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Abstract— We derive tight probabilistic bounds on the first
hitting time of general classes of nonlinear autoregressive
systems that can be linked to mean reverting stochastic pro-
cesses. The obtained results are formulated such that they can
be readily applied to models identified by machine learning
techniques such as deep learning. As an application to finance,
we show how our results can be utilised to inform statistical
arbitrage trading strategies for which we provide probabilistic
performance guarantees.

I. INTRODUCTION

Over the past decade there has been a proliferation of ma-
chine learning based frameworks that have been researched
and applied with the goal of enhancing time series mod-
elling and system identification methods. These approaches
facilitate a flexible function estimation that aims to capture
non-linear relations in the underlying dynamics of the time
series. Formally, one assumes that the time series data
is obtained through the realisations of a stochastic data
generating process (yt) defined recursively by the equations:

yt+1 :=

{
ψ(yt, ..., yt−(d−2), yt−(d−1)) + ϵt+1 for t ≥ 0

a−t, for t ∈ {−1, ...,−d}.
(1)

where ψ : Rd → R is the transition function, a ∈ Rd
represents the initial conditions and (ϵt) is a zero-mean
stochastic process. The data set of past observations of (yt)
is utilised to construct an estimate ψ̂ : Rd → R of the
dynamics ψ of (yt). The flexibility of machine learning based
system identification frameworks means that ψ̂ can belong
to a richer class of functions than classical autoregressive
models such as AR, TAR or EXPAR models [1] which
assume a more restrictive functional form. This modelling
advantage has been shown to improve forecasting capabilities
and prediction accuracy on benchmarks, case studies and
empirical applications in a wide range of fields (e.g. [2], [3]
or [4]). In spite of the their practical success, the theoretical
understanding of the data generating process where ψ is
identified by a general class of ML methods still pales in
comparison to the wealth of theory available for classical
autoregressive models.

In an effort to improve upon this state of affairs, we focus
on developing widely applicable theoretical tools related to
first hitting time guarantees and mean reversion of nonlinear
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autoregressive models compatible with representation class
(such as neural networks) common in machine learning.
These properties are of particular importance in a great
many application domains, including in finance, control
and ecology. In time series analysis, first hitting times and
contractive dynamical systems have been extensively studied
in a diverse range of contexts. For discrete time series,
usual approaches involve either fitting an autoregressive
AR(p) model or assuming underlying dynamics that are
linear and stationary. The first hitting time probabilities and
expectation are then computed numerically [5], [6] or can
be lower bounded analytically in the case of the AR(1)
model [7]. This approach has been explored in various
domains: in statistical arbitrage and quantitative finance for
optimal thresholds setting [8], [9], for predicting population
extinction and time to extinction in ecology [10], signal
detection and surveillance analysis [11] or structural health
monitoring [12], [13]. For continuous time series, dynamics
are usually assumed to follow the Ornstein-Uhlenbeck (OU)
dynamics in which case the first hitting time probabilities
can be obtained semi-analytically [14], [15] (and references
therein) under some additional assumptions. Applications
are numerous and involve, for example, hydrology [16],
neuroscience [17] or quantitative finance [18], [19]. Note
that, even though in aforementioned works specific forms
of dynamic models were presupposed, the computation of
the first hitting time probabilities had to rely on numerical
approximation. Simplifying this computation is difficult even
for simple dynamics and remains an open question for both
Ornstein-Uhlenbeck models and AR(p) models.

What unifies these threads of works is that they provide an
understanding of hitting times for time series whose dynam-
ics conform to a specific (linear) structure. However, when
those functions are identified by black-box machine learning
algorithms, existing results are not applicable. Therefore,
what is needed are theoretical bounds which can be computed
for general classes of system dynamics that contain the ones
arising in the context of machine learning-based black-box
system identification.

In this work, we provide such bounds. In particular, we
derive (contractive) Lipschitz conditions on the transition
function sufficient to calculate our probabilistic hitting time
bounds. As we explain, the conditions can be readily calcu-
lated for some of the most popular machine learning models.
Our hitting time bounds are shown to be tight. While they
involve a non-analytic definite integral, this can be computed
numerically offline and its solutions could be stored in a
look-up table. Moreover, we show how our results can be
directly applied to inform trading decisions. Our hitting time
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bounds are shown to translate to probabilistic bounds on
the returns of the ensuing trading strategy, provided the
time series of the mean reverting synthetic asset satisfies the
required contractive Lipschitz conditions.

II. MODEL ASSUMPTIONS

Let d ∈ N, ψ : Rd → R and a ∈ Rd. We assume that
our time series is modelled by the stochastic nonlinear auto-
regressive (NAR) process (yt)t∈N starting at time 0 given by
the dynamical system defined in equation (1) with transition
function ψ and initial conditions a ∈ Rd. The noise process
(ϵt)t∈N is a zero mean stochastic process that is assumed to
satisfy :

Assumption 1. (ϵt)t∈N are independent and identically dis-
tributed random variables with bounded non-zero variance
and a probability density function denoted by fϵ.

To establish our bounds in subsequent sections, we need
to make assumptions on the transition function ψ. We recall
that for functions f : D ⊂ Rd → R, Lipschitz continuity is
defined as:

Definition 1 (Lipschitz continuity). For a domain D ⊆ Rd
constant, norm ∥·∥ and L̄ ∈ R+ we define the space of L̄-
Lipschitz continuous functions as

LL̄(D, ∥·∥)
:=

{
f : D → R|∀x, x′ ∈ D :

∣∣f(x)− f(x′)
∣∣ ≤ L̄

∥∥x− x′
∥∥}

where ∥·∥ denotes an arbitrary norm on Rd. Constant
L̄ is called a Lipschitz constant of any f ∈ LL̄(D, ∥·∥).
Furthermore, the smallest L∗ > 0 such that f is L∗−
Lipschitz continuous is called the best Lipschitz constant of
f .

Then, a sufficient condition for our results is to assume ψ
to be a contraction relative to the α∗-norm denoted by ∥·∥α∗ .
This norm is defined as: for α∗ ∈ Rd>0, ∥·∥α∗ : Rd → R is
the weighted l1-norm

∀x ∈ Rd, ∥x∥α∗ =

d∑
i=1

α∗
i |xi|.

The following definition states formally the Lipschitz-type
smoothness condition that will be utilised to obtain the
theoretical first hitting time guarantees for the stochastic
process (yt)t∈N.

Definition 2 (α∗-contracting process). Let D ⊆ Rd. An auto-
regressive process is called an α∗-contracting process on D
if its transition function ψ is contained in L1(D, ∥·∥α∗ ) and
α∗ ∈ △+ := {x ∈ Rd>0|

∑d
i=1 xi < 1}.

Assumption 2. Our time series (yt)t∈N is an α∗ contracting
process , i.e.

ψ ∈ Lα
∗
(D) := L1(D, ∥·∥α∗)

for some α∗ ∈ △+ and D = Rd.

One may wonder how this α∗ contracting condition relates
to a simpler Lipschitz assumption on ψ. Let D ⊆ Rd,
α∗ ∈ △+ and ᾱ :=

∑d
i=1 αi. We have the following re-

lationship between Lipschitz function spaces: (1) Lα∗
(D) ⊆

Lᾱ(D, ∥·∥∞) and (2) for δ ∈ (0, 1), define α∗ = ( δd , ...,
δ
d )

⊤,
then L δ

d
(D, ∥·∥1) ⊆ Lα∗

(D).
Therefore, although the α∗ condition is notationally heavy,
it is useful as it provides a weaker assumption than the
alternative L1 Lipschitz condition. Perhaps more importantly,
the α∗ condition provides additional flexibility that allows
for the dependence on previous time lags to be greater than
1
d as long as the sum of the α∗ coefficients is smaller
than unity. This feature is useful in practice where models
generally depend on recent time lags more. Finally, if the
α∗ coefficients are obtained by using a machine learning
estimation of ψ then the input dimension of the estimation
model can be greater than d with no explicit consequences
on the α∗ condition.

Notation 1 (Relevant matrices). For any α∗ ∈ △+ := {x ∈
Rd≥0|

∑d
i=1 xi < 1} and T ∈ N, we define the associated

matrices A(T ) ∈ RT×T and B ∈ Rd×d. Here, A(T ) is a
lower triangular banded matrix and B is a sparse matrix
whose entries are given by:

A(T )ij :=


1, if i− j = 0

−α∗
(i−j), if 0 < i− j ≤ d

0, otherwise.
(2)

Bij :=


1, if i− j = 1

α∗
j , if i = 1 and 1 ≤ j ≤ d

0, otherwise
(3)

for all i, j ∈ {1, ..., T}.

III. FIRST HITTING TIME GUARANTEES

We will now state bounds on first hitting times of the
time series generated by our dynamical system. We assume
all definitions and assumptions introduced in Sec. II hold.
Appealing to Banach’s fixed point theorem one can show the
existence of a unique fixed point for ψ: y∗ = ψ(y∗, . . . , y∗).
As we will see, the contractive properties of the time series
result in a generalisation of mean-reverting behavior where
the fixed point serves as the level to which the time series
will tend to revert to in the long run after being exposed to
a shock. More formally, we define the following.

Definition 3 (First hitting time ). For a ∈ Rd with a1 > y∗

and γ ∈ [0, a1 − y∗), we define the upper first hitting time
of (yt)t∈N:

τ+γ := inf{t ∈ N|yt − y∗ < γ} .

Similarly, for a1 < y∗ and γ ∈ [a1 − y∗, 0), we define the
lower first hitting time of (yt)t∈N:

τ−γ := inf{t ∈ N|yt − y∗ > γ} .

Initial value a1 can be seen as having resulted from a
“shock” in the time series and γ as a return barrier that
indicates proximity to the long-run “mean” y∗. The first
hitting times τ+γ and τ−γ are linked to the speed of mean
reversion measured at various levels (γ). By conditioning on
past hitting times and the last result of [20], one can show
our following principal result:
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Notation 2. To alleviate notation, we denote the projec-
tion operator onto the i−th component by: πi : Rd →
R, (x1, . . . , xd)⊤ 7→ xi for i ∈ {1, ..., d}. Furthermore, we
denote the d-dimensional ones-vector: 1d = (1, ..., 1)⊤ ∈
Rd.

Theorem 1. For T ∈ N, define

I+(α∗,y∗)(T ) :=

∫ ∞

−b1
...

∫ ∞

−bT
fϵ1:T (A(T )x)dx

where A(T ) is defined in (2), fϵ1:T is the joint probability
density function of any finite sequence of consecutive noise
variables: ϵ1:T := (ϵ1, ..., ϵT ) defined according to Assump-
tion 1 and bi := π1

(
Bi(a − y∗1d)

)
− γ for i = 1, . . . , T

where B is defined in (3). We have:

(i) P
(
τ+γ > T

)
≤ I+(α∗,y∗)(T ) < 1 and

(ii) E[τ+γ ] ≤ 1 +

∞∑
T=1

I+(α∗,y∗)(T ).

Analogous bounds can be derived for P
(
τ−γ > T

)
and

E[τ−γ ].

Proof. Assumption 2 entails we have that the first hitting
time τ+γ can be upper bounded with probability 1 by the
first hitting time τzγ := inf{t ∈ N|zt < γ} of a linear AR(d)
(zt)t∈N process with coefficients equal to the α∗ vector,
initial conditions (a1−y∗, ..., ad−y∗) ∈ Rd and same noise
process (ϵt)t∈N as (yt)t∈N. Then, for an arbitrary T ∈ N:

P
(
τzγ > T

)
= P

(
min

t∈{1,...,T}
zt > γ

)
= P

( T⋂
t=1

{zt > γ}
)
.

For every time step t ∈ {1, ..., T}, by iterating backwards
from timestep t, we can re-express zt as

zt =

t∑
i=1

β(α∗, t, i)ϵi + π1(B
t(a− y∗1d)). (4)

where β(α∗, t, i) is a constant that depends on α∗, t and
i. Define σ2 := var(ϵ1) which is finite and non-zero by
Assumption 1. The independence and identical distributions
of the noise variables imply ∀s ≤ t ∈ N,
cov(zs, zt)

σ2
=

s∑
i=1

β(α∗, s, i)β(α∗, t, i) = ⟨M(T )s,M(T )t⟩

where M(T )i denotes the i-th row of of a matrix M ∈
RT×T . Therefore, the covariance matrix VT ∈ RT×T of
(zt)t∈{1,...,T} is given by VT = σ2M(T )M(T )⊤. From (35)
in [20], we have that the sample covariance of (zt)t∈{1,...,T}
is known and given by V −1

T = 1
σ2Aα∗(T )Aα∗(T )⊤ with

Aα∗(T ) is defined in (2). By uniqueness of the square root
of a matrix and of the inverse matrix we obtain an explicit
expression for M(T ): M(T )−1 = Aα∗(T )⊤.

Using the above relation, equation (4) and det(Aα∗(T )) =
1, we obtain the bound:

P
( T⋂
t=1

{zt > γ}
)
≤ P

(
M(T )ϵ1:T > −b

)

=

∫ ∞

−b1
...

∫ ∞

−bT

fϵ1:T (Aα∗(T )

(
x1

...
xT

)
)

|det(Aα∗(T )−1)|
dx1...dxT

= I+(α∗,y∗)(T ).

The second statement of 1 follows almost immediately.
For N ∈ N, define EN as the partial sum EN :=∑N
T=1 TP

(
τ+γ = T

)
then

EN =

N∑
T=1

TP
(
τ+γ = T

)
=

N∑
T=1

T∑
t=1

P
(
τ+γ = T

)
=

N∑
t=1

N∑
T=t

P
(
τ+γ = T

)
=

N∑
T=1

P
(
τ+γ ≥ T

)
= 1 +

N∑
T=1

P
(
τ+γ > T

)
≤ 1 +

N∑
T=1

I+
(α∗,y∗)(T ).

Taking limits on both sides of the inequality yields

E[τ+γ ] =
∞∑

T=1

TP
(
τ+γ = T

)
≤ 1 +

∞∑
T=1

I+
(α∗,y∗)(T ).

Theorem 1 provides a lower bound on the cumulative
density function of the first hitting times of (yt)t∈N as it
returns to the fixed point of its autoregressive model. By
varying the choice of barrier γ, the bound given in Theorem
1 can be used as a theoretical guarantee on the speed of
mean reversion of (yt)t∈N.

Remark 1. Comments on the behaviour of I+(α∗,y∗)(T ):

1) ∀T ∈ N, I+(α∗,y∗)(T ) is decreasing in γ.
2) ∀T ∈ N>d, if ∀ i, α∗

i ≤ β∗
i and ∃ j s.t. α∗

j < β∗
j then

I+(α∗,y∗)(T ) < I+(β∗,y∗)(T ).
3) ∀T ∈ N : lim∥α∗∥1→0 I

+
(α∗,y∗)(T ) =

1
2T

.

Proof. In this proof, we modify previous notation to empha-
size dependence on the parameters studied in Remark 1 and
we define the following notation: for every T ∈ N, we denote
by JT ⊆ RT the set JT :=

∏T
i=1[−bi,∞) where bi :=(

Biα∗ |a − y∗1d|)
)
1
− γ. (i): Consider γ1, γ2 ∈ [0, a1 − y∗)

with γ1 ≤ γ2. We have ∀i = 1, ..., T , bi(γ1) ≥ bi(γ2) which
implies that JT (γ1) ⊇ JT (γ2) and subsequently

I+(α∗,y∗)(T, γ1) =

∫
JT (γ1)

fϵ1:T (Aα∗(T )x)dx

≥
∫
JT (γ2)

fϵ1:T (Aα∗(T )x)dx = I+(α∗,y∗)(T, γ2).

(ii): Consider α∗, β∗ ∈ △+ with ∀ i, α∗
i ≤ β∗

i and such
that ∃ j with α∗

j < β∗
j . It follows that ∀t ∈ N>d, zt(α∗) <

zt(β
∗)) (where zt(α∗) (z(β∗) denotes a linear AR(d) process

defined with coefficients equal to α∗ (β∗)) and noise process
(ϵt)t∈N. Then, ∀T ∈ N>d,

I+(α∗,y∗)(T ) = P
( T⋂
t=1

{zt(α∗) > γ}
)
≤ P

( T⋂
t=1

{zt(β∗) > γ}
)

= I+(β∗,y∗)(T ).

(iii): Let J (−1)
T := {x ∈ RT |Aα∗(T )−1x ∈ JT } where
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Aα∗(T )−1 is well-defined as Aα∗(T ) is a lower triangular
matrix with ones on the diagonal. Then
I+(α∗,y∗)(T ) = P

(
M(T )ϵ(T ) > −b

)
=

∫
JT

fϵ1:T (Aα∗(T )x)dx

=

∫
J

(−1)
T

fϵ1:T (x)dx =

∫
RT

fϵ1:T (x)1J(−1)
T

(x)dx.

where 1A(x) denotes the indicator of a subset A. Define
g(x, α∗) = fϵ1:T (x)1J(−1)

T

. Since g verifies all the conditions
of Theorem 5.6 of [21] for α∗

0 := 0, we have
∫
RT g(x, α

∗)dx
is continuous in α∗

0. This implies that I+(α∗,y∗)(T ) is contin-
uous in α∗ = 0 and therefore

lim
∥α∗∥1→0

I+(α∗,y∗)(T ) = I+(0,y∗)(T ) =
1

2T

.

The multi-dimensional integral expression stated in I+

corresponds to the computation of the orthant probabilities
of a T-dimensional random vector. This computation can be
done using quadrature, sparse grids or Monte-Carlo methods
and dedicated software libraries exist [22]. Furthermore, this
computation can be done offline and a look-up table can
be created. In the case where (ϵt)t∈N is i.i.d. Gaussian, the
T-dimensional random vector has distribution: N (b, V −1).
Extensive research has been done to optimise the numerical
evaluation of this type of expression and fast quasi Monte
Carlo methods can be used for accurate computation for
T < 100 [23].

The following result gives a condition under which E[τ+γ )
is guaranteed to be finite.

Proposition 1. If, instead of Assumption 1, (ϵt)t∈N is as-
sumed to be a Gaussian white noise process then E[τ+γ ] <
∞.

Proof. Follows from proof of Theorem 1 and [5].

Proposition 1 can be used to characterise the data gener-
ating process defined in (1) as mean reverting in the sense
that the expected crossing time is finite for any choice of
initial conditions a ∈ Rd and barrier γ ∈ [0, a1 − y∗). In
particular, Proposition 1 holds when γ = 0 and the barrier
is equal to the mean of the process. It is important to note
however that this does not provide any information on long-
run convergence of the data generating process. One may
also wonder how tight the bounds given in Theorem 1 are
and whether they can be improved for the assumptions used
in this paper. The following result shows that the bounds
stated in Theorem 1 cannot be improved for α∗ ∈ △+.

Proposition 2 (Tightness). The upper bounds in Theorem 1
are tight for all α∗ ∈ △+.

Proof. Proposition 2 follows from the proof of Theorem 1.

The proof of Theorem 1 shows that the bounds are tight
when the dynamics of (yt)t∈N can be represented by a
linear autoregressive model (AR(p), p ∈ N). In particular,

for α∗ ∈ △+, this implies that any non-linear model that
is Lipschitz continuous with respect to ∥·∥α∗ and has a
fixed point y∗, will have its first hitting time probabilities
and expectation upper bounded by a linear AR process with
coefficients α∗ and intercept c (specified such that the mean
of the AR process is y∗).

An improvement on the tightness of the upper bounds
given in Theorem 1 can be obtained by considering local
α∗-contraction conditions. This is given in the following
corollary.

Corollary 1. Assume that the assumptions of this section
hold and consider a ∈ Rd and γ ∈ [0, a1 − y∗).
Define D∗ =

∏d
i=1 R≥bi where bi = min{γ,minj≤i aj},

then ∀T ∈ N, the α∗ coefficients used to compute
I+(α∗,y∗)(T ) in Theorem 1 can be replaced by α∗

D∗ ∈ Rd

where α∗
D∗ satisfies ψ|D∗ ∈ Lα∗

D∗ (D∗).

Proof. The proof of Corollary 1 follows from the proof of
Theorem 1 and Remark 1.2.

IV. ESTIMATION OF α∗ FROM MACHINE LEARNING
MODELS

The following subsection explains how the α∗ coefficients
utilised in this paper can be obtained for learning based
system identification frameworks that are sufficiently reg-
ular. Assume that the following time series data: Sn =
{yt}t∈{1,...,n} can be observed and that an autoregressive
machine learning forecasting model ψ̂ has been fitted to
the data. Then, using ψ̂ as a replacement for the transition
function ψ one aims to estimate the α∗ coefficients. To do
this, a main advantage of the theoretical results obtained
so far in this paper is the intuitive formulation of the
Lipschitz type conditions that were used. In particular, if
ψ̂ is differentiable, we can utilise the partial derivatives of
ψ̂. This can be done by using the following result:

Proposition 3. If the domain D ⊆ Rd of ψ is convex and
ψ ∈ C1(D) then ψ ∈ Lα∗

(D) with α∗
i = supx∈D | ∂ψ∂xi

(x)|.

Proof. Follows directly from an application of the multivari-
ate version of the mean value theorem and the convexity of
D.

From Proposition 3, we have that if there exists
{α∗

i }i∈{1,...,d} such that maxx∈D | ∂ψ̂∂xi
(x)| ≤ α∗

i for all
i ∈ {1, ..., d} and

∑d
i=1 α

∗
i < 1 then Theorem 1 and

Proposition 1 can be applied. While the computation of
Lipschitz constants of machine learning models is difficult
(with the exception of some non-parametric frameworks
[24]), estimating the gradients of a learned model is generally
more straightforward. In particular, for nonlinear autoregres-
sive models that rely on neural networks, backpropagation
can be used to compute the partial derivatives and existing
deep learning libraries (e.g. Pytorch or Tensorflow) can be
leveraged (see torch.autograd/tf.GradientTape).

This type of input-output partial derivative computation
has been extensively used in computer vision and explainable
AI for input sensitivity analysis [25], [26] and has started
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Method L1(20) L1(40) E[τ |τ ≤ 40]

AR(1): xt+1 = 0.9xt + ϵt+1, E[τ |τ ≤ 40] = 8.96

Non-linear Estim. 0.12± 0.067 0.06± 0.033 9.05± 1.23
AR(1) Estim. 0.087± 0.046 0.052± 0.027 7.95± 0.048

AR(3): xt+1 = 0.7xt + 0.15xt−1 + 0.05xt−2 + ϵt+1, E[τ |τ ≤ 40] = 7.66

Non-linear Estim. 0.102± 0.032 0.1± 0.08 11.86± 1.13
AR(1) Estim. 0.074± 0.042 0.038± 0.02 7.43± 0.58

ESTAR(1): xt+1 = 0.4xt + 0.3xt(1− e−
x2
t
2 ) + ϵt+1, E[τ |τ ≤ 40] = 3.4

Non-linear Estim. 0.093± 0.021 0.04± 0.009 4.77± 0.61
AR(1) Estim. 0.085± 0.0095 0.038± 0.004 3.57± 0.04

Neur. Net.: xt+1 = NN(xt, xt−1, xt−2) + ϵt+1, E[τ |τ ≤ 40] = 7.36

Non-linear Estim. 0.17± 0.061 0.06± 0.03 10± 1.33
AR(1) Estim. 0.085± 0.037 0.08± 0.03 3.8± 1.2

TABLE I: Performance of the first hitting time bounds in practice.

to expand to other application areas. Existing heuristics and
techniques from these approaches can therefore be leveraged
in order to compute the α∗ coefficients. Furthermore, for
several nonparametric machine learning model choices that
utilise neural networks, it is possible to incorporate gradient
learning directly into the model fitting process which would
offer a more direct way of estimating the {α∗

i }i∈{1,...,d}
coefficients [27].
In Table I, we illustrate how the upper bounds given in
Theorem 1 can perform in a in practtical example. Using
a standard autoregressive model, we generate a time series
of fixed length: 1000 timesteps and model the noise with
a Gaussian distribution. Then, utilising a 2-layer Neural
Network with sigmoid activation we estimate the α∗ con-
stants of the underlying function and compute I+(α∗,y∗)(T )
for 1 ≤ T ≤ 40 (We stop at 40 as the first hitting time
probabilities are approximately equal to 0 for T ≥ 40).
These values are compared against the “true” first hitting
probabilities of the stochastic process defined by the selected
autoregression function. We compute the (averaged) L1(20)-
error: 1

20

∑20
T=1 |I

+
(α∗,y∗)(T ) − P

(
τ+γ > T

)
|, (averaged)

L1(40)-error: 1
40

∑40
T=1 |I

+
(α∗,y∗)(T ) − P

(
τ+γ > T

)
| and

the value of the estimation of the conditional expectation
E[τ |τ ≤ 40]. These values are averaged over 10 simulations
and the standard deviation of the obtained results is also
stated. As a benchmark, we estimate the first hitting time
probabilities of the time series using an AR(1) model as is
most commonly done in practice (see discussion in intro-
duction). As the AR(1) estimation approach aims to directly
estimate the first hitting time of the stochastic process as
opposed to ensuring a bound, one expects it to be more
precise than the nonlinear estimation approach in terms of
L1(20) and L1(40) metrics. While this can be observed for
some values in Table I, we have that in the majority of
computed loss metrics our proposed approach is competitive
with the results of the AR(1) first hitting time estimation
method. The estimated values of E[τ |τ ≤ 40] then illustrates
the fact that the nonlinear estimation method aims to ensure
a lower bound on the first hitting times of the time series.

One caveat to the discussion of this section is that the

robustness of the estimation of the α∗ coefficients can be
difficult to obtain as it depends strongly on the precision of
the system idenfication method. Some research on robust es-
timation of the gradient/partial derivatives for neural network
based approaches can be found (e.g. see [28] [29]): however
the impact of the estimation error on the partial derivatives
estimates and thereby on the α∗ estimates remains an open
question that we will explore in future work.

V. APPLICATION TO STATISTICAL ARBITRAGE

Statistical Arbitrage. In this section, we utilise our theo-
retical results in the context of statistical arbitrage (statarb).
In general terms, statarb can be defined as any trading
framework that utilises interdependencies between the price
time series of financial assets to construct a mean reverting
synthetic asset which can be studied to obtain trading signals.
A simple example of statarb is given below.

Example 1. (Simple pairs trading) One trades a synthetic
asset Y = X−X ′ which is the difference of two underlying
assets X and X ′. Here a long position (buying) can be
assumed by buying X and (short) selling X’. And a short
(selling) position by (short) selling X and buying X’. A pairs
trading strategy then aims to profit by leveraging the mean
reverting behaviour of the synthetic asset which, in a loose
sense, means that it tends to oscillate around or converge
to a fixed mean value (y∗). It enters a long trade whenever
the price of the synthetic asset reaches a threshold level U1

that is far below the mean. It closes the long trade whenever
the asset price has reverted back to a level L1 close to the
mean by selling it. Conversely, the strategy assumes a short
position if it reaches a level U2 that is far above the mean
closes out the position upon reaching a level L2 near the
mean. This is illustrated in Figure 1[a]. Here we traded a
simulated synthetic asset employing our strategy and show
the U1, L1 thresholds.

The notion of mean reversion and the choice of design
parameters U 1 and L vary throughout the literature, but typ-
ically depend on specific, often quite restrictive assumptions
on the functional form of the dynamics of the synthetic asset.

For a review of the extensive statarb literature, the reader
is referred to [8]. As we focus here on the optimisation of the
trading strategy given the synthetic asset, relevant approaches
to our research can be found in [18], [30]. In particular,
the former assumes that an underlying Ornstein-Uhlenbeck
(OU) model holds and fits an AR(1) process in order to
derive optimal trading thresholds and policies that optimise
standard trading measures. Extensions for OU modelling
with jump processes [31], stop-loss rules [32] and regime-
switching [33] have also been developed. Apart from a few
exceptions (e.g. [34], [35]) which do not focus directly on
threshold setting, most of the relevant research has ignored
the use of more general nonlinear processes applicable in
settings where the synthetic asset has been identified with a
(nonlinear) machine learning method.

1w.l.o.g. the index notation is omitted as the short and long positions
can be treated in similar ways.
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Fig. 1: [a]: Statistical arbitrage thresholds for the short position. Positions are opened (green circles) when the time series hits U (green
line) and closed (red circles) when it subsequently hits L (red line). The dashed black line represents the ”fixed point” y∗. [b]: Dependence
of the expected return lower bound guarantee (Eq. 6) on the entry threshold (U) and exit threshold (L). Here, α∗ = (0.7, 0.15, 0.05)
and U,L are given in units of noise standard deviation. [c]: Setting thresholds U = 4.4, L = 2.2, the bound on RTrade(U,L) given
in Eq. 5 is illustrated empirically for various choices of confidence levels (p) by computing the empirical distribution of the returns for
positions opened and closed at thresholds (U,L).

.

Our approach. By contrast, we merely need to make
the more general assumption that our synthetic asset Y is
governed by a general nonlinear AR process as per Eq. 1. In
our framework, we consider Y to be mean reverting if it is
contracting, in which case we choose the ”mean” to coincide
with the fixed point, i.e. m = y∗.

Using our theoretical results, we show how, having ob-
tained estimates for the α∗-coefficients and the first hitting
time bounds from Theorem 1, we can inform the selection
of the entry and exit trading thresholds U,L such that we
get a probabilistic guarantee on the holding time of the trade
and expected return. An illustrative example with a simulated
synthetic asset is given in Figure 1[b, c]. To tune U,L and
understand the profitability properties of the trades of the
strategy, we are interested in bounds involving the following
variables:

Definition 4 (Informal definition of trading variables).
• r(U,L, c): return of a single trade at thresholds (U,L)

and transaction cost c.
• S(U,L): time taken to close positions once they have

been opened (with threshold (U,L)).
• RTrade(U,L, c) :=

r(U,L,c)
S(U,L) : average return of a single

trade per unit of time with thresholds (U,L).

Under common noise assumptions (e.g. Gaussian with a
finite variance of σ := var(ϵ2)), we can utilise Theorem 1
to obtain an upper bound T(α∗,σ)(U,L, p) on S(U,L) that
holds with high probability p ∈ [0, 1): T(α∗,σ)(U,L, p) :=
min{T ∈ N| 1−I+(α∗,y∗)(T ) ≥ p} ∈ N∪{∞} where I+(α∗,y∗)
depends on the choice of U,L and σ. This upper bound can
then be used to set a probabilistic guarantee on the average
return per unit of time:

Corollary 2. Let T(α∗,σ)(U,L, p) be as defined above,

P
(
RTrade(U,L) ≥

r(U,L, c)

T(α∗,σ)(U,L, p)

)
≥ p (5)

where p ∈ [0, 1) is a chosen confidence level. Furthermore,

we have

E[RTrade(U,L)] ≥
r(U,L, c)

1 +
∑∞
T=1 I

+
(α∗,y∗)(T )

. (6)

Proof. This result follows directly from Theorem 1 and
Jensen’s inequality.

As a lower bound for r(U,L, c) is generally easily obtain-
able by considering the difference in value of the underlying
positions at U and L, (5) and (6) can be used to determine
trading thresholds that guarantee in expectation or with high
probability a sufficiently high average return per unit time.
The final optimisation of the trading thresholds will then
also depend on the number of times the position entry
threshold U is hit (i.e. the number of times a position in the
underlying securities can be opened), the desired duration of
the trade and the average return per unit of time of other
trading opportunities in the portfolio. Figure 1[b] provide an
illustration of the behaviour of the lower bound guarantees
on E[RTrade(U,L)] stated in (6) for various values of U
and L. These lower bounds were computed in the context
of a simple case of a single mean reverting asset (implies
r(U,L, c) ≥ U − L) when the dynamics of the synthetic
asset were assumed to be α∗-Lipschitz contracting with α∗ =
(0.7, 0.15, 0.05). For a specific choice of U,L, Figure 1[c]
illustrates the lower bound stated in (5). To obtain the bound,
the relation r(U,L, c) ≥ U−L was utilised. The experiments
were run 5000 times by simulating from a neural network
(4-layers, Relu activation, trained on daily equity data) with
α∗ = (0.7, 0.15, 0.05) in order to obtain the illustrated
empirical distribution. As expected, for each confidence level
p the curve representing the lower bound given in (5) lies
beneath the curve representing the empirically estimated
(1− p)-th quantile of the average return per unit of time.

VI. CONCLUSIONS

In this work, we derived novel first hitting time bounds
for general classes of nonlinear systems. In contrast to
existing work, we did not need to impose strong requirements
on the functional form of the transition function. Instead,
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our bounds rested on contraction conditions relative to a
weighted norm. Such conditions can be readily verified for a
great many machine learning models such as neural networks
(e.g. via partial gradients automatically derived by popular
packages such as tensorflow.) We also provided a synthetic
example of a trading application of where our hitting time
bounds can be leveraged to inform a strategy’s position
changes such that probabilistic and expected lower bounds
on the return can be guaranteed. Forthcoming work will
extend these results to consider locally contractive dynamical
systems (see Section IV) and provide an empirical evidence
of the potential profitability of this approach can be when
applied to learning-based trading of financial assets. Of
course the generality of our results might also suggest they
could be employed in a wide range of other disciplines where
hitting times are of interest, such as in econometrics, ecology
and control.
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