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Abstract— Distributed control/optimization is a promising
approach for network systems due to its advantages over
centralized schemes, such as robustness, cost-effectiveness, and
improved privacy. However, distributed methods can have
drawbacks, such as slower convergence rates due to limited
knowledge of the overall network model. Additionally, ensuring
privacy in the communication of sensitive information can pose
implementation challenges. To address this issue, we propose
a distributed model identification algorithm that enables each
agent to identify the sub-model that characterizes the relation-
ship between its local control and the overall system outputs.
The proposed algorithm maintains the privacy of local agents
by only communicating through dummy variables. We demon-
strate the efficacy of our algorithm in the context of power
distribution systems by applying it to the voltage regulation of
a modified IEEE distribution system. The proposed algorithm
is well-suited to the needs of power distribution controls and
offers an effective solution to the challenges of distributed model
identification in network systems.

I. INTRODUCTION

In recent years, there has been a growing trend towards
emphasizing the privacy of users. This has led to the adoption
of stricter regulations and policies to protect user privacy,
such as the General Data Protection Regulation (GDPR)
in Europe [1] and the California Consumer Privacy Act
(CCPA) [2] in the United States. As the trend towards
emphasizing privacy is likely to continue, how to extract
values from data without sacrificing privacy becomes very
relevant in many applications such as healthcare, insurance,
and FinTech. The technology behind is known as federated
learning, which has found success in language model, image
recognition, etc [3], [4]. Some recent works [5], [6] also
found that federated learning can be useful in developing
energy management strategies for future power grids, which
could involve millions of controllable devices [7]. However,
those are restricted to gaining knowledge of the pattern of
certain classes of power consumption or generation, while
can not help identify a system-level model (e.g. power flow
model), which is very much needed for sophisticated control
of future power distribution systems.

C.-Y. Chang is with the National Renewable Energy Laboratory, Golden,
CO 80401, USA (Emails: {chinyao.chang}@nrel.gov).

This work was authored in part by NREL, operated by Alliance for
Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under
Contract No. DE-AC36-08GO28308. Funding provided by DOE Office
of Electricity, Advanced Grid Modeling Program, through agreement NO.
33652. The views expressed in the article do not necessarily represent the
views of the DOE or the U.S. Government. The U.S. Government retains
and the publisher, by accepting the article for publication, acknowledges that
the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide
license to publish or reproduce the published form of this work, or allow
others to do so, for U.S. Government purposes.

Distribution systems are mostly unobservable largely be-
cause of the cost-ineffectiveness of installing all the sensors.
Many existing works are then on identifying some valu-
able information for grid controls, such as topology of the
distribution system [8], [9] and state estimation [10]–[12].
Though distribution system state estimation (DSSE) is about
estimating the voltage and currents for buses without sensors,
many DSSE still requires some knowledge of the admittance
matrix or similar information [11], [12]. The knowledge
of the admittances is also valuable for various controls of
distribution systems, e.g., [13], [14], but such information is
not necessarily easy to obtain, especially considering the data
collection hurdles when privacy comes into the equation.

The aforementioned works assume a central entity collects
the data from all the sensors in the distribution system for
the estimations, which is also the case for estimating the
admittance matrix [15]. Collecting all the available data,
especially the power consumption patterns of the local users
or distributed energy resources can be challenging. Generally
speaking, there are some distributed algorithms that can es-
timate the system model, say the admittance matrix, through
distributed communication [16], [17]. However, distributed
algorithms mechanically have a consensus element that are
usually about the consensus of the estimated models or even
the local state variables of the agents, which leaves the
valuable information floating on the communication network
that could be susceptible for cyber attacks. Another downside
of many distributed algorithms is that they are essentially
gradient descent that makes them robust over package drops
or delays, while the convergence rate is compromised. Adam
algorithm (Adaptive Moment Estimation) [18] provides so-
phisticated step-size (learning rate) selection that can im-
prove the convergence rate of the distributed algorithms.
Adam algorithm is also found very effective for large-
scale optimizations [19], [20], thus it grows as one of the
mainstream algorithms in the machine learning field [21].
Bringing in Adam algorithm elements in distributed algo-
rithms can potentially improve the convergence rate.

Contributions: The contribution of the paper is mainly on
developing a distributed model identification algorithm such
that each agent in the network system identifies the sub-
model for the correlation between its local controls and the
overall system outputs, which can be understood as a sub-
matrix of the LinDistFlow model (or its equivalence) for
the distribution system if the inputs are the power injections
and outputs are the voltage magnitudes. The proposed al-
gorithm takes elements of Adam algorithm to improve the
convergence rate. On top of it, it has an appealing property
that the packets exchanged between the agents are dummy
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variables so that local data and the identified model are kept
private. We demonstrate the effectiveness of the proposed
distributed model identification algorithm with a modified
IEEE test system.

II. PRELIMINARY

A. Notations

For x ∈ Rn, we denote its l2-norm and quadratic norm in
terms of matrix A � 0 by ‖x‖2 and ‖x‖A, respectively.
For matrices A1, A2, · · · , AN with Ai ∈ Rm×n for all
i = 1, 2, · · · , N , we denote blkdiag ({Ai}Ni=1) as the block
diagonal matrix of all the Ai; [A1;A2; · · · ;An] ∈ RNm×n

and [A1, A2, · · · , An] ∈ Rm×Nn respectively as the vertical
and horizontal concatenations. The Hadamard product and
division of Ai and Aj are denoted as Ai �Aj and Ai./Aj ,
respectively. The Kronecker product between Ai and Aj is
written as Ai⊗Aj . For a matrix A ∈ Rm×n, vec(A) ∈ Rmn

is a column vector that vectorizes A by concatenating the
column vectors of A from left to right. The kernel of matrix
A is denoted as ker(A). The scalar element of the ith row
and kth column of A is denoted as A(i, k); A(:, k) is the kth

column vector of A. An identity matrix and all-ones vector
with dimension n are denoted as In and 1n, respectively.

B. System modeling with input-output data

In the following, we briefly overview the data-driven
modeling framework which will be used for the remainder of
this paper. Let u(k) ∈ Rm and y(k) ∈ Rn be the input and
output data at time instant k for an unknown system. Given
the input-output data collected for time k = 0, · · · , T − 1,
we define the data matrices shown in the following:

U = [φu(u(0)), · · · , φu(u(T − 1))], (1a)
Y = [φy(y(0)), · · · , φy(y(T − 1))], (1b)

where φu : Rm → Rm and φy : Rn → Rn are the mappings
that capture the known (can be nonlinear) physics of the
system to be identified. Assuming that the only unknown
part of the targeted system is linear and characterized by
A ∈ Rn×m, the following equation holds:

Y = AU. (2)

The model identification problem with given data (U and
Y ) can be understood as solving the linear equation (2). If
U has full row rank, then the system model A is uniquely
defined. The straight data representation of the system model
with data (2) is useful for controller design purposes, more
details are available in [22], [23].

III. DISTRIBUTED MODEL IDENTIFICATION ALGORITHM

In this section, we will first show how (2) is formulated
in a network system, and then lay out how to reformulate
it as a distributed optimization problem. We next develop a
distributed model identification algorithm leveraging Adam
adaptive step-size.

A. System modeling of network systems
We consider a network system that is partitioned into N

number of regions, and each region has an associated agent
that collect all the actuator and sensor data in the region. We
assume such a network partitioning setup effectively makes
each agent i ∈ N := {1, 2, · · · , N} only be able to get
information on certain rows of U and Y for the purpose of
formulating model identification problem (2). Define Du,i

and Dy,i as the sets of rows of U and Y that are known
for agent i, respectively. We assume the full observability
of the system in the sense that ∪i∈N Du,i = {1, 2, · · · ,m}
and ∪i∈N Dy,i = {1, 2, · · · , n} with Du,i ∩Du,j = ∅ and
Dy,i ∩Dy,j = ∅ for all i 6= j for simplicity. In this
setup, the agent i can capture how its regional controls
affect the output Y by knowing just some columns of A
instead of the full matrix, for which we define the sub-
matrix by ADu,i

∈ Rn×|Du,i | and without loss of generality,
A = [ADu,1

, ADu,2
, · · · , ADu,N

]. Note that even only ADu,i

is needed for agent i, it is achievable to identify and
reach consensus on the full model A for all the agents;
however, that can lead to massive data exchanges between
the agents that overwhelm the distributed communication
network. Therefore, the goal for each agent i is identifying
ADu,i

by distributed communication and locally available
sub-matrices of U and Y .

B. Distributed reformulation of the system modeling
In this section, we go through a series of reformulations

of (2) for convenience of distributed algorithm design. Define
xi = vec(ADu,i

) and x = [x1;x2; · · · ;xn] ∈ Rnm. In this
rearrangement, we consider the following formulation of (2):

min
x

1

2

T∑
k=1

∥∥∥∥∥(
N∑
i=1

Uk,Du,i
· xi

)
− Y (:, k)

∥∥∥∥∥
2

2

, (3)

where Uk,Du,i ∈ Rn×n·| Du,i | is the horizontal concatenation
of U(i, k) · In for all i ∈ Du,i. One can verify that
the optimal solution of (3) is a solution of (2) by direct
algebra. The reason for the optimization formulation is that
practically, it is unlikely to find x such that (2) holds
due to the noisy data, communication disturbances or other
disturbances. We next rewrites (3) in a more compact way.
Defining UDu,i = [U1,Du,i ;U2,Du,i ; · · · ;UT,Du,i ], YDy,i =
[Y1,Dy,i ;Y2,Dy,i ; · · · ;YT,Dy,i ] with Yk,Dy,i ∈ Rn such that

Yk,Dy,i
(j) =

{
Y (i, k) if j ∈ Dy,i,

0 otherwise,

we rewrite (3) as

min
x
f(x), f(x) :=

1

2

∥∥∥∥∥
N∑
i=1

(UDu,i
xi−YDy,i

)

∥∥∥∥∥
2

2

. (4)

The objective function f(x) couples the variables and data
for all the agents, which is not yet solvable with distributed
communications. In the following, we first leverage the
results in [17] for an algorithm that can solve (4) distribu-
tively, followed with some modifications with Adam step-
size and illustrating the privacy preserving properties. Define
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the graph associated with the distributed communication
network as G = (N , E), where E ⊆ N × N is the set of
edges (communication links). We next consider the following
optimization:

min
x,w

f̂(x,w), f̂(x,w) :=
1

2

∥∥∥Û x−Ŷ − L
1
2 w
∥∥∥2
2
, (5)

where w ∈ RTNn is a newly introduced slack variable, Û =
blkdiag ({ÛDu,i

}Ni=1), Ŷ = [YDy,1
;YDy,2

; · · · ;YDy,N
], L =

(L⊗ InT ), L is the Laplacian matrix associated with G, and
L

1
2 is the square root of L. Lemma III.1 (a compact version

of [17, Lemma 3.1]) shows that the optimal solutions of (5)
are also the ones for (4) through KKT optimality condition
arguments.

Lemma III.1. (Optimal solutions of (4) and (5)). If G is
connected and (x?,w?) is an optimal solution of (5), then
x? is an optimal solution of (4).

Proof: By KKT conditions [24], (x?,w?) is an optimal
solution of (5) if and only if

Û>(Û x?−Ŷ − L
1
2 w?) = 0, (6a)

L
1
2
>
(Û x?−Ŷ − L

1
2 w?) = 0. (6b)

By (6b) and the property of ker(L
1
2 ) = ker(L), we can define

z? = 1N⊗z? = Û x?−Ŷ −L
1
2 w?. We derive the following

equation by left multiplying z? by 1>N ⊗ InT :

Nz? =

N∑
i=1

(ÛDu,i
x?
i −ŶDy,i

), (7)

where ker(L
1
2 ) = ker(L) is used again in deriving (7).

Substituting (7) to (6a) gives

Û>Du,j

( N∑
i=1

(ÛDu,i x
?
i −ŶDy,i)

)
= 0, ∀j ∈ N . (8)

Because (8) is the KTT condition for the optimality of
optimization (4), we conclude that x? is also an optimal
solution of (4) and complete the proof.

With Lemma III.1, we focus on solving (5) distributively
for the original model identification problem.

C. Distributed algorithm for model identification
The first step of the distributed algorithm for (5) is looking

into the gradient descent of (5):

ẋ = −Û>(Û x−Ŷ − L
1
2 w), (9a)

ẇ = L
1
2 (Û x−Ŷ − L

1
2 w). (9b)

Because L
1
2 is not necessarily sparse, (9) can not be directly

implemented in a distributed way. Even if we formulate (5)
by replacing L

1
2 with L (the results of Lemma III.1 still

hold), the associated gradient descent with L
1
2 replaced by

L in (9) still requires packet exchanges between two-hop
neighbors, and the local input-output data should be shared
between the agents, which is not desirable. By introducing
a change of variable

z = Û x−Ŷ − L
1
2 w, (10)

we instead consider the following alternative gradient
method:

ẋ = −Û> z, (11a)

ż = −Lz+Û ẋ = −(L+Û Û>) z . (11b)

Because Û is block diagonal with the off-diagonal ele-
ments being zeros, the implementation of (11) only requires
distributed communication of z with z being partitioned
properly in a way that z = [z1; z2; · · · ; zN ], zi ∈ RnT . [17]
has shown that (11) and its Euler discrete formulation (12)
converge to the optimal solution of (5).

x(k + 1) = x(k)− αÛ> z(k), (12a)

z(k + 1) = z(k)− α
(
L+Û Û>

)
z(k). (12b)

To improve the convergence rate of (12), we propose to
introduce Adam adaptive step-size to (12). Defining D =
L+Û Û> and NI as the number of iterations for the model
identification, we propose the distributed model identification
algorithm with Adam adaptive step-size in Algorithm 1.

Algorithm 1 Distributed Model Identification Algorithm
with Adam adaptive step-size
Require: β1, β2 ∈ [0, 1), ε > 0, k = 0
Require: Initialize s1(0) = s2(0) = ŝ1(0) = ŝ2(0) = 0,

and x(0), w(0), z(0) that satisfies (10),
1: while k ≤ NI − 1 do
2: k ← k + 1
3: g(k)← Û> z(k − 1)
4: s1(k)← β1s1(k − 1) + (1− β1)g(k)
5: s2(k)← β2s2(k − 1) + (1− β2)

(
g(k)� g(k)

)
6: ŝ1(k)← s1(k)/(1− βk

1 )
7: ŝ2(k)← s2(k)/(1− βk

2 )

8: x(k)← x(k − 1)− α
(
ŝ1(k)./(

√
ŝ2(k) + ε)

)
9: z(k)← z(k − 1)− αD z(k − 1)

10: end while

Note that the adaptive step-size is only used on the x dy-
namics in line 8 but not on z in line 9 because such a adaptive
step-size on z can break the consensus established through L.
Although we do not conclude a faster convergence rate in the
proof of convergence of Algorithm 1 stated in Theorem III.2,
empirical results suggest faster convergence rate of Adam
algorithm over gradient descent method generally [21], and
we observe similar results in our simulation studies.

Theorem III.2. (Convergence of Algorithm 1). Algorithm 1
has x(k) → x? as k → ∞ if ‖Û‖2 < ∞, ‖Ŷ ‖2 < ∞,
β1, β2 ∈ [0, 1) and α is chosen such that

(α2 + µ)D>PD − α
(
D>P + PD

)
� 0 (13)

for some P � 0 and µ > 0.

Proof: With line 9 of Algorithm 1, (13) implies

z>(k)P z(k)− z>(k − 1)P z(k − 1)

≤ −µ z>(k − 1)D>PD z(k − 1),
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⇒‖ z(k)‖P − ‖ z(k − 1)‖P ≤ −µ‖D z(k − 1)‖P . (14)

We next sum up (14) for k = 1, · · · , NI , leading to

‖ z(NI)‖P ≤ ‖ z(0)‖P −
NI−1∑
k=0

µ‖D z(k)‖P . (15)

Inequality (15) implies that ‖D z(k)‖P → 0 as k → ∞.
Because D = L+Û Û>, and L and Û Û> are positive
semidefinite, for any z(k) 6= 0, ‖D z(k)‖P = 0 if and
only if Lz(k) = Û Û> z(k) = 0. Recall that z? :=

Û x?−Ŷ −L
1
2 w? is the optimal solution if and only if (6)

holds, so we can conclude z(k) → z? by ‖D z(k)‖P → 0.
Because ‖z?‖2 < ∞ and L

1
2 z? = 0, for any x(k) with

‖x(k)‖2 <∞, there exists a w(k) that solves

z? = Û x(k)− Ŷ − L
1
2 w(k).

The x(k) and w(k) that solve the equation above are the
optimal solutions of (5). In other words, we can conclude
x(k) → x? given z(k) → z? as k → ∞ by showing that
‖x(k)‖2 <∞ for all k ∈ N, or

‖x(k1)− x(k1)‖2 <∞, ∀ k1, k2 ∈ N (16)

To show (16) holds, we first state that there exists a Cg <∞
such that

∞∑
k=1

‖Û> z(k)‖2 =

∞∑
k=1

‖g(k)‖2 ≤ Cg. (17)

Otherwise, (15) does not hold when NI → ∞. We next
analyze the series of ŝ1(k)./(

√
ŝ2(k) + ε) that appears in

the updates of x(k) in Algorithm 1:∥∥∥∥∥
∞∑
k=1

(
ŝ1(k)./(

√
ŝ2(k) + ε)

)∥∥∥∥∥
2

≤ 1

ε

∥∥∥∥∥
∞∑
k=1

ŝ1(k)

∥∥∥∥∥
2

=
1

ε

∥∥∥∥∥
∞∑
k=1

βk
1 s1(0) + (1− β1)

∑k
i=1 β

k−i
1 g(i)

1− βk
1

∥∥∥∥∥
2

, (18)

where line 4 of Algorithm 1 is used in deriving (18). Because
s1(0) = 0, we can simplify (18) to:∥∥∥∥∥

∞∑
k=1

(
ŝ1(k)./(

√
ŝ2(k) + ε)

)∥∥∥∥∥
2

≤1− β1
ε

∥∥∥∥∥
∞∑
k=1

1

1− βk
1

k∑
i=1

βk−i
1 g(i)

∥∥∥∥∥
2

=
1− β1
ε

∥∥∥∥∥∥
∞∑
j=1

g(j) ·
( ∞∑

h=j

βh−j
1

1− βh
1

)∥∥∥∥∥∥
2

≤1− β1
ε
· 1

(1− β1)2
∞∑
j=1

‖g(j)‖2 ≤
Cg

ε(1− β1)
<∞ (19)

The inequality (19) implies (16) holds, which completes the
proof.

Remark III.3. (Comparison of Algorithm 1 with Adam
algorithm). By dropping line 9 of Algorithm 1 and changing
the meaning of g(k) from Û> z(k − 1) to the gradient of

a certain objective function of x, Algorithm 1 is actually
Adam algorithm. Such a change leads in very different
routes to prove the convergence to the optimal x?. However,
the fundamental assumptions are similar. The convergence
statement of Adam algorithm [18, Theorem 10.5] straight
assumes (16) and (17) hold, and for Algorithm 1, such an
assumption is indirectly embedded in (13), which actually
leads to (16) and (17) as shown in the proof. Last but not
least, the convergence statement of Adam algorithm [18,
Theorem 10.5] has additional assumptions on β1 and β2,
which are used for deriving the bounds of the regret (or
characterizing the convergence rate). Because Algorithm 1
does not use β1 and β2 for all the state variables (it only
uses them in updating x), it is unclear on how to make
additional assumptions on β1 and β2 to help characterize
the convergence rate of Algorithm 1. Practically, choosing
β1 and β2 for Algorithm 1 based on numerical experiences
of Adam algorithm in the literature works reasonably well.

We conclude this section by noting that Algorithm 1
possesses some desirable properties: (1) only the dummy
variables z are exchanged through the communication net-
work; (2) retrieving the sub-model, xi (or ADu,i

), that is
useful for agent i from z requires local data UDu,i

and YDu,i
,

which simultaneously preserves the privacy and enhances the
security. We view those as the unique strengths of Algo-
rithm 1 compared to other model identification algorithms.

IV. NUMERICAL STUDIES

We validate the proposed distributed model identifica-
tion algorithm with two test cases. We first demonstrate
that by adding Adam algorithm adaptive step-size, a faster
convergence rate is observed for Algorithm 1 compared
to (12). We next apply the proposed algorithm to identify the
LinDistFlow model [25] (or its equivalence) for a modified
IEEE 37 buses system, and show a satisfactory control
performance by leveraging the identified model.

A. A small-scale example
We randomly generate a linear networked system given as

y = [y1; y2; · · · ; yN ] =

N∑
i=1

ADu,i
ui, (20)

where ui ∈ R| Du,i | and yi ∈ R| Dy,i | are the input and
output of agent i, | Du,i | ∈ {4, 5}, | Dy,i | ∈ {3, 4}, and N =
5. All the entries of matrix A = [ADu,1

, ADu,2
, · · · , ADu,N

]
and ui are randomly generated with the standard normal
distribution with the standard deviation of 1. We assume that
the model identification algorithm (12) and Algorithm 1 start
when the data matrices U and Y are constructed with T
steps, T = 2

∑N
i=1 | Du,i |. The algorithmic parameters are

set as α = 10−3, β1 = 0.9, β2 = 0.95, and ε = 10−8. As
shown in Figures 1 and 2, both (12) and Algorithm 1 have the
estimated model converges to the actual ones. Algorithm 1
has a noticeably faster convergence rate, especially at the first
hundreds iterations. We conjecture the dominating factor for
the convergence after few hundred steps is on the consensus
of z, so there is no much difference between (12) and
Algorithm 1 afterward.
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Fig. 1. The absolute value difference for each element of the estimated A
and A? by implementing (12).

Fig. 2. The absolute value difference for each element of the estimated A
and A? for Algorithm 1.

B. A modified IEEE 37-bus test system

In this section, we apply Algorithm 1 to identify the
LinDistFlow model A for the voltage magnitude regulation
purpose. We modify the IEEE 37-bus test system with
penetration of PVs as illustrated in Figure 3. We assume
that every PV bus acts as an agent and knows its local
active/reactive power injections and the voltage magnitude of
the bus, and it can adjust its power injections to help regulate
the voltage magnitudes. The power injections of PV bus i is
collected as the control variable ui ∈ R2 and the voltage
magnitude measurements are collected by yi ∈ R+. We
assume that a connected distributed communication network
G is established for the purposes of running Algorithm 1 and
the distributed feedback-based algorithm developed in [14].

Implementing the distributed feedback-based control algo-
rithm developed in [14] requires a LinDistFlow model A or

Fig. 3. Illustration of the modified IEEE 37-bus system with the buses
highlighted in red triangles are PV buses

its equivalence. Although the model A does not need to be
very accurate as explained in [26], a reasonably accurate A
is still needed. We simulate the following scenarios: (i) no
control on the voltage magnitudes; (ii) distributed feedback-
based control with A derived by the given knowledge of line
impedances and network topology; (iii) distributed feedback-
based control with A identified by Algorithm 1 offline;
(iv) distributed feedback-based control with A identified
by Algorithm 1 online whenever the new pair of u and
y is available to replace the oldest pair. The algorithmic
parameters α, β1, β2 and ε are set the same as the first
numerical example for Algorithm 1. The number of time
instances of constructing input and output data matrices, U
and Y , is set by T = 140.

Figures 4-7 illustrate the voltage magnitudes for the four
scenarios. Unsurprisingly, the control performance with the
known A is among the bests. An interesting observation is
that for scenario (iii), the A concatenated by the identified
ADu,i

for all the agents is very different from the A derived
from the given impedance and topology, regardless how we
initialize ADu,i

(or xi). However, the concatenated A still
matches the data well with the per unit voltage estimation
errors being at the order of 10−3 (10−4 for the LinDistFlow
A), and a similar voltage regulation result to scenario (ii) is
achieved. Our explanation is that another form of linearized
power flow is identified through Algorithm 1 because there
can be many valid linearized models for the underlying
nonlinear power flow physics. Scenario (iv) is expected to
perform best because it adapts the model A in accordance
with the operating points online (could be understood as
adjusting the linearization point). However, as shown in
Figure 7, we observe a bit more fluctuation of the regulated
voltage magnitudes compared to scenarios (ii) and (iii). Some
fine-tuning of the number of steps before updating U and
Y may be needed for a better performance. Overall, both
scenarios (iii)-(iv) achieve satisfactory voltage regulations
while keeping the power injections and voltage magnitude
measurements local, and the packet exchanges are limited to
dual variables associated with voltage constraints and dummy
variables for the distributed algorithms.

V. CONCLUSION

In this paper, we proposed a distributed model identi-
fication algorithm such that each agent identifies a sub-
model that describes its local controls with the overall system
outputs. The algorithm is designed such that the agents
do not need to share their local data and the convergence
rate is practically better than the gradient descent consensus
algorithm because of adding the adaptive step-size of the
Adam algorithm. We focus on the power distribution system
applications in this paper, but we envision the proposed
algorithm is potentially useful for decentralized or distributed
controls in many other networked systems such as robotics,
economics, telecommunications. Our future works will be
on refining the online distributed model identification for im-
proved linearized models for nonlinear or time-varying linear
systems. More in-depth testing of the proposed algorithm for
some potential applications is also among our future works.
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Fig. 4. The voltage magnitudes (p.u.) over time without control.

Fig. 5. The voltage magnitudes (p.u.) over time with distributed feedback-
based control and known LinDistFlow model.

Fig. 6. The voltage magnitudes (p.u.) over time with distributed feedback-
based control and the identified LinDistFlow model.

Fig. 7. The voltage magnitudes (p.u.) over time with distributed feedback-
based control and the identified LinDistFlow model updated online.
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