + λ)(N |N22) 0

0 0

]
,

and Γλ := Z(Nλ), then ϕ+(z; Γ) + λU(z; Γ) = ϕ+(z; Γλ).

Lemma III.3 means that, even though problem (6) is more
general than the cautious suboptimization problem (5), both
problems can be resolved in the same fashion.

C. Convexity and suboptimization

To provide efficient solutions to (5), we investigate when
ϕ+(·; Γ) is convex. Towards this, we first investigate condi-
tions under which we can guarantee that the true function ϕ̂ is
convex. Since nonnegative combinations of convex functions
are convex, the following result identifies conditions that en-
sure the set of parameters consistent with the measurements
are nonnegative.

Lemma III.4 (Test for nonnegativity of parameters). Given
measurements (Y,Φ), let Γ = Z(N), where N is as in (3).
Then, Γ ⊆ Rk

⩾0 if and only if Φ has full row rank and one
of the following conditions hold

1) The matrix N ⩽ 0 and −N−1
22 N21 ∈ Rk

⩾0, or
2) The matrix N has one positive eigenvalue, −N−1

22 N21 ∈
Rk

>0 and, for all i = 1, . . . , k,

N |N22 +
(e⊤i N−1

22 N21)
2

e⊤i N−1
22 ei

⩽ 0.

We can use this result to identify conditions that ensure
the convexity of the unknown function and its upper bound.

Corollary III.5 (Convexity of the true function and upper
bound). Suppose that the basis functions ϕi are convex and
Γ ⊆ Rk

⩾0.
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• Then, ϕγ is convex for all γ ∈ Γ and ϕ+(·; Γ) is a
finite-valued convex function;

• If, in addition, the functions ϕi are strictly convex and
0 ̸∈ Γ, then ϕγ is strictly convex for all γ ∈ Γ and
ϕ+(·; Γ) is strictly convex.

Lemma III.4 and Corollary III.5 taken together mean that,
if the basis functions are convex, we can test for convexity
on the basis of data.

Recall that we are interested in the optimization problem
(5), and therefore not necessarily in properties of the true
function ϕ̂, but of its upper bound ϕ+(·; Γ). This motivates
our ensuing discussion to provide conditions that ensure
convexity of the upper bound instead. Note that, under the
assumptions of Theorem III.1, we have

ϕ+(z; Γ) = ϕlse(z; Γ) + 1
2U(z; Γ).

Thus, if (i) ϕlse(·; Γ) = −N12N
−1
22 b(·) is convex and (ii)

U(·; Γ) is convex, then so is ϕ+(·; Γ). Moreover, if in addi-
tion either is strictly convex, then so is ϕ+(·; Γ). Condition (i)
could be checked directly if all basis functions ϕi are twice
continuously differentiable by computing the Hessian of ϕlse.
Here, we present the following simple criterion derived from
composition rules, see e.g. [23, Example 3.14], to test for
condition (ii).

Corollary III.6 (Convexity of the uncertainty). Assume that
the measurements (Y,Φ) are such that Γ = Z(N) with
N22 < 0. Then U(·; Γ) is convex if each basis function ϕi is
convex and −N−1

22 b(z) ⩾ 0 for all z ∈ Rn.

Equipped with the results of this section, one can solve
the cautious suboptimization problems (5) and (6) efficiently.
Under the assumptions of Theorem III.1, we can write
closed-form expressions for ϕ+(·; Γ). This, in turn, allows
us to test for (strict) convexity using e.g., Corollaries III.5
or III.6. If so, we can apply (projected) gradient descent,
using Corollary III.2, to resolve cautious suboptimization.

IV. ONLINE CAUTIOUS OPTIMIZATION

In this section, we develop an online optimization pro-
cedure on the basis of local measurements of the true
function to refine the optimality gap. Specifically, we devise
a procedure where we first collect data near a candidate
optimizer, we update a convex upper bound of ϕ̂ on the basis
of the measurements, and lastly we recompute the candidate
optimizer on the basis of the updated upper bound.

To formalize this, we require some notation. Let F =
{fi}Ti=1 ⊆ Rn be a finite set. For a given z ∈ Rn we measure
the function at all points in z + F . For this, define

ΦF (z) :=

ϕ1(z + f1) . . . ϕ1(z + fT )
...

...
ϕk(z + f1) . . . ϕk(z + fT )

.
Given an initial point z0, consider measurements at step k,

Yk = γ̂⊤ΦF (zk) +Wk, with W⊤
k ∈ Z(Π), (7)

where Yk and Wk are as in (1). Define the set Γk of parame-
ters which are compatible with the kth set of measurements,

Γk := Z(Nk), (8)

where Nk :=

[
1 Yk

0 −ΦF (zk)

]
Π

[
1 Yk

0 −ΦF (zk)

]⊤
.

The online optimization procedure then incrementally in-
corporates these measurements to refine the computation of
the candidate optimizer. The following result investigates the
properties of the resulting online gradient descent.

Theorem IV.1 (Online gradient descent). Let F be a finite
set such that 0 ∈ int(convF) and such that ΦF (z) has full
row rank for all z. Define S(z) := z + convF . Consider
an initial point z0 ∈ Rn and suppose that the measurements
(Y0,Φ

F (z0)) are such that ϕγ is strictly convex for all γ ∈
Γ0. For k ⩾ 1, repeat the following two steps iteratively:
first update the candidate optimizer

zk := argmin
z∈S(zk−1)

ϕ+(z; Γ0 ∩ . . . ∩ Γk−1) (9)

and secondly measure the function ϕ̂ as in (7) and define Γk

as in (8). Then the following hold:
1) For any k ⩾ 1, the problem (9) is strictly convex;
2) For each k ⩾ 1, the algorithm provides an upper bound

min
z∈Rn

ϕ̂(z) ⩽ ϕ+(zk; Γ0 ∩ . . . ∩ Γk−1); (10)

3) The upper bounds are monotonically nonincreasing

ϕ+(zk+1; Γ0∩. . .∩Γk) ⩽ ϕ+(zk; Γ0∩. . .∩Γk−1) (11)

4) If zk ̸= zk+1, then (11) holds with a strict inequality.

The algorithm described in Theorem IV.1 provides a
sequence of upper bounds to true function values, cf. (10), on
the basis of local measurements. This means that after any
number of iterations, we obtain a ‘worst-case’ estimate of the
function value ϕ̂(zk) and, as such, for the minimum of ϕ̂.
Given that this sequence of upper bounds is nonincreasing,
cf. (11), and bounded below by the true minimum of ϕ̂, we
can conclude that the algorithm converges. However, without
further assumptions, one cannot guarantee convergence of the
upper bounds to the minimal value of ϕ̂, or respectively of
zk to the global minimum of ϕ̂ (the simulations of Section V
below show an example of this precisely).

The following result shows that if the uncertainty is
sufficiently small near the optimizer, then the optimizer of
the upper bound is close to the global optimizer of the true,
unknown function.

Lemma IV.2 (Stopping criterion). Let Γ be compact and
S ⊆ Rn closed. Define

z̄ := argmin
z∈S

ϕ+(z; Γ), ẑ := argmin
z∈S

ϕ̂(z).

Then ϕ+(z̄; Γ) ⩾ ϕ̂(ẑ) ⩾ ϕ+(z̄; Γ)−maxz∈S U(z; Γ).

From Lemma IV.2, we see that if the uncertainty on S is
equal to zero, then the local minima of ϕ+ and ϕ̂ coincide.
In addition, if ϕ̂ is strictly convex, we have that any local
minimum in the interior of S is equal to its global minimum.

When repeatedly collecting measurements, it seems rea-
sonable to assume that the uncertainty would decrease.
However, without making further assumptions, this is not
necessarily the case. In particular, a situation might arise
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where repeated measurements corresponding to a worst-case,
noise signal give rise to convergence to a fixed bound with
nonzero uncertainty. To address this problem, we consider a
scenario where the noise samples are not only bounded but
distributed uniformly over the set Z(Π). To make this formal,
suppose that Π is such that Z(Π) is bounded. Consider the
measure µ and probability distribution over RT ,

p(W ) :=

{
1

µ(Z(Π)) W⊤ ∈ Z(Π),

0 otherwise.

As a notational shorthand, we write W⊤ ∼ Uni(Z(Π)). The
following result shows that, under uniformly distributed noise
samples, the uncertainty does indeed decrease.

Theorem IV.3 (Uncertainty under repeated measurements).
Under the assumptions of Theorem IV.1, suppose in addition
that for k ⩾ 1, the measurements in (7) are such that W⊤

k ∼
Uni(Z(Π)) and σ−(Φ

F (z)) ⩾ a for all z. Then for any
z ∈ Rn, the expected value of the uncertainty monotonically
converges to 0, that is,

U(z; Γ0 ∩ . . . ∩ Γk−1) ⩾ U(z; Γ0 ∩ . . . ∩ Γk),

and limk→∞ E(U(z; Γ0 ∩ . . . ∩ Γk)) = 0.

As a consequence of Lemma IV.2 and Theorem IV.3,
one can conclude that the expected difference between the
optimal value minz∈S ϕ̂(z) of the unknown function and the
optimal value minz∈S ϕ+(z; Γ0∩· · ·∩Γk) provided by online
gradient descent both converge to zero.

V. SIMULATION EXAMPLES

We illustrate here our results in a simple example. Let the
unknown function ϕ̂ : R2 → R be given by ϕ̂(z) = 1+z⊤z.
Let z =

(
z1 z2

)⊤
and consider the basis functions

ϕ1(z) = 1, ϕ2(z) = z1, ϕ3(z) = z2, ϕ4(z) = z⊤z.

The value of the true parameter γ̂ is
(
1 0 0 1

)⊤
.

We sample the function at points in z + F , where F =
{(0, 0), (1, 0), (0, 1), (−1,−1)} (i.e., we measure at the point
itself and three points around it). For this choice, ΦF (z) has
full row rank for all z ∈ R2. The measurements are corrupted
by a large amount of noise: we assume a noise model of
the form WkW

⊤
k ⩽ 30 for all k ⩾ 0 and that the noise is

uniformly distributed in this set. This means that

Π =

[
30 0
0 −I4

]
and W⊤

k ∼ Uni(Z(Π)).

For z0, we collect uniform random noisy measurements
(Y0,Φ

F (z0)), leading to a set of consistent parameters Γ0.
We take z0 =

(
3 3

)⊤
and verify that Γ0 is such that ϕγ is

strictly convex for all γ ∈ Γ0. On the basis of this, define

z1 := argmin
z∈S(z0)

ϕ+(z; Γ0).

Moreover, we can determine the least-squares estimate of the
parameter γ̂ and the function ϕ̂. The latter is given by

ϕlse(z; Γ0)=63.99ϕ1(z)− 23.27ϕ2(z)− 23.27ϕ3(z) + 5.1ϕ4(z).

Now we can evaluate the true function, least-squares esti-
mate, and the upper bound, finding the following values:

z0 z1 0

ϕ̂(·) 19 13.48 1
ϕlse(·; Γ0) 16.26 11.44 63.99
ϕ+(·; Γ0) 21.74 16.74 136.45

We can make a few observations. First, the least-squares
estimate is quite close at the measured point z0, yet far
at the true minimum of ϕ̂ at the origin. Further, the upper
bound indeed decreases monotonically. Lastly, while the
upper bound majorizes ϕ̂, the least-squares estimate does not.

We run 100 iterations of the online gradient descent
algorithm in Theorem IV.1 and plot the results in Figure 1. In
spite of the relatively noisy data, we see rapid convergence of
the parameters γ and the values of the estimate zk. Moreover,
the upper bound is close to the true value at the measured
point. After just 10 steps, we see that the true function value
at the estimate is already significantly lower than at the start.
To show that this happens regardless of the choice of initial
conditions, Figure 2 shows the trajectories of zk resulting
from 8 different initial conditions and the corresponding
values of the upper bounds.
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ϕ+(zk; Γ0∩ . . .∩Γk)

Fig. 1: The simulation results for the initial condition z0 = (3 3)⊤. In
the first plot, the resulting trajectory of the estimate zk , shown elementwise.
The second plot shows the measurements corresponding to zk + f1 = zk ,
that is, to ϕ̂(zk) + wk,1, where wk,1 is the first element of Wk . These
measurements are compared to the actual value of the function ϕ̂ and the
current upper bound.

Lastly, we illustrate that worst-case, adversarial noise can
lead to convergence to a suboptimal bound. For this, in the
last set of simulations and for the same scenario, instead of
generating noise randomly, we apply the same noise sample
from Z(Π) at each step after k = 1. These results can
be seen in Figure 3. In particular, note that zk does not
converge to the optimizer at the origin origin, but to the point(
0.1519 0.1519

)⊤
. Moreover, since the noise is constant,

it can be seen that the upper bound does not converge to the
optimal value of the true function.

VI. CONCLUSIONS

We have investigated suboptimization for unknown func-
tions on the basis of measurements with bounded noise.
Employing ideas from the informativity framework for data-
driven control, the notions of set-valued regression and the
cautious suboptimization problem were introduced. In short,
the data gives rise to a set of possible parameters, and in
order to draw conclusions regarding the true function we
require bounds for all possible realizations of this param-
eter. Resolving this problem was shown to be equivalent
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Fig. 2: The simulation results for eight different initial conditions. In
the large plot we see the upper bounds corresponding to the different
trajectories, which indeed decrease monotonically towards the true minimum
ϕ̂(0) = 1. The inset image shows each of the corresponding trajectories of
the estimate zk , revealing that each tends to the true minimizer.
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Fig. 3: The simulation results for the initial condition z0 = (3 3)⊤ with
nonrandom noise. In particular, the noise samples are equal and proportional
to the vector of ones. The figures correspond to those in Figure 1. Note that
the elements of the vector z are equal for all time.

to minimization of the worst-case realization. For this, we
provided explicit forms and convexity results, allowing ef-
ficient solutions. In an online setting, we investigated the
iteration of cautious suboptimization and local collection of
new measurements. This procedure gives rise to nonincreas-
ing guaranteed upper bounds for the optimal value of the
unknown function. Moreover, in the case that the noise is
randomly generated, this procedure is proven to converge to
the true optimal value.

A number of avenues for future work present themselves.
As illustrated by set membership estimation (see e.g. [2]),
the Lipschitz constant is a powerful tool for deriving local
bounds on the basis of measurements. Indeed, Lipschitz
constants of the parameterized functions can be derived from
those of the basis functions, allowing for the determination
of locally suboptimal values outside the scope of convex
functions. Another extension would be to consider non-scalar
functions, with an aim at analysis of nonlinear systems within
a parameterized class. We also would like to characterize the
sample efficiency and computational complexity of the pro-
posed techniques. Regarding online methods, there are many
possible extensions, including relaxations of the optimization
problem to avoid intersections of a large amount of convex

sets. This work investigates uniformly distributed noise, and
investigation of different distributions and less conservative
convergence results is a topic of interest.
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