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Abstract— It is now well known that Natural Policy Gradient
(NPG) globally converges for discounted-reward MDPs in the
tabular setting, with perfect value function estimates. However,
the result cannot be directly used to obtain a corresponding
convergence result for average-reward MDPs by letting the
discount factor tend to one. In this paper, we prove that NPG
also converges for average-reward MDPs in which each policy
leads to an irreducible Markov chain. Since NPG can also be
interpreted as a mirror descent based policy method, we then
discuss extensions to non-tabular settings for mirror descent-
based methods.

I. INTRODUCTION

Popular algorithms to solve for optimal policies in the
context of Markov decision processes (MDPs) include dy-
namic programming based algorithms such as value iteration,
policy iteration, and modified policy iteration [1], [2]. While
these algorithms require knowledge of the underlying MDP,
reinforcement learning algorithms such as policy gradient
algorithms can be implemented without the knowledge of an
underlying model [3]. A variant of policy gradient methods,
called Natural Policy Gradient (NPG) [4], [5] utilizes the
Fisher information associated with a policy to condition
the gradient. Such a conditioning is known to have good
properties, including global convergence when the gradient
can be calculated exactly or good performance bounds oth-
erwise [6]. In the tabular setting, NPG has been shown to
be closely related to mirror descent [7]–[10]. Mirror descent
is a generalization of gradient descent, which uses Bregman
divergences as its distance metric and has been studied in
various contexts [7], [11]–[16]. In the rest of the paper,
we study one specific mirror-descent based method (MDM)
which coincides with MDM in the tabular setting.

In the discounted-reward tabular setting, when the value
function can be computed exactly, MDM has been shown to
converge to the optimal policy with a sublinear rate of O( 1

T )
[6], [17] that is, the MDM update yields the following error
bound

V π∗

η − V πT
η ≤ O

(
1

T (1− α)3

)
,

where η is the initial distribution over the state space, π∗ is
the optimal policy (in fact it can be any arbitrary policy; it
is possible to show that the policies obtained through MDM
perform better than any arbitrarily chosen policy), V π

η is the
discounted reward associated with policy π. It is well known
that the average reward associated with a policy π can be
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expressed in terms of its discounted reward counterpart as
Jπ = limα→1(1− α)V π

η (s), independent of the state s and
initial distribution η [2], [18], [19]. However, multiplying the
above bound by (1 − α) on both sides and letting α → 1
yields ∞ on the right-hand side. Therefore, the above bound
is not useful to understand the behavior of MDM in average-
reward MDPs.

In the study of MDMs, two types of results have been ob-
tained for discounted-reward MDPs: (i) global convergence
in the tabular setting with perfect value function estimation,
and (ii) performance bounds in the non-tabular setting with
function approximations. In this paper, our main contribution
is to show the analog of (i) for average-reward MDPs. For
completeness, we also discuss the non-tabular setting by
leveraging our recent results for approximate policy iteration
in [20].

A. Related Work

Average reward MDPs have been well studied in the con-
text of reinforcement learning [3], [21]–[26]. It is employed
to model scenarios where the importance associated with the
rewards does not decay with time. Unlike the discounted
reward MDPs formulation, average reward MDPs do not
possess a discount factor α < 1 to aid in the convergence
of standard learning and dynamic programming techniques
[27], [28]. Hence in many situations, it is necessary to devise
different proof techniques to study performance of well-
known algorithms in the average reward setting [20], [29],
[30].

Some of the very early works on average reward TD-
Learning include [31], [32]. In [21], four natural actor-critic
algorithms in the context of average reward are considered,
and their asymptotic convergence to a neighbourhood around
the local maxima is proven. In [33], actor critic methods with
function approximation are studied, where the feature vectors
are expressed as a span of functions of the parametrized
class of policies. Episodic model free reinforcement learning
algorithms are presented in [34]; however the episodic setting
is very different from the setting we study in this paper.
In [20], policy based reinforcement learning algorithms are
modelled as variants of approximate policy iteration and the
corresponding performance bounds are provided.

To the best of our knowledge, no global convergence
results are available in the average reward case, even when
the value function can be estimated precisely. On the other
hand such global convergence results are available for NPG
[35], [6] and for also for MDMs [11], [12] in the case of
discounted reward MDPs .
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The outline of the rest of the paper is as follows: Section
II contains model and preliminaries where the relationship
between average reward and discounted reward MDPs is also
discussed. Section III contains the main body of the paper. It
begins with the irreducibility assumption necessary for our
proof of convergence of average reward MDMs, followed
by the algorithm and its finite time convergence analysis.
After a discussion on our assumption, Section III ends with
the finite time bounds for non-tabular MDMs with function
approximation in average reward MDPs. Section IV contains
concluding remarks.

II. MODEL AND PRELIMINARIES

We consider infinite horizon Markov Decision Processes
(MDPs) with finite state space S, finite action space A and
class of randomized policies π ∈ Π. Let ∇(A) indicate
the class of probability distributions over A. Then Π :
S → ∇(A). The underlying environment is modeled by
a transition kernel P : S × A → ∇(S). The probability
of transition from s to s′ under policy π is given by
P(s′|s, π(s)) =

∑
a∈A π(a|s)P(s′|s, a). The single step

reward associated with a policy π and state s is denoted
by r(s, π(s)) =

∑
a∈A π(a|s)r(s, a). We assume the single

step reward associated with any state and action is bounded.
The average reward associated with policy π is denoted

by Jπ and is defined as:

Jπ = lim
T→∞

Eπ

[∑T−1
i=0 r(xi, π(xi))

]
T

,

where xi is the state at time i and the expectation is taken
with respect to the transition kernel Pπ. Under standard
assumptions [1], [2], Jπ is independent of the distribution
of the initial state x0. Assuming π induces an ergodic
Markov chain, Jπ can be alternatively expressed as, Jπ =∑

s∈S dπ(s)
∑

a∈A π(a|s)r(s, a), where dπ(s) is the station-
ary distribution over S under the policy π. The state-action
value function Qπ(s, a) associated with a policy π is defined
as the solution to the average reward Bellman equation given
by:

Jπ
1+Qπ(s, a) = r(s, a) +

∑
s′∈S

P(s′|s, a)Qπ(s′, π(s′)), (1)

where 1 is the all ones vector. In order to obtain the state
value function V π(s) associated with policy π, Equation (1)
is averaged with the policy vector π to obtain,

Jπ
1+ V π(s) = r(s, π(s)) +

∑
s′∈S

P(s′|s, π(s))V π(s′), (2)

where V π(s′) =
∑

a∈A π(a|s′)Qπ(s′, a). We note that V π

is the relative value function, even though we refer to it as
the value function for compactness. The advantage function
A with respect to policies π and π′, for all states s ∈ S , is
defined as

Aπ(s, π′(s)) = Qπ(s, π′(s))− V π(s). (3)

The advantage function Aπ(s, a) is analogous to the defini-
tion in the discounted-reward case [36], but the interpretation
is a bit trickier in the average-reward case due to the fact that
V π is the relative value function. Let the optimal average
reward be denoted as Jπ∗

= maxπ∈Π Jπ where π∗ =

argmaxπ∈Π Jπ . Then under mild regularity conditions, there
exists a value function V π∗

that satisfies the average reward
Bellman optimality equation given by:

Jπ∗
1+V π∗

(s)=max
π∈Π

r(s, π(s))+
∑
s′∈S

P(s′|s, π(s))V π∗
(s′)

= r(s, π∗(s)) +
∑
s′∈S

P(s′|s, π∗(s))V π∗
(s′).

Note that the value functions Qπ and V π corresponding to
any policy π are unique up to an additive constant, by virtue
of Equation (1) and Equation (2). In the next section we
discuss the relationship between average reward MDPs and
discounted reward MDPs.

A. Relationship to Discounted Reward MDP

The value function associated with a state s ∈ S,
policy π and discount factor 0 < α < 1 is defined
as: V α

π (s) = Eπ

[∑∞
i=0 α

ir(si, π(si))
∣∣∣s0 = s

]
.

Similarly, the state-action value function asso-
ciated with (s, a) is defined as: Qα

π(s, a) =

Eπ

[
r(s0, a0)+

∑∞
i=1 α

ir(si, π(si))
∣∣∣s0=s, a0=a

]
. The

advantage Aα
π(s, a) of using action a instead of policy π is

defined as

Aα
π(s, a) = Qα

π(s, a)− V α
π (s). (4)

The associated discounted reward Jα
π (η) is the value function

weighted with the initial distribution η over the state space,
that is Jα

π (η) =
∑

s∈S η(s)V α
π (s).

1) Mirror Descent-Based Policy methods: Since the ob-
jective of most reinforcement learning algorithms is to de-
termine the optimal policy yielding maximum discounted
reward, a popular algorithm to achieve that is natural policy
gradient. NPG is closely related to mirror descent in the
tabular setting whose objective at the kth iteration is to
maximize:

πk+1 = argmax
π∈Π

∇⊺
πJ

α
πk
(η)(π − πk)

− 1

β

∑
s∈S

dπk
η (s)DKL (π(·∥s)∥πk(·∥s)) ,

(5)

where dπk
η (s) = (1 − α)

∑∞
i=0 α

iPπ(sk = s|s0 ∼ η) is the
normalized state visitation measure corresponding to state s
and DKL (π(·∥s)∥πk(·∥s)) is the Kullback-Leibler divergence
between policies π and πk. State visitation measure is the
stationary distribution analog of the discounted reward MDP.
Under tabular policy class, it can be shown that

∂Jα
π

∂π(a|s)
=

1

1− α
dπη (s)A

α
π(s, a). (6)

From Equation (5) and Equation (6), we get the update
equation

πk+1(a|s) =
πk(a|s)eβA

α
πk

(s,a)∑
a′∈A πk(a′|s)eβA

α
πk

(s,a′)
. (7)
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Given the definition of the advantage function in Equa-
tion (4), the above update equation can be equivalently

written as πk+1(a|s) = πk(a|s)e
βQα

πk
(s,a)∑

a′∈A πk(a′|s)eβQα
πk

(s,a′) . In the limit

as β → ∞, the policy obtained under such an update is
identical to the one obtained through policy iteration. Hence
MDM can be interpreted as soft policy iteration. A finite
β ensures that all actions are explored with some non-zero
probability which is crucial in order to effectively utilize
algorithms such as TD learning to determine Qα

π(s, a) and
Aα

π(s, a).
Let V α

π∗(s) = maxπ∈Π V α
π (s). Assuming the initial pol-

icy π0 is uniformly randomized across all actions and the
bounded rewards (with a maximum value of 1), under the
update rule Equation (7), previous literature has shown
convergence of the policy updates to the optimal policy as
below:

V α
π∗(s) ≤ V α

πT
(s) +

1

T (1− α)3
+

log(|A|)
βT

, ∀s ∈ S.

(8)

However this performance bound is vacuous in the context
of average reward MDP as explained below.

2) Average Reward MDPs: Note that under mild regular-
ity conditions standard MDP theory establishes the following
relation between discounted reward MDPs and average re-
ward MDPs:

Jπ = lim
α→1

(1− α)V α
π (s). (9)

Since the average cost is independent of the initial state, the
above relation is true for all states s ∈ S. Upon multiplying
Equation (8) with (1 − α) and setting α → 1, we still are
left with a (1− α)2 in the denominator on the RHS, which
leaves us with vacuous bounds for convergence of MDM
for average reward MDPs. But since this is only an upper
bound, it is interesting to understand whether the algorithm
converges in the average-reward case. In the next section,
we outline under what conditions we obtain convergence of
MDM for average reward MDPs as well, and subsequently
provide a proof of the same.

III. AVERAGE REWARD MDM
We now present the average reward MDM in the tabular

setting with perfect estimates of the value functions. The al-
gorithm is a natural extension of the corresponding algorithm
in the discounted-reward case.

Algorithm 1 Average Reward MDM
Input: β > 0, π0(·|s) ∈ ∆(A), ∀s ∈ S
for k = 0, . . . , T −1

1: Compute Aπk(s, a) ∀(s, a) ∈ S ×A
2: Update for all (s, a) ∈ S ×A

πk+1(a|s) =
πk(a|s)eβA

πk (s,a)∑
a′∈A πk(a′|s)eβA

πk (s,a′)
(10)

endfor
Output: πT

We prove the global convergence of the above algorithm
under the following assumption.

Assumption 1: Let dπ(s) be the stationary probability of
being in state s under Pπ . Let π∗ be the optimal policy. We
assume that

∆ = inf
π∈Π
s∈S

dπ(s)

dπ∗(s)
> 0. (11)

⋄
Later, we will discuss how most practical MDPs can

be made to satisfy this assumption for a small loss in
performance.

A. Convergence Analysis of Algorithm 1

Our convergence analysis follows the same outline as in
the case of discounted-reward MDPs: we first utilize the
average reward performance-difference lemma, then show
the monotonicity of the average reward and finally, we
use a weighted KL distance as a Lyapunov function to
establish convergence. However, each of the steps has to be
appropriately modified to get rid of the dependence on the
discount factor and replace it with other relevant quantities.

Lemma 1. (Performance Difference Lemma) Recall the
definition of advantage function in Equation (3). Let Jπ and
Jπ′

be the average rewards associated with policies π and
π′ respectively. Then it is true that,

Jπ − Jπ′
=

∑
s∈S

dπ(s)Aπ′
(s, π(s)), (12)

where dπ is the stationary distribution induced over S by
policy π.

Proof. The proof can be found in [37].

As in the discounted-reward case, the performance differ-
ence lemma plays a key role in the proof of convergence
of average reward MDM, especially to establish the mono-
tonicity of the sequence of average rewards obtained through
Algorithm 1. However, in our average-reward case, it is also
utilized to study the drift of the Lyapunov function used to
prove the convergence of the algorithm.

1) Monotonicity of the MDM Update: We now present
a key lemma used to prove the convergence of the MDM
update to the optimal policy.

Lemma 2. Given πk which are generated according to
Equation (10), the corresponding sequence of average re-
wards Jπk are increasing, that is,

Jπk+1 − Jπk ≥ 0. (13)

Proof. From the MDM update Equation (10) we have the
following,

Aπk (s, a) =
1

β
log

(
zk(s)πk+1(a|s)

πk(a|s)

)
.
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From Lemma 1, we know that

Jπk+1−Jπk =
∑
s∈S

dπk+1(s)
∑
a∈A

πk+1(a|s)Aπk (s, a)

=
1

β

∑
s∈S

dπk+1(s)
∑
a∈A

πk+1(a|s) log
(
zkπk+1(a|s)

πk(a|s)

)
=

1

β

∑
s∈S

dπk+1(s)
∑
a∈A

πk+1(a|s) log
(
πk+1(a|s)
πk(a|s)

)
︸ ︷︷ ︸

DKL(πk+1(·|s)∥πk(·|s))≥0

+
1

β

∑
s∈S

dπk+1(s)
∑
a∈A

πk+1(a|s) log (zk(s))

≥1

β

∑
s∈S

dπk+1(s)
∑
a∈A

πk+1(a|s) log

(∑
a′∈A

πk(a
′|s)eβA

πk (s,a′)

)

(a)

≥ 1

β

∑
s∈S

dπk+1(s)
∑
a∈A

πk+1(a|s)︸ ︷︷ ︸
=1

∑
a′∈A

πk(a
′|s)βAπk (s, a′)

=
∑
s∈S

dπk+1(s)
∑
a′∈A

πk(a
′|s)Aπk (s, a′).

where (a) is due to Jensen’s inequality and concavity of the
log function. Substituting for Aπk(s, a′),

Jπk+1−Jπk ≥
∑
s∈S

dπk+1(s)
∑
a′∈A

πk(a
′|s)(Qπk(s, a′)−V πk(s))

Since V πk(s) =
∑

a′∈A πk(a
′|s)Qπk(s, a′), we obtain

Jπk+1 − Jπk ≥ 0.

Now that we have established the monotonicity of the
average reward associated with the policy iterates, we now
compare the policy iterates with the optimal policy. In order
to prove the convergence of the MDM iterates, consider the
following Lyapunov function whose argument is a policy
vector.

W (π) =
∑
s∈S

dπ
∗
(s)DKL (π

∗(·|s)∥π(·|s)) . (14)

The idea is to show that with the subsequent iterates, the
value of the associated Lyapunov function reduces, which
implies that the NPG iterates approach the optimal policy. A
lemma important to prove the result is stated below.

Lemma 3. Consider the sequence of policies πk obtained
from Algorithm 1. It is true that

W (πk+1)−W (πk)=
∑
s∈S

dπ
∗
(s) log(zk(s))−β

(
Jπ∗

− Jπk

)
,

where zk(s) =
∑

a′∈A πk(a
′|s)eβAπk (s,a′).

Proof. From Equation (14) we know that,

W (πk+1)−W (πk)=
∑
s∈S

dπ
∗
(s)
∑
a∈A

π∗(a|s) log
(

πk(a|s)
πk+1(a|s)

)
.

Using the update Equation (10),

W (πk+1)−W (πk)=
∑
s∈S

dπ
∗
(s)
∑
a∈A

π∗(a|s) log
(

zk(s)

eβA
πk (s,a)

)
=
∑
s∈S

dπ
∗
(s)
∑
a∈A

π∗(a|s) log (zk(s))

− β
∑
s∈S

dπ
∗
(s)
∑
a∈A

π∗(a|s)Aπk (s, a)

=
∑
s∈S

dπ
∗
(s) log (zk(s))−β

(
Jπ∗

−Jπk

)
,

where the last step follows from Lemma 1.

The above lemma captures the impact of consecutive pol-
icy iterates on the chosen Lyapunov function. The main result
follows by telescoping the expression from the previous
lemma as proved in the theorem below.

Theorem 4. The sequence of policies πk generated through
the update rule in Equation (10), correspond to MDPs with
average reward Jπk , which approach the optimal average
reward as below:

Jπ∗
− JπT ≤ W (π0)−W (πT )

βT
+

JπT − Jπ0

∆T
.

Proof. From Lemma 1,

Jπk+1−Jπk =
∑
s∈S

dπk+1(s)Aπk (s, πk+1(s))

=
1

β

(∑
s∈S

dπk+1(s)
∑
a∈A

πk+1(a|s)log
(
πk+1(a|s)
πk(a|s

)
︸ ︷︷ ︸

DKL(πk+1(·|s)∥πk(·|s))≥0

+
∑
s∈S

dπk+1(s)
∑
a∈A

πk+1(a|s)︸ ︷︷ ︸
=1

log(zk(s))

)

≥ 1

β

∑
s∈S

dπ
∗
(s)

dπk+1(s)

dπ∗(s)
log (zk(s))

(a)

≥ ∆

β

∑
s∈S

dπ
∗
(s) log (zk(s)) .

where (a) follows from Section III. From Lemma 3,

Jπk+1−Jπk ≥∆

β

(
W (πk+1)−W (πk)+β

(
Jπ∗

−Jπk

))
.

Iterating the above expression for k = 0, . . . , T yields,

JπT−Jπ0 ≥∆

β

(
W (πT )−W (π0) + β

(
TJπ∗

−
T−1∑
i=0

Jπi

))
.

Jπ∗
−
∑T−1

i=0 Jπi

T
≤ W (π0)−W (πT )

βT
+

JπT − Jπ0

∆T
.

From Lemma 2, we know that the sequence of policies
obtained correspond to MDPs with monotonically increasing
average rewards, that is Jπk+1 ≥ Jπk . Hence, we obtain,

Jπ∗
− JπT ≤ W (π0)−W (πT )

βT
+

JπT − Jπ0

∆T
.
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B. Discussion: Assumption 1

Assumption 1 requires the stationary distribution induced
over the state space by all policies within the randomized
policy function class to be uniformly bounded away from
zero. Depending on the underlying transition kernel, this
assumption need not always be satisfied. However, it is often
the case that there exists a policy (possibly randomized)
under which the resulting Markov chain is irreducible. An
example of such a policy is one where each action is chosen
uniformly at random in each state. Let us denote such a
policy by π′. We can modify the original MDP as follows:
in each state, with probability ϵ, pick an action specified
by policy π′ and with probability 1 − ϵ, choose an action
specified by another policy π. Now, the MDP can be viewed
as optimizing over policy π with π′ being fixed. This induces
an O(ϵ) suboptimality in the average reward that MDM
converges to and thus, our convergence result should be
interpreted as a near optimality result.

C. Discussion: Non-Tabular Average Reward MDM

While performance bounds for non-tabular average-reward
MDM have not been provided in prior literature, they can be
easily inferred from the results in [20], [38].

Algorithm 2 Non Tabular Average Reward MDM
Input: β > 0, π0(·|s) ∈ ∆(A), ∀s ∈ S
for k = 0, . . . , T −1

1: Use TD-Learning to compute Qk(s, a) as an approxima-
tion to Qπk(s, a) ∀(s, a) ∈ S ×A

2: Update for all (s, a) ∈ S ×A

πk+1(a|s) =
πk(a|s)eβQk(s,a)∑

a′∈A πk(a′|s)eβQk(s,a′)
(15)

endfor
Output: πT

Note that in general TD-Learning algorithms are used to
learn the state-action value function Qπk(s, a). However,
since we know the policy πk, one can average the learnt
approximation Qk to obtain Vk and consequently the advan-
tage function Ak as given by Equation (3).

TD Learning algorithms in the context of average reward
MDPs are presented in [30], where function approximation
is utilized for state-action value function Qπk(s, a). More
precisely, Qk(s, a) = ϕ(s, a)⊺θk where ϕ(s, a) ∈ Rd is the
feature vector, and θk is the parameter vector that requires
estimation at every iteration. The TD learning error at each
time step can then be expressed as follows:

∥Qk −Qπk∥∞ ≤ ∥Φ(θk − θ∗k)∥∞︸ ︷︷ ︸
policy evaluation error

+ ∥Φθ∗k −Qπk∥∞,︸ ︷︷ ︸
function approximation error

(16)
where θ∗k = argminθ∈Rd ∥Φθ−Qπk∥22. The policy evaluation
error depends on the number of samples utilized to learn the
best feature vector θk whereas the function approximation
error is a function of the richness of the feature vector Φ
(and does not depend on the number of samples).

Given a policy πk and state s, since Vk(s) does not depend
on action, the policy update equation in Algorithm 2 is
equivalent to Equation (10).

Define the Bellman operator Tπ : R|S|×|A| → R|S|×|A|

with respect to a policy π and optimal Bellman operator
T : R|S|×|A| → R|S|×|A| as follows: (TπQ)(s, a) =
r(s, a) +

∑
s′∈S P̂π(s

′, a′|s, a)Q(s′, a′) and (TQ)(s, a) =

r(s, a) + maxa′∈A
∑

s′∈S P̂ (s′, a′|s, a)Q(s′, a′) The policy
improvement error obtained as a result of using MDM policy
update πk as opposed to the action maximizing TQk is given
by:

0 ≤ (TQk − Tπk+1Qk)(s, a) ≤
1

β
log

1

mins∈S πk+1 (a∗(s)|s)
(17)

where a∗(s) is the optimal action at state s obtained as the
maximizing argument of the optimal Bellman operator acting
on Qk. The error is quantified in terms of the probability
of choosing the optimal action under the policy obtained
through MDM. The details of the above bound can be found
in [38]. Let Jπ∗

be the optimal average reward associated
with P̂. Given the policy evaluation error in Equation (16)
and the policy improvement error in Equation (17) as a result
of the MDM update πk given by Equation (15), we obtain
the following finite time performance bound:

E
[
Jπ∗

−JπT+1

]
≤(1−γ)T E

[
Jπ∗

−min
i

(TQ0 −Q0) (i)
]

︸ ︷︷ ︸
Initial condition error

+

T−1∑
ℓ=1

(1−γ)ℓ−1 E
[∥∥TπT+1−ℓQT−ℓ−TQT−ℓ

∥∥
∞

]
︸ ︷︷ ︸

Policy improvement error

+ E
[∥∥TπT+1QT − TQT

∥∥
∞

]︸ ︷︷ ︸
Policy improvement error

+ 2

T−1∑
ℓ=0

(1− γ)ℓ E
[∥∥QT−ℓ −QπT−ℓ

∥∥
∞

]
.︸ ︷︷ ︸

Policy evaluation error

where γ = inf s∈S
π∈Π

dπ(s) where dπ(s) is the stationary
measure associated with s under policy π. More details on
this bound can be found in [20].

Note that in the tabular case, with perfect value function
information, we were able to prove global convergence.
However, in the non tabular version of average reward MDM,
relative value function estimates are obtained through TD-
Learning, an algorithm that requires each (state, action) pair
to be visited infinitely often. As β → ∞, it is easy to see
that some state action pairs will never be visited, which
leads to a significant error in their relative value function
estimation. However, from Equation (17), we know that as
β → ∞, the policy improvement error associated with the
MDM update tends to zero. Hence the performance bound
for non-tabular average reward MDM crucially depends on
the choice of β, i.e., there is a tradeoff between policy
improvement error and policy evaluation error. This raises
an interesting question about the learning algorithms utilized
for the purpose of relative value function evaluation. If
there is a way to estimate the relative function in a manner
that is independent of β, then it may be possible to get

1983



better performance bounds depending upon the choice of the
behavioral policy. This is an interesting question to explore
in the future.

IV. CONCLUSION

In this paper we prove the global convergence of MDM,
along with finite time bounds, in the tabular setting of
average reward MDPs with perfect value function estimates.
We then proceed to leverage some results from recent lit-
erature to present finite time performance bounds for non-
tabular MDM with approximate policy evaluations and policy
improvements. This work extends some of the very well
known core results in the context of discounted reward MDPs
to the average reward MDP domain, thus opening up more
avenues for research in average reward MDMs.

We note that one can use connection between learning
from expert advice and tabular MDM as in [39] to show
that the difference between the average reward and the
reward obtained by MDM decays as O(1/

√
T ), instead of

O(1/T ) as in our paper. We note that both results are useful
in different respects: while we establish a faster rate of
convergence in terms of T, the result in [39] is independent
of ∆ and thus, independent of the size of the state space.
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