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Abstract— In this paper, we design a learning-based sensor
selection procedure for an unknown cyber-physical system. In
particular, a set of sensors that maximize a metric of observ-
ability of the system is chosen, but without using knowledge of
the system’s dynamics. The metric of observability is related
to the notion of the H2 norm, which quantifies the strength
of the sensor signals generated under a given control input
excitation. It is shown that the evaluation of this metric boils
down to solving a set of model-based Lyapunov equations
which, however, is a task that cannot be carried out directly
since the system is unknown. Nevertheless, we tackle this by
expressing the metric solely with respect to input-output data,
and we use the new expression to choose the best sensors for
the system in a model-free manner, and in polynomial time.
Simulations are performed to demonstrate the efficiency of the
proposed approach.

Index Terms— Sensor selection, input-output data, unknown
systems.

I. INTRODUCTION

Cyber-physical systems (CPS) are, by definition, complex
systems that combine multiple software and hardware units,
along with the communication channels through which these
units exchange data [1], [2]. One of the major focuses of the
systems and controls community is the design of decision-
making/control policies for such systems, with objectives
including regulation around some nominal operation point,
safety in terms of avoiding hazardous areas of operation
[3], or security against adversarial attacks [4]. Nevertheless,
the design of the very components of the CPS is also of
equal significance because these have a direct impact on the
efficiency of any underlying control design. For example, the
actuators of the CPS should be selected to render it easy to
control, whereas its sensors should be chosen to provide as
much information about the CPS state as possible.

This paper focuses on the problem of sensor selection, that
is, the problem of choosing the best sensors to utilize in a
CPS out of a larger set of available sensors [5]. This is a
task that has been extensively studied in the literature, for
example, [6]–[9] designed algorithms to select the sensors
that maximize H2 norm-related metrics of the system. The
intuition is that more potent sensors usually output stronger
signals, and this potency is captured by the H2 norm.
Similarly, the problem sensor selection has been studied
from the perspective of optimizing Gramian-related metrics
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[10]–[13], linear-quadratic regulation [14]–[16], and security
[17], [18]. Nevertheless, most existing works assume that
the model of the system is completely known during the
sensor selection procedure. This can often be a restrictive
requirement for CPS, which are complex by definition and
thus often contain unmodeled dynamics.

Learning and adaptive control are often used to deal with
unknown dynamics, with some notable examples including
model-free optimal control [19]–[21] and adaptive backstep-
ping [22]. Several learning techniques were also recently
developed to deal with unknown or uncertain models in the
context of sensor and actuator selection. For example, to
deal with a system model that is constantly changing, [23]
developed a real-time learning-based algorithm that decides,
at each time instant, which sensors the system should use,
and which should be discarded. Moreover, in the context
of actuator selection, [24]–[26] developed algorithms to
choose the best-performing actuators for the system without
knowledge its state/input matrices. Nevertheless, one of the
main limitations is the requirement for full-state feedback.
On the other hand, when all system matrices are unknown,
and more importantly, when only output data are available for
use, the problem of sensor selection becomes more difficult.

Motivated by the discussion above, in this paper, we
consider the problem of sensor selection for unknown CPS
using input-output data. We choose the cost function of the
problem to be related to the H2 norm of the system, which
is known to be optimizable in polynomial time [9]. However,
since this function inherently depends on the system’s matri-
ces, we leverage techniques from the reinforcement learning
literature [27] to express it solely with respect to input-
output data. The data-driven expression of the cost function
subsequently enables solving the sensor selection problem,
despite the restrictiveness of the considered setup.

Notation: For any signal x : N Ñ Rn, we use the notation
xpt1 : t2q “ rxTpt2q xTpt2´1q . . . xTpt1`1q xTpt1qsT for
t1, t2 P N such that t2 ě t1. We use ∥¨∥ to denote the stan-
dard Euclidean vector norm, and ∥¨∥8 to denote the infinity
vector norm. For a matrix A, A: denotes its Moore–Penrose
inverse, and vecpAq “ rA1,1 A2,1 . . . An´1,n An,nsT

its vectorized form, with the inverse operation denoted
with the operator vec´1p¨q. If A is symmetric, then
vechpAq “ rA1,1 A2,1 . . . An,1 A2,2 A3,2 . . . An,nsT

denotes its half-vectorized form, while vecspAq “

rA1,1 2A2,1 . . . 2An,1 A2,2 2A3,2 . . . An,nsT denotes its
scaled half-vectorized form. For a square matrix A, trpAq

denotes its trace, and ρpAq its spectral radius. For any two
matrices A,B, AbB denotes their Kronecker product. The
identity matrix of order n is denoted as In.
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II. PROBLEM STATEMENT

Consider, for t P N, a discrete-time system of the form:

xpt ` 1q “ Axptq ` Buptq, xp0q “ x0,

yptq “ Cxptq,
(1)

where xptq P Rn is the state vector with initial value x0 P

Rn, uptq P Rm is the control input, yptq P Rp is the output,
and A P Rnˆn, B P Rnˆm, C P Rpˆn are the system
matrices. Each row of the matrix C represents a sensor of
the system, whereas each column of the matrix B represents
an actuator of the system. We have:

C “
“

cT1 cT2 . . . cTp
‰T

,

B “
“

b1 b2 . . . bm
‰

,

where cj P R1ˆn, j “ 1, . . . , p represents a sensor, whereas
bi P Rn, i “ 1, . . . ,m, represents an actuator.

Within the context of the sensor selection problem, we
assume that, due to computational, communicational, or
energy constraints, we want to select only p1 ă p out of
the p sensors available for use at each time instant. That is,
we seek a selection matrix

Sγ “
“

eγ1
eγ2

. . . eγp1

‰T
,

with γ “ tγ1, . . . , γp1 u Ă t1, . . . pu, that will choose which
rows of the sensing matrix C will be used, so that the new
sensing matrix is C 1 “ SγC. This problem has been studied
extensively in the literature, and various algorithms to tackle
it efficiently have been proposed [9]–[12], [16]. However, in
this study we consider the sensor selection problem under a
restrictive setup in which

1) All system matrices A,B,C are unknown.
2) Only the output provided by the selected sensors at the

instant t P N is available for measurement.

While data-driven approaches to perform sensor/actuator
selection under the assumption of unknown A or B matrices
have also been proposed in the literature [24], [25], [28],
those rely on the availability of full-state feedback. On the
other hand, here we restrict ourselves not just to output
feedback, but also to the assumption that the C matrix in
(1) is unknown. As a minimum requirement, we still require
the following observability Assumption, which implies we
know a set of sensors that renders the system observable.

Assumption 1. There exists a known selection index γ̂ “

tγ̂1, . . . , γ̂ru Ă t1, . . . , pu, such that pA, Sγ̂Cq is observable.

A. Observability Metric and H2 Norm

The next step is to define the cost function that will distin-
guish which set of sensors is the “best” to select, with metrics
of observability becoming relevant here. Nevertheless, since
all system matrices A,B,C are unknown, there is no unique
state-space representation for the input-output behavior of
(1). This limitation restricts us to metrics of observability that
apply only to the transfer function G of the tuple pA,B,Cq.

One metric that jointly quantifies controllability and ob-
servability is the H2 norm of the transfer function G [6]. This
is defined as the infinite-horizon expected output energy

∥G∥22 “ E

«

8
ÿ

t“0

∥yptq∥2
ff

(2)

under the condition that x0 “ 0 and u „ N p0, 1q. The
motivation behind choosing this norm as the cost function for
the sensor selection problem is that “more observable” sen-
sors will generally yield larger output signals [6]. However,
a limitation of (2) is that it applies only to asymptotically
stable systems, owing to the infinite summation in (2) being
divergent if A is unstable. To circumvent this issue, following
[29], [30] one can discount the output measurements in (2)
with a parameter a P p0, 1q, and instead define a “discounted
H2 norm” as:

∥G∥22,a “ E

«

8
ÿ

t“0

a2t ∥yptq∥2
ff

. (3)

If a ă 1
ρpAq

, similar to [29], it is straightforward to ver-
ify that (3) is well-defined. In particular, it follows that

∥G∥22,a “

∥∥∥G̃∥∥∥2
2

where G̃ is the transfer function of the

tuple paA,B,Cq. Defining Ã “ aA, it then follows from
standard linear systems theory that

∥G∥22,a “ trpCWcC
Tq “ trpBTWoBq (4)

where Wo,Wc are observability and controllability Gramians
for the pairs pÃ, Cq and pÃ, Bq, which satisfy the Lyapunov
equations (LEs):

ÃWcÃ
T ´ Wc ` BBT “ 0,

ÃTWoÃ ´ Wo ` CTC “ 0.

In the rest of this paper, we focus on finding the sensors
that maximize the cost function (3)-(4) using input-output
data, and without using the system matrices A,B,C. In
particular, for the sensor selection problem, we want to find
the optimal selection matrix Sγ‹ that attains:

Sγ‹ “ argmax
Sγ

trpSγCWcC
TSTγ q. (5)

III. DATA-DRIVEN ESTIMATION OF THE COST FOR
FIXED SENSOR SETS

The first step towards solving the sensor selection problem
with unknown system matrices A,B,C, is being able to
express the cost function in (5) using input-output data only.
In this section, we perform this task for a fixed choice of the
selection matrix Sγ , and we will subsequently use this in the
next section to perform data-driven sensor selection.

Before proceeding, note that this task requires i) being
able to take measurements from the sensors involved in the
matrix C̃ “ SγC, whose H2 norm we want to evaluate1; and
ii) concurrently being able to take measurements from the
sensors involved in Ĉ “ Sγ̂C, as a minimum observability

1Since C is unknown, such a requirement is natural.
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requirement. In short, this reduces the output measurements
we can access to:

xpt ` 1q “ Axptq ` Buptq, xp0q “ x0,

ŷptq “ Ĉxptq, ỹptq “ C̃xptq.
(6)

A. Expressing the State with Input-Output Trajectories

Apart from the matrices A,B,C being unknown, a major
restriction of the present setup is not having access to full-
state feedback, rather, only to the measured outputs available
at each time. Nevertheless, directly following [27] the state
xptq can be reconstructed using a history stack of past outputs
and control inputs.

Lemma 1. [27] Let Assumption 1 hold, so that pA, Ĉq is
observable. Define the matrices

UN “
“

B AB A2B . . . AN´1B
‰

,

VN “
“

pĈAN´1qT . . . pĈAqT ĈT
‰T

,

TN “

»

—

—

—

—

—

–

0 ĈB ĈAB . . . ĈAN´2B

0 0 ĈB . . . ĈAN´3B
...

...
. . .

. . .
...

0 . . . 0 ĈB
0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

fl

.

If N ě K, where K is the observability index2, then at any
t ě N :

xptq “ Mzptq

where
zptq “

„

upt ´ 1 : t ´ Nq

ŷpt ´ 1 : t ´ Nq

ȷ

,

and M “
“

Mu My

‰

, My “ ANV :

N , Mu “ UN ´ MyTN .

A clear limitation of Lemma 1 is that it relies on prior
knowledge of the system matrices A,B,C. However, this
requirement is relaxed in the following subsection.

B. Expressing the Cost Function with Input-Output Data

Denote JpSγq “ trpSγCWcC
TSTγ q as the cost function

(5), which we want to estimate for a fixed sensor set Sγ
using input-output data. The following Lemma re-expresses
this cost with respect to a dual LE, which will subsequently
facilitate the task of its data-driven estimation.

Lemma 2. It holds that

JpSγq “ trpBTW γ
o Bq, (7)

where W γ
o uniquely solves the LE

ÃTW γ
o Ã ´ W γ

o ` CTSTγ SγC “ 0. (8)

Proof. Following standard linear systems theory, we have
Wc “

ř8

t“0 Ã
tBBTpÃtqT. Therefore:

JpSγq “ trpSγCWcC
TSTγ q

“ tr

˜

SγC
8
ÿ

t“0

ÃtBBTpÃtqTCTSTγ

¸

2The observability index is upper-bounded as K ď n.

“ tr

˜

BT
8
ÿ

t“0

pÃtqTCTSTγ SγCÃtB

¸

“ trpBTW γ
o Bq

where W γ
o “

ř8

t“0pÃtqTCTSTγ SγCÃt. Since Ã is Schur
stable, W γ

o uniquely solves (8).

Using Lemma 1, and inspired from reinforcement learning
methods [27], the following theorem provides a data-driven
procedure for estimating the cost function (7) of the sensor
selection problem.

Theorem 1. Consider system (6) and let Assumption 1 hold.
Then

JpSγq “ tr
`

ET
1 W̄

γ
o E1

˘

, (9)

where E1 “
“

Im 0mˆpNr`pN´1qmq

‰T
, and W̄ γ

o is a
symmetric matrix that satisfies, for all t ě N , the data-
driven equation

ΦTptqvechpW̄ γ
o q ` ∥ỹptq∥2 “ 0, (10)

with

Φptq “vecs
´

vec´1
´

a2ppzpt ` 1q ´ E1uptqq

b pzpt ` 1q ´ E1uptqqq ´ zptq b zptq
¯¯

.
(11)

Proof. Multiplying both sides of equation (8) of Lemma 2
with xptq, t ě N , and using (6) as well as the definition
Ã “ aA, we obtain

a2xTptqATW γ
o Axptq ´ xTptqW γ

o xptq ` ∥ỹptq∥2 “ 0. (12)

Moreover, from the system definition (6) one has Axptq “

xpt ` 1q ´ Buptq. Substituting this relation in (12) yields

a2pxpt ` 1q ´ BuptqqTW γ
o pxpt ` 1q ´ Buptqq

´ xTptqW γ
o xptq ` ∥ỹptq∥2 “ 0. (13)

Employing Lemma 1, we have xpt ` 1q “ Mzpt ` 1q and
xptq “ Mzptq. Moreover, notice that B “ ME1. Hence,
(13) becomes

a2pMzpt` 1q ´ME1uptqqTW γ
o pMzpt` 1q ´ME1uptqq

´ zTptqMTW γ
o Mzptq ` ∥ỹptq∥2 “ 0.

Defining the symmetric matrix W̄ γ
o “ MTW γ

o M , we obtain,

a2pzpt ` 1q ´ E1uptqqTW̄ γ
o pzpt ` 1q ´ E1uptqq

´ zTptqW̄ γ
o zptq ` ∥ỹptq∥2 “ 0. (14)

Note now that

pzpt ` 1q ´ E1uptqqTW̄ γ
o pzpt ` 1q ´ E1uptqq

“

´

pzpt ` 1q ´ E1uptqq b pzpt ` 1q ´ E1uptqq

¯T

vecpW̄ γ
o q,

zTptqW̄ γ
o zptq “ pzptq b zptqqTvecpW̄ γ

o q.

Using these relations, one can linearly parameterize (14) as:

Φ̄TptqvecpW̄ γ
o q ` ∥ỹptq∥2 “ 0,
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where Φ̄ptq “ a2
´

pzpt ` 1q ´ E1uptqq b pzpt ` 1q ´

E1uptqq

¯

´zptqbzptq. Applying half-vectorization thanks to
the symmetricity of W̄ γ

o gives equations (10)-(11). Finally,
recall that W̄ γ

o “ MTW γ
o M , and ME1 “ B. Therefore, it

follows that

trpET
1 W̄

γ
o E1q “ trpET

1 M
TW γ

o ME1q

“ trpBTW γ
o Bq “ JpSγq,

with the last equality following from Lemma 2. This yields
equation (9), and concludes the proof.

Note now that equation (10) is linearly parameterized with
respect to W̄ γ

o . As a result, it is straightforward to solve it
for W̄ γ

o with a least-squares procedure, provided a number
of sufficiently rich input-output measurements is available.
This claim is summarized in the following Corollary.

Corollary 1. Let t0, t1, . . . , tk, k ě N , be measurement time
instants, and let Assumption 1 hold. Denote

Ψ :“
“

Φpt0q Φpt1q . . . Φptkq
‰

,

Yγ :“
“

∥ỹpt0q∥2 ∥ỹpt1q∥2 . . . ∥ỹptkq∥2
‰T

.

If Ψ has full row rank, then

vechpW̄ γ
o q “ ´pΨTq:Yγ . (15)

Proof. Stacking equations of the form (10) for t “ t1, . . . , tk
in a vertical matrix, we obtain

ΨTvechpW̄ γ
o q “ ´Yγ . (16)

Multiplying both sides by Ψ, one has ΨΨTvechpW̄ γ
o q “

´ΨYγ . Since Ψ has full row rank, ΨΨT is invertible. Hence,
the solution to this equation is given by vechpW̄ γ

o q “

´pΨΨTq´1ΨYγ , and pΨTq: “ pΨΨTq´1Ψ since Ψ has full
row rank, which yields equation (15).

Combining the assumptions and conditions of Theorem 1
and Corollary 1, we finally obtain a complete data-driven
expression for the cost function JpSγq.

Corollary 2. Let Assumption 1 hold and Ψ have full row
rank. Then:

JpSγq “ ´tr
`

ET
1 vech

´1
`

ppΨTq:Yγ

˘

E1

˘

. (17)

Remark 1. The operator vecspvec´1p¨qq in (11), which trans-
forms the full-vectorized form to a half-vectorized form, can
be implemented using an elimination matrix. Similarly, a
duplication matrix can help speed up the computation of
vech´1

p¨q in (17). These two properties are crucial when
implementing the proposed data-driven scheme in large-scale
systems, in which n,m " 1. l

Remark 2. Although Corollary 2 requires Ψ to have full row
rank, it can be proved that formula (17) is valid even if this
is not the case, but where the weaker condition rankpΨq “

pNm ` nqpNm ` n ` 1q{2 holds. The proof of this will be
presented in a future extended version of this paper. l

Algorithm 1 Data-Driven Sensor Selection
1: procedure
2: for j “ 1, . . . , p do
3: C̃ Ð SjC.
4: Gather input-output data from (6).
5: Evaluate JpSjq from (17).
6: end for
7: Sort JpSjq for j “ 1, . . . , p in decreasing order,

let γ‹ “ tγ‹
1 , . . . , γ

‹
p1 u contain the p1 indices with

the highest scores.
8: Select C 1 Ð Sγ‹C.
9: end procedure

IV. DATA-DRIVEN SENSOR SELECTION

A naive way to use the results of the previous section and
perform data-driven sensor selection would be to evaluate
the cost JpSγq for all possible selection matrices Sγ using
data, and then choose the selection matrix that maximizes
JpSγq. However, not only is such a brute-force procedure
of extraordinarily high computational complexity, but it
also requires a lot of input-output data for the data-driven
evaluation of the cost of each distinct sensor set.

Towards obtaining a less naive data-driven selection algo-
rithm, the following theorem provides a rather unsurprising
result, given the modularity of the H2 norm proved in [9].
That is, to evaluate JpSγq, the theorem shows that one only
needs to evaluate JpSγi

q for i “ 1, . . . , p1.

Theorem 2. It holds that JpSγq “
řp1

i“1 JpSγi
q.

Proof. It suffices to see that

SγCWcC
TST

γ

“

»

—

—

—

—

–

cγ1
Wcc

T
γ1

cγ1
Wcc

T
γ2

. . . cγ1
Wcc

T
γp1

cγ2Wcc
T
γ1

cγ2Wcc
T
γ2

. . . cγ2Wcc
T
γp1

...
...

. . .
...

cγp1Wcc
T
γ1

cγp1Wcc
T
γ2

. . . cγp1Wcc
T
γp1

fi

ffi

ffi

ffi

ffi

fl

.

Therefore,

JpSγq “ trpSγCWcC
TSTγ q “

p1

ÿ

i“1

trpcγi
Wcc

T
γi

q“

p1

ÿ

i“1

JpSγi
q,

which is the required result.

The implication of Theorem 2 is that, to solve the sensor
selection problem, one does not need to perform data-driven
estimation of JpSγq for all possible selection matrices Sγ ;
rather, one only needs to evaluate the cost JpSjq, j “

1, . . . , p, of each distinct sensor row in C. Subsequently,
sorting the scores JpSjq for all j “ 1, . . . , p, and choosing
Sγ‹ to contain the p1 sensors with the highest scores indeed
solves the sensor selection problem (5). This procedure is
summarized in the following Algorithm.

As discussed above, the convergence of Algorithm 1
follows directly from Corollary 2 and Theorem 2.

Corollary 3. Under the Assumptions of Corollary 2, Algo-
rithm 1 converges to the optimal sensor selection matrix (5).
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TABLE I
VALUES OF ESTIMATED COST AND RELATIVE ERRORS

Sensor j 1 2 3 4 5

ĴpSjq 0.320 0.0024 0.5882 0.3673 0.0326
JpSjq´ĴpSjq

JpSjq
4.5¨10´12 1.1¨10´7 1.2¨10´8 3.0¨10´12 1.2¨10´10

0 100 200 300 400 500
0

0.005

0.01

0 100 200 300 400 500
0

0.01

0.02

0.03

0.04

Fig. 1. Evolution of the state and control input norm during the
data-gathering phase of Algorithm 1.

Remark 3. While Algorithm 1 sequentially evaluates JpSjq

from (17) using different input-output data at each iteration j,
this evaluation can also take place using the same data matrix
Ψ for all j. However, this requires having the resources to
employ all to-be-evaluated sensors at once. l

V. SIMULATIONS

A. Benchmark Aircraft

We consider the Aero-Data Model in Research Environ-
ment (ADMIRE) benchmark aircraft, with its continuous-
time plant and input matrices Ac, Bc given as in [31]. The
discrete-time equivalents of these matrices are subsequently
obtained using Euler integration with a sample rate of h “

0.01 seconds, i.e., A “ I5 ` Ach and B “ Bch.
We assume there are p “ 5 sensors available for selection,

each of which measures a distinct state of the system, i.e.,
C “ I5. Out of these sensors, we want to select p1 “ 4 of
them to maximize the cost (5) with a “ 0.98. To this end,
we apply Algorithm 1, gathering input-output data from the
system under the control input proposed in [27] augmented
with random exploration noise, and using these data to
estimate JpSjq for all j “ 1, . . . , p without knowledge of
the system. The known observable sensor set is selected as
γ̂ “ t1, 3u, and N “ 3.

The trajectories of the infinity norm of the control input
and state vector during the data-gathering phase are shown
in Figure 1, illustrating that the system had to be perturbed
only slightly with exploration noise in order to implement the
data-driven Algorithm 1. In addition, the estimated values of
JpSjq, denoted as ĴpSjq, as well as the relative estimation

Fig. 2. Histogram of a) the cost value of JpSγq for all values of
γ with cardinality 7; and b) the relative cost error of JpSγq´ĴpSγq

JpSγq

for all values of γ with cardinality 7.

Column j

R
o
w

 i

10-10

10-5

Fig. 3. Heatmap of the mean squared value of the relative error
rŴγ

o ´W̄γ
o sij

rW̄
γ
o sij

for each entry i, j.

errors pJpSjq ´ ĴpSjqq{JpSjq, are shown in Table I. From
this table, we notice that the relative estimation error is
practically zero, implying an accurate enough estimation
of JpSjq. Moreover, from this table we conclude that the
optimal sensor choice is γ‹ “ t1, 3, 4, 5u.

B. Random System
To further test the proposed data-driven sensor selection

scheme, we implement it on a larger system with n “ 25
states, m “ 10 actuators, p “ 25 available sensor choices,
and where the system matrices A, B, C are randomly
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generated. Similarly to the previous example, the purpose is,
out of the 25 available sensors, to find the p1 “ 7 of them that
maximize the cost (5) with a “ 0.1. To this end, we apply
Algorithm 1, gathering input-output data from the system
and using them to estimate JpSjq for all j “ 1, . . . , p. The
known observable sensor set is chosen as γ̂ “ t1, 2, 3, 4, 5u,
and N “ 5.

The estimated optimal set of sensors is found to be γ‹ “

t5, 7, 10, 12, 15, 17, 24u, with a value of JpSγ‹ q “ 3553.7.
To verify that this estimated optimal value is true, Figure 2
shows the histogram of the value of the cost JpSγq for all
possible choices of γ, demonstrating that the estimated γ‹

indeed maximizes JpSγq. Figure 2 also depicts the histogram
of the relative estimation errors JpSγq´ĴpSγq

JpSγq
for all possible

choices of γ, showing that those errors remain strictly below
10´6. Finally, to ascertain that the estimated value Ŵ γ

o of
W̄ γ

o “ MTW γ
o M used in (9) is close to its real one, Figure 3

presents a heatmap of the mean squared value of the relative
error rŴγ

o ´W̄γ
o sij

rW̄γ
o sij

for each entry i, j of the matrices W̄ γ
o , Ŵ

γ
o ,

averaged over all of γ “ t1u, t2u, . . . , tpu. From this figure,
we notice that all entries have a mean squared relative error
of less than 10´5, hence Ŵ γ

o indeed provided an accurate
enough estimation of W̄ γ

o .

VI. CONCLUSION

We studied the problem of sensor selection for systems
whose dynamics are unknown. The cost function of the
sensor selection problem was related to the notion of the
H2 norm, the computation of which requires knowledge
of the system’s dynamics. Nevertheless, we relaxed this
requirement of system knowledge by expressing the cost with
respect to input-output data and used the resulting expression
to perform model-free sensor selection in polynomial time.

Future work includes extending the proposed scheme to
joint sensor-actuator selection and control design.
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