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Abstract—This paper studies how the power function in a
reproducing kernel Hilbert space (RKHS) can be used system-
atically to design error bounding methods of adaptive estima-
tion and control via the native space embedding method. The
approach is based on viewing the original system of ordinary
differential equations (ODEs) as a type of distributed parameter
system (DPS), and subsequently defining realizable controllers
by approximating the DPS with scattered bases over a domain
of interest. The approach provides rigorous bounds on ultimate
performance guarantees for uncertainty classes defined in the
native space. One result derives an upper bound on the ultimate
performance of the adaptive controller in terms of the power
function. Another version of this upper bound shows how the
ultimate performance can bounded in terms of a fill distance of
centers of approximation in subsets that contain the closed loop
trajectory. In contrast to the general theory for error bounding
adaptive controllers in Euclidean space, the general approach in
this paper works for functional uncertainties in any RKHS.

Index Terms—Native space, Distributed parameter system,
Adaptive control

I. INTRODUCTION

A. Motivation

Over the past decade, a variety of problems associated with
machine and statistical learning theory, Bayesian estimation,
and Gaussian process estimation have been solved using
the theoretical setting of reproducing kernel Hilbert spaces
(RKHS). The general study of such problems can be found
in the books [1]–[3]. This paper continues the development in
the recent collection of papers [4]–[12] that study how well-
known techniques from real parametric adaptive estimation
and control theory can be lifted to a native space setting.

In real parametric adaptive estimation and control theory
[13]–[19], the unknown matched nonlinear dynamics in a
governing ordinary differential equation (ODE) are usually
represented as the product of an unknown matrix by a regressor
vector of dimension N , which is selected a priori and meets
sufficient regularity conditions to guarantee the existence and
uniqueness of solutions of the ODE. Such methods work
well when there is enough prior knowledge to construct the
regressor vector, and such knowledge is usually deduced from
physical modeling [20, Ch. 9] or data-driven techniques such
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as neural networks [21], [22]. The uniform approximation
assumption is critical in these methods [23]. The stability
and convergence analysis of estimation and control tasks is
then performed for a fixed number N of real parameters. If
the original ODE evolves in Rd, then trajectories of the state
and parameter estimates evolve in the Euclidean configuration
space Rd × RN .

The native space or RKHS embedding method allows
casting estimation and control problems in a nonparametric
framework, which does not involve an a priori restriction
to a fixed Euclidean space. Let f ∈ H denote a matched
uncertainty in the governing ODEs, where H denotes an
RKHS space. In the language of [12], the uncertainty is
functional, and the estimation or control problem is considered
a simple type of distributed parameter system (DPS). Practical,
implementable estimation and control algorithms are obtained
by consistent approximation of the DPS, which generates
coordinate expressions that satisfy the governing ODEs. The
overall approach is referred to as native space embedding since
the trajectories of the ODEs evolve in the configuration space
Rd×RN , or, equivalently, can be viewed as being embedded in
the configuration space Rd×H of the DPS. The configuration
space of the DPS, and in particular the native space H, is used
to characterize the limiting response as N → ∞. A distinct
advantage of this setting is that it is possible to derive explicit
relations between the performance of the controller or observer
and the dimension N , and these bounds hold for quite general
functional uncertainty classes defined in the native space H.

References [4]–[12] study how the real parametric gradient
learning law, and its robust refinements, such as the dead-zone
method [24] or the σ-modification [25] can be lifted to the
setting of RKHS embedding. The conclusions of these papers
are guarantees on the performance of the adaptive controller
or observer. In this paper we show how the power function can
be used in a systematic and general way to prove stability and
convergence of error bounding methods of adaptive control in
the native space embedding method; see [23, Ch. 4, 6] for a
good background for error bounding methods for Euclidean
or real parametric adaptive control. Again, we obtain bounds
that relate ultimate controller performance to the dimension N
of the approximates. These bounds hold for all functions in a
functional uncertainty class defined in an RKHS, not just for
some single finite dimensional approximation or its coordinate
expression. Also, while standard theory as described in [23]
leaves the definition of the error bounding function to be
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derived by the designer via a problem-specific analysis, the
approach in this paper gives a general definition of the error
bounding function that works for uncertainty contained in any
native space H.

B. Problem Statement

This paper initially studies a simple, common governing
ODE that has matched uncertainty, with

ẋ(t) = Ax(t) +B(u(t) + Ex(t)f), (1)

where x(t) ∈ Rd is the state vector, and u(t) ∈ R is the
control input with t ≥ t0. The system matrix A ∈ Rd×d and
the system matrix B ∈ Rd are known and the pair (A,B)
is controllable. The unknown nonlinear scalar-valued function
f ∈ H is referred to as the functional uncertainty in the native
space H, and Ex(·) denotes the evaluation operator at x(·).
The control task is to derive an adaptive control strategy to
track the reference trajectory xr(t) of the reference model

ẋr(t) = Arxr(t) +Brr(t) (2)

where the reference command input r : [t0,∞) → R is
bounded, Ar ∈ Rd×d is Hurwitz, Br ∈ Rd and such that
the pair (Ar, Br) is controllable and the matching conditions

Ar = A−BKT, (3)
Br = BL (4)

are verified for some K ∈ Rd and L ∈ R.
We would like to design an adaptive control strategy, whose

performance is guaranteed for all functional uncertainties in
the class

CR := {f ∈ H | ∥f∥H ≤ R} ⊂ H, (5)

where R > 0. When realizable controllers uN (t) are derived
that depend on the dimension N of finite dimensional sub-
spaces HN ⊂ H used in the approximation of the functional
uncertainty, we seek explicit bounds that relate the perfor-
mance of the feedback controller to the dimension N .

C. Summary of New Results

There are several new results in this paper. They are
captured by Theorem 3.1 and Corollary 3.1, as well as in the
analysis of numerical examples in Section IV. The reader is
referred to them for precise statements. In this short paper, we
omit detailed proofs as they will be contained in a forthcoming
journal paper.

Let K(·, ·) denote the kernel that defines the RKHS space H,
and N be the number of scattered centers ΞN ⊂ S ⊆ Rd used
to define a finite-dimensional space HN ⊂ H of approximants
of the functional uncertainty f ∈ H over a domain of interest
S ⊂ X := Rd. The domain S is assumed to contain the
closed-loop trajectory x. We denote by KN (·, ·) the kernel
that defines the RKHS HN , and by xN (·) the closed-loop
trajectory when the adaptive controller is implemented using
the N -dimensional space HN . In Theorem 3.1, we show how,
for the approach derived in this paper, for any arbitrarily small

constant η > 0, there exists a finite time T := T (η) > t0 ≥ 0
such that

∥xN (t)− xr(t)∥Rd

≤ (1 + η)
4∥BTP∥Rd

λmin(Q)
sup
ξ∈S̄ε

√
K(ξ, ξ)− KN (ξ, ξ)R, (6)

for all t ≥ T and for all functions in the uncertainty class
CR; the pair of matrices (P,Q) verify the algebraic Lyapunov
equation and the set S̄ε is defined precisely in Theorem 3.1
below. Corollary 3.1 shows how, for some standard choices of
the kernel function K(·, ·), there exists T > t0 such that

∥xN (t)− xr(t)∥Rd ≤ O

(√
G(hΞN ,S)

)
for all t ≥ T,

where G : R+ → R denotes a known function, hΞN ,S denotes
the fill distance of the centers ΞN in S, and O(·) denotes the
big O in the Bachmann–Landau notation. The fill distance is
defined as

hΞN ,S := sup
s∈S

min
ξ∈ΞN

dS(s, ξi) (7)

where dS denotes the metric on S. For instance, if the kernel
K(·, ·) is selected to be the Sobolev-Matern kernel (as used in
the numerical examples) with smoothness index r, the above
corollary takes the form

∥xN (t)− xr(t)∥Rd ≤ O(h
r−1/2
ΞN ,S ) for all t ≥ T (η).

Other explicit expressions for the uniform upper bound on
the trajectory tracking error are available for the exponen-
tial, inverse multiquadric, and compactly supported Wendland
functions [26].

A key observation is that classical methods, such as the
σ-modification of model reference adaptive control, to name
one, employed to regulate a governing ODE in the presence
of unknown finite-dimensional uncertainties, can not be em-
ployed directly in the proposed framework. Indeed, f in (1) is
the element of an infinite-dimensional vector space, whereas
classical methods require that a realization of the uncertainty is
determined, although such realization is unknown to the user.
An additional observation is that the results proposed in this
paper do not consider BEx(·)f as an unmatched uncertainty
in its entirety. Indeed, the proposed control system perfectly
counters the effect of the projection of f onto an RKHS HN

and bounds the effect of the component of f orthogonal to
the same RKHS. In the limit, if f were contained in the
chosen RKHS, then asymptotic stability, and not just uniform
ultimate boundedness, of the trajectory tracking error would
be attained. This is what the behavior of the limiting DPS
describes. Considering BEx(·)f as an unmatched uncertainty
in its entirety would produce larger ultimate bounds on the
trajectory tracking error.

II. BACKGROUND

A. Collection of Uncommon Symbols

The table below is a collection of important recurring sym-
bols associated with an RKHS that are used in the derivations
below.
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TABLE I
COLLECTION OF RKHS SYMBOLS

Symbol Definition
S Domain of interest in X
X Subspace of Rd

H Infinite dimensional native space
HN Finite dimensional subspace of H
K(·, ·) Kernel function that defines H
Kx(·) Kernel section or basis centered at x

KN (·, ·) Kernel function that defines HN

ΞN Collection of kernel centers that define HN

hΞN ,S Fill distance of the kernel centers ΞN in S
Ex Evaluation functional
E∗

x Adjoint operator of Ex

ΠN Orthogonal projection from H to HN

PHN
(x) Power function of HN evaluated at x

K(ΞN ,ΞN ) Grammian matrix in RN×N

B. RKHS or Native Spaces

The RKHS embedding method relies on several key prop-
erties of reproducing kernel functions K : X×X → R defined
over a domain X. A kernel section, or a kernel function
centered at x ∈ X, is written as Kx(·) := K(x, ·) ∈ H.
The closed linear span of these functions forms the RKHS
H = span{Kx|x ∈ X}. If there are infinitely many x ∈ X,
then the resulting RKHS H is generally infinite dimensional.
The RKHS space can be thought of as the space obtained by
superposition of the “template” Kx as it moves around the
domain. An RKHS space is often referred to as the native
space generated by the kernel sections Kx, and Kx is often an
example of radial basis function centered at x ∈ X.

The reproducing property of an RKHS states that any f ∈ H
satisfies

f(x) = ⟨f,Kx⟩H for all x ∈ X, (8)

where ⟨·, ·⟩H denotes an inner product in H; this property is
used in all the derivations associated with RKHS embedding.
The reproducing property can be written in terms of the
evaluation functional Ex : H → R, which is defined as
Exf := f(x) for any f ∈ H and x ∈ X, and its adjoint is
E∗

x : R → H. The functionals Ex and E∗
x are linear bounded

operators. By the reproducing property [27, Def. 1.1] and
proceeding as in the proof of Lemma 1.9 of [27], we have

⟨Exf, α⟩R = ⟨f,E∗
xα⟩H = ⟨f,Kxα⟩H = α⟨f,Kx⟩H (9)

for all α ∈ R. Therefore, it follows from (9) that E∗
xα := Kxα

for all α ∈ R, and this expression in also used repeatedly in
the proofs and in the derivation of algorithms.

In general, an RKHS space H can contain functions that are
not bounded. In this paper, we always assume that K(·, ·) is
bounded on the diagonal. This means that there is a constant
K̄ > 0 such that K(x, x) ≤ K̄2 for all x ∈ X. This condition is
sufficient to ensure that all the functions in the native space H
are bounded, and, furthermore, that ∥Ex∥H ≤ K̄ for all x ∈ X.
There are many standard kernels that satisfy this assumption
including exponential, Sobolev-Matern, inverse multiquadric,
and Wendland kernels. [26]

Since practical algorithms require finite-dimensional ap-
proximations of the functions in the native space, we use
projections or interpolations for this purpose. In particular,
we build finite dimensional approximations in terms of kernel
sections located at a finite number of centers ΞN = {ξi|1 ≤
i ≤ N} ⊂ X. The corresponding space of approximants is then
HN = span{Kξi |ξi ∈ ΞN}. Properties of RKHS ease the task
of building approximations using the orthogonal projection
operator ΠN : H → HN . For any f ∈ H, we have

f = ΠNf + (I −ΠN )f, (10)

and, by definition, it holds that ((I − ΠN )f,Kξi)H = 0 for
ξi ∈ ΞN and 1 ≤ i ≤ N . Thus, it follows from the reproducing
property that the projection operator interpolates at the centers
in ΞN , with

f(ξi) = (ΠNf)(ξi) for all ξi ∈ ΞN .

Note that (I−ΠN )f captures the approximation error term
that will appear in the stability analysis in the later sections. To
quantify and establish bounds on the approximation error, the
general theory of RKHS defines the power function. Suppose
that U ⊆ H is a closed subspace of H and ΠU is the H-
orthogonal projection from H onto U . A relevant result of
the theory of RKHS is that U is also a native space for the
kernel KU (x, y) := (ΠUKx,ΠUKy)H [27, Th. 2.5]. The power
function PHN

: X → R is defined as

PHN
(x) :=

√
K(x, x)− KN (x, x) for all x ∈ X, (11)

where KN (x, y) := ΠNK(x, y), (x, y) ∈ X × X. It is not
difficult to show that

KN (x, y) = KT
ΞN

(x)K−1(ΞN ,ΞN )KΞN
(y), (12)

where KΞN
(x) := [Kξ1(x), . . . ,KξN (x)]

T ∈ RN and
K(ΞN ,ΞN ) := [K(ξi, ξj)] ∈ RN×N denotes the Grammian
matrix. This matrix can be easily evaluated once a set of
centers ΞN have been selected.

The importance of the power function is that it provides a
convenient pointwise upper bound on the approximation error
for any function f ∈ H and any x ∈ X, which is given by

|Ex(I −ΠHN
)f | = |f(x)− (ΠHN

f)(x)|
≤ PHN

(x)∥f∥H. (13)

This upper bound is crucial for many of the stability and con-
vergence proofs derived in this paper. This bound improves on
the fidelity of common universal approximation assumptions
that are prevalent in adaptive control: see Chapter [13] for a
few common such universal approximation theorems.

III. BOUNDING ADAPTIVE CONTROL AND POWER
FUNCTIONS

The goal of this paper is to define a model reference
control law and an adaptive law that steer the trajectory of the
governing ODE (1) toward the reference the trajectory of the
reference model (2) despite the marched functional uncertainty
f(·). The next theorem provides the first key theoretical result
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to address this problem by providing both a control law and
an adaptive law that assure uniform ultimate boundedness of
the trajectory tracking error.

For the statement of the next theorem, let

eN (x) := |Ex(I −ΠN )f | (14)

denote the pointwise approximation error for each x ∈ X, and
note that

eN (x) ≤ PHN
(x)∥f∥H for all x ∈ X, (15)

where PHN
(x) is given by (11). Thus, let ēN (x) := PHN

(x)R
denote a known pointwise approximation error bound, since
eN (x) ≤ ēN (x) for all x ∈ X. Additionally, let P ∈ Rd×d de-
note the symmetric, positive-definite solution to the Lyapunov
equation

AT
r P + PAr = −Q (16)

with Q ∈ Rd×d user-defined, symmetric, and positive definite.
Let S̄ε := {x̃N ∈ X : |BTPx̃N | < ε}, where ε ∈ R+ is a
small constant, x̃N (t) := xN (t) − xr(t), t ≥ t0, denotes the
tracking error of the system, xN (·) verifies the governing ODE
(1) with adaptive control input

uN (t) =−KTxN (t) + Lr(t)

− ExN (t)

(
f̂N (t, ·) + vN (·, x̃N (t))

)
, (17)

K ∈ Rd and L ∈ R verify the matching conditions (3) and (4),
f̂N (t, ·) denotes a finite-dimensional estimate of the functional
uncertainty f in (1) and verifies the adaptive law

∂f̂N (t, ·)
∂t

= γΠNE∗
xN (t)B

TPx̃N (t), (18)

γ > 0 denotes the adaptive rate, and

vN (·, x̃N (t)) :={
sign(BTPx̃N (t))ēN (·) if |BTPx̃N (t)| ≥ ε,
1
εB

TPx̃N (t)ēN (·) otherwise,
(19)

denotes the compensator; it is worthwhile noting that vN (·, ·)
is continuous in both arguments.

Also note that the adaptive law in (18) is a partial differential
equation (PDE). It is an approximation of the learning law

∂f̂(t, ·)
∂t

= γE∗
xN (t)B

TPx̃(t),

which we refer to as the nonparametric gradient learning
law. This nonparametric form of the learning law is also a
PDE. We define the associated nonparametric feedback control
u(t) = −KTx(t) + Lr(t) − Ex(t)f̂(t, ·), t ≥ t0. When we
use the nonparametric control law and nonparametric gradient
learning law, the resulting closed loop system has a state
(x(t), f̂(t, ·)) that evolves in X ×H, and this system defines
the limiting DPS. Note in general that the nonparametric
feedback control law cannot be implemented in practice since
f̂(t, ·) resides in an infinite dimensional native space H. In
general, the question of existence and uniqueness of solutions
of the limiting DPS, and the convergence of solutions of

consistent approximations to the limiting system, requires a
rather lengthy proof that far exceeds the confines of this short
conference paper. Throughout the rest of this paper we assume
that the limiting DPS is forward complete and approximations
of the limiting equations are also forward complete. We leave
the associated proofs of existence and uniqueness to the full
length journal article.

Theorem 3.1: Consider the governing ODE (1) and the
reference model (2). Let K(·, ·) be an admissible kernel that
defines the native space H(S) over the set S ⊂ X := Rd such
that K(x, x) ≤ K̄2, where K̄ > 0 is constant. Also, assume that
the matching conditions (3) and (4) are verified and that the
functional uncertainty f in (1) is such that f ∈ CR for some
R > 0, where CR is given by (5). Then, for any (arbitrarily
small) constant η > 0 there exists a time T := T (η) > t0
such that (6) is verified with kernel KN (x, x) given by (12)
and induced approximating finite-dimensional subspace HN .

Theorem 3.1 provides an estimate of the trajectory tracking
error’s uniform ultimate bound, which is captured by (6). This
ultimate bound is a function of the uncertainty on the uncer-
tainties on f , which is captured by R, the difference between
the kernel function K(·, ·) and its approximation KN (·, ·), and
the user-defined parameter λmin(Q). In general, larger values
of λmin(Q) produce slower convergence of the tracking error.
An approach to employ larger values of λmin(Q) and retain
fast convergence of the trajectory tracking error involves the
use of two-layer model reference adaptive control [28]; this
approach will be investigated in the future.

It is worthwhile to note how the proof of Theorem 3.1
follows along the lines of classical arguments that apply to
finite-dimensional dynamical systems, such as, for instance,
those in [29, p. 170], and extends these results to infinite-
dimensional systems. Theorem 3.1 does not address a key
point, namely the boundedness of x̃(·), x̃N (·), and f̂N (·). This
result can be obtained by applying Theorem 1.4 of Chapter 6
of [30], and it has been discussed in detail in [31].

The next result specializes Theorem 3.1 to classical ker-
nel functions K. For the statement of this result, consider
the kernel functions in Table II, the corresponding function
G : R+ → R, and the fill distance (7) with ΞN denoting
any set of basis centers. To state the next result, define the
approximation error

eN (x) := |Ex(I −ΠN )f |
≤ PHN

(x)∥f∥H
≤ ēN (x)

:= PN (x)R for all x ∈ X, (20)

where ēN (x) captures a known pointwise approximation error
bound, which is defined in terms of the power function
PHN

(x).
Corollary 3.1: Consider the governing ODE (1) and the

reference model (2). Let K(·, ·) be an admissible kernel that
defines the native space H(S) over the set S ⊂ X chosen from
Table II. Also, assume that the matching conditions (3) and
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TABLE II
EXAMPLES OF KERNEL BASIS FUNCTIONS AND CORRESPONDING UPPER BOUNDS [26, CH. 11], [32] TABLE 1.

Kernel name K(x, 0) = K0(r), r = ∥x∥Rd G(h)
Gaussian e−αr2 , α > 0 e−c| log(h)|/h

Inverse MQs (α2 + r2)β , α > 0, β < 0 e−c/h

Compactly supported functions (a.k.a. Wendland) ϕd,k(r) h2k+1

Sobolev-Matern Kk−d/2(r) ∗ (r/2)k−d/2 h2k−d

(4) are verified. Then, there exists a finite time T > t0 such
that the closed-loop trajectory tracking error satisfies

∥xN (t)− xr(t)∥Rd ≤ O

(√
G(hΞN ,S)

)
, for all t ≥ T.

(21)

Proof: Consider the kernel functions listed in Table II, which
are deduced from Table 11.1 of [26] and Table 1 of [32].
For the Gaussian, inverse multi-quadratic, Wendland kernel
functions, and Sobolev-Matern kernels the Table II provides a
function G such that

sup
ξ∈S

PHN
(ξ) ≤ O

(√
G(hΞN ,S)

)
.

It follows from Theorem 3.1 that each η > 0, there exists
C(η) > 0 and T (η) > t0 such that

∥xN (t)− xr(t)∥Rd ≤ C(η) sup
ξ∈S̄ε

PHN
(ξ)

≤ C̃(η)
√
G(hΞN ,S)

for all t ≥ T . Thus, the result follows directly from (6) and
(20). □

In this paper, we assume that matrix A and vector B are
known. If these system parameters are unknown, then we can
apply the model reference adaptive control method of native
space embedding introduced in [33].

IV. NUMERICAL EXAMPLES

In this section, we present and analyze in detail the results
of a numerical example that proves the applicability of the
framework outlined by Theorem 3.1. Let f̂N (t, ·) ∈ HN be
given by

f̂N (t, ·) = Θ̂T
N (t)KΞN

(·),

where Θ̂N (t) ∈ RN , t ≥ t0, denotes the vector of
weights at the basis centers. The vector KΞN

(x) :=
[Kξ1(x), . . . ,KξN (x)]T ∈ RN captures the collection of kernel
basis functions located at the centers in ΞN . We then recast
the adaptive law (18) as

˙̂
ΘN (t) = γfK−1(ΞN ,ΞN )KΞN

(xN (t))BTPx̃N (t). (22)

We emphasize that, for the error bounds captured by (6)
and (21) to be realizable and define a consistent approxi-
mation scheme for the governing DPS, the Grammian ma-
trix K(ΞN ,ΞN ) in (22) must be included in the coordinate
implementation. This is a significant difference between the
native space embedding method and standard practices for

Fig. 1. Scaled norm of the maximum steady-state error
∥x̃N (t)∥Rdλmin(Q)

4∥BTP∥RdR

most learning laws described in Euclidean adaptive control
theory.

The governing ODE studied in this section is given by

A =

[
0 1

−ω2
n −2ζnωn

]
B =

[
0
ω2
n

]
x =

[
x1

x2

]
, (23)

where ωn = 1 rad/s and ζn = 0.2. The nonlinear uncertainty
is chosen to be

f(x) = tanh(x3
1 + 0.001x5

2), x ∈ R2. (24)

Offline calculation indicates that the unknown uncertainty f
satisfies ∥f∥H ≈

√
7.23 ≤ R. To track the reference command

input r(t) = cos(5t), t ≥ 0, the reference system is designed
with

Ar =

[
0 1

−ω2
r −2ζrωr

]
Br =

[
0,
ω2
r

]
, (25)

where ωr = 20 rad/s denotes the reference model’s natural
frequency and ζr =

√
2
2 denotes the damping ratio of the

reference system. The kernel function for this problem is
selected to be the “3/2 Matern kernel” [34], which is defined
as

K3,2(x, y) =

(
1 +

√
3∥x− y∥Rd

l

)
e−

√
3∥x−y∥Rd

l , (26)

where l ∈ R. The remaining system parameters are Q =[
1 0
0 2

]
and ε = 10−4.
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Figure 1 captures the ultimate bound found in Theorem 3.1.
There are a few important observations regarding this plot.
Asymptotically, as N → ∞, we expect that the scaled ultimate
tracking error should theoretically decay at a rate that is no
worse than the dashed line. This is indeed the case for the
kernel with l = 5. Also, this rate of decrease holds for low
values of N with l = 10. However, for l = 10 and large values
of N , the rate of convergence plateaus. While the theoretical
rates of convergence hold for steady state errors in finite time,
the time to enter the dead-zone may be prohibitively large.
While increasing γf should lead faster convergence in time of
online approximation f̂N , larger γf can result in undesirable
high frequency chattering that may take an intractable amount
of time to decay and contribute to large tracking error. These
simulations are run over a time span of 20 seconds.

V. CONCLUSIONS

In this paper, by viewing the original uncertain ODE as
a DPS, we describe a general and systematic way to use the
power function to define error bounding adaptive controllers in
the native space setting. We use power functions to derive an
upper bound on the tracking performance when the functional
uncertainty f belongs to a fixed uncertainty class CR ⊂ H in
the native space H. For some kernels, we also derive a simpler
form for the uniform ultimate bound for the tracking error in
terms of the fill distance of the kernel basis centers.

Numerical examples demonstrate the applicability of the
proposed adaptive control framework. These simulations show
how, despite matched uncertainties, whose functional shape is
unknown, satisfactory tracking performance can be attained.
Further study of the interplay of approximation error, numeri-
cal conditioning, discrete integration error, and external noise
in the performance of the native space embedding method is
an important topic for future research.
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