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Abstract— The work studies cooperative decentralized con-
strained POMDPs with asymmetric information. Using an
extension of Sion’s Minimax theorem for functions with positive
infinity and results on weak-convergence of measures, strong
duality and existence of a saddle point are established for the
setting of infinite-horizon expected total discounted costs when
the observations lie in a countable space, the actions are chosen
from a finite space, the immediate constraint costs are bounded,
and the immediate objective cost is bounded from below.

I. INTRODUCTION

Single-Agent Markov Decision Processes (SA-MDPs) [1]
and Single-Agent Partially Observable Markov Decision
Processes (SA-POMDPs) [2] have long served as the basic
building-blocks in the study of sequential decision-making.
An SA-MDP is an abstraction in which an agent sequentially
interacts with a fully-observable Markovian environment to
solve a multi-period optimization problem; in contrast, in
SA-POMDP, the agent only gets to observe a noisy or incom-
plete version of the environment. In 1957, Bellman proposed
dynamic-programming as an approach to solve SA-MDPs
[1], [3]. This combined with the characterization of SA-
POMDP into an equivalent SA-MDP [4]–[6] (in which the
agent maintains a belief about the environment’s true state)
made it possible to extend dynamic-programming results
to SA-POMDPs. Reinforcement learning [7] based algo-
rithmic frameworks use data-driven dynamic-programming
approaches to solve such single-agent sequential decision-
making problems when the environment is unknown.

In many engineering systems, there are multiple decision-
makers that collectively solve a sequential decision-making
problem but with safety constraints: e.g., a team of robots
performing a joint task, a fleet of automated cars navigating a
city, multiple traffic-light controllers in a city, etc. Bandwidth
constrained communications and communication delays in
such systems lead to a decentralized team problem with
information asymmetry. In this work, we study a fairly
general abstraction of such systems, namely that of a co-
operative decentralized constrained POMDP, hereon referred
to as Dec-C-POMDP. The special cases of Dec-C-POMDP
when there are no constraints, when there is only one agent,
or when the environment is fully observable to each agent
are referred to as Dec-POMDP1, SA-C-POMDP, and Dec-
C-MDP, respectively. The relationships among these models
are shown in Figure 1.
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1For a good introduction to Dec-POMDPs, see [8].

A. Related Work

1) Single-Agent Settings: Prior work on planning and
learning under constraints has primarily focused on single-
agent constrained MDP (SA-C-MDP) where unlike in SA-
MDPs, the agent solves a constrained optimization problem.
For this setup, a number of fundamental results from the
planning perspective have been derived – for instance, [9]–
[15]; see [16] for details of the convex-analytic approach for
SA-C-MDPs. These aforementioned results have led to the
development of many algorithms in the learning setting: see
[17]–[23]. Unlike SA-C-MDPs, rigorous results for SA-C-
POMDPs are limited; few works include [24]–[27].

2) Multi-Agent Settings: Challenges arising from the
combination of partial observability of the environment and
information-asymmetry2 have led to difficulties in devel-
oping general solutions to Dec-POMDPs: e.g., solving a
finite-horizon Dec-POMDP with more than two agents is
known to be NEXP-complete [28]. Nevertheless, concep-
tual approaches exist to establish solution methodologies
and structural properties in (finite-horizon) Dec-POMDPs
namely: i) the person-by-person approach [29]; ii) the de-
signer’s approach [30]; and iii) the common-information
(CI) approach [31], [32]. Using a fictitious coordinator that
only uses the common information to take actions, the CI
approach allows for the transformation of the problem to
a SA-POMDP which can be used to solve for an optimal
control. The CI approach has also led to the development
of a multi-agent reinforcement learning (MARL) framework
[33] where agents learn good compressions of common
and private information that can suffice for approximate
optimality. On the empirical front, worth-mentioning works
include [34], [35]. Finally, as far as we know, work on Dec-
C-POMDPs is non-existent.

B. Contribution

For Dec-C-POMDPs, the technical challenges increase
even more from those of Dec-POMDPs because restriction of
the search space to deterministic policy-profiles is no longer
an option3. Therefore, the coordinator in the equivalent SA-
C-POMDP has an uncountable prescription space, which
leads to an uncountable state-space in its equivalent SA-
C-MDP. This is an issue because most fundamental results
in the theory of SA-C-MDPs (largely based on occupation-
measures) rely heavily on the state-space being countably-

2Mismatch in the information of the agents.
3Restricting to deterministic policies can be sub-optimal in SA-C-MDPs

and SA-C-POMDPs: see [16] and [24].
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infinite; see [16]. Due to these reasons, the study of Dec-C-
POMDPs calls for a new methodology—one which avoids
this transformation and directly studies the decentralized
problem. Our work takes the first steps in this direction and
presents a rigorous approach for Dec-C-POMDPs which is
based on structural characterization of the set of behavioral
policies and their performance measures, and using measure
theoretic results. The main result in this paper, namely The-
orem 1, establishes strong duality and existence of a saddle-
point for Dec-C-POMDPs, thus providing a firm theoretical
basis for (future) development of primal-dual type planning
and learning algorithms.

C. Organization
The rest of the paper is organized as follows. Mathematical

formulation of (cooperative) Dec-C-POMDP is introduced in
Section II. Results on strong duality and existence of a saddle
point are then derived in Section III. Finally, concluding
remarks are given in Section IV.

D. Notation
Before we present the model, we highlight the key nota-

tions in this paper.
• The sets of integers and positive integers are respectively
denoted by Z and N. For integers a and b, [a, b]Z represents
the set {a, a + 1, . . . , b} if a ≤ b and ∅ otherwise. The
notations [a] and [a,∞]Z are used as shorthands for [1, a]Z
and {a, a+ 1, . . . }, respectively.
• For integers a ≤ b and c ≤ d, and a quantity of interest
q, q(a:b) is a shorthand for the vector

(
q(a), q(a+1), . . . , q(b)

)
while qc:d is a shorthand for the vector (qc, qc+1, . . . , qd).
The combined notation q

(c:d)
a:b is a shorthand for the vec-

tor (q
(j)
i : i ∈ [a, b]Z, j ∈ [c, d]Z). The infinite tuples(

q(a), q(a+1), . . . ,
)

and (qc, qc+1, . . . , ) are respectively de-
noted by q(a:∞) and qc:∞.
• For two real-valued vectors v1 and v2, the inequalitie v1 ≤
v2 and v1 < v2 are meant to be element-wise inequalities.
• Probability and expectation operators are denoted by P
and E, respectively. Random variables are denoted by upper-
case letters and their realizations by the corresponding lower-
case letters. At times, we also use the shorthand E [·|x] ∆

=

E [·|X = x] and P (y|x) ∆
= P (Y = y|X = x) for conditional

quantities.
• Topological spaces are denoted by upper-case calligraphic
letters. For a topological-space W , B (W) denotes the
Borel σ-algebra, measurability is determined with respect
to B (W), and M1 (W) denotes the set of all probability
measures on B (W) endowed with the topology of weak
convergence. Also, unless stated otherwise, “measure” means
a non-negative measure.
• Unless otherwise stated, if a set W is countable, as a topo-
logical space it will be assumed to have the discrete topology.
Therefore, the corresponding Borel σ-algebra B (W) will be
the power-set 2W .
• Unless stated otherwise, the product of a collection of
topological spaces will be assumed to have the product
topology.

Fig. 1: Relationships between Models of Cooperative
Sequential Decision-Making under Constraints.

II. MODEL

Let (N,S,O,A,Ptr, (c, d) , P1,U , α) denote a (coopera-
tive) Dec-C-POMDP with N agents, state space S, joint-
observation space O, joint-action space A, transition-law
Ptr, immediate-cost functions c and d, (fixed) initial dis-
tribution P1, space of decentralized policy-profiles U , and
discount factor α ∈ (0, 1). The decision problem (to be
detailed later on) has the following attributes and notations.
• State Process: The state-space S is some topological
space with a Borel σ-algebra B (S). The state-process is
denoted by {St}∞t=1.
• Joint-Observation Process: The joint-observation space
O is a countable discrete space of the form O =

∏N
n=0 O(n),

where O(0) denotes the common observation space of all
agents and O(n) denotes the private observation space of
agent n ∈ [N ]. The joint-observation process is denoted by
{Ot}∞t=1 where Ot = O

(0:N)
t and is such that at time t, agent

n ∈ [N ] observes O
(0)
t and O

(n)
t only.

• Joint-Action Process: The joint-action space A is a finite
discrete space of the form A =

∏N
n=1 A(n), where A(n)

denotes the action space of agent n ∈ [N ]. The joint-action
process is denoted by {At}∞t=1 where At = A

(1:N)
t and A

(n)
t

denotes the action of agent n at time t.4 Since all A(n)’s and
A are finite, they are all compact metric spaces.5

• Transition-law: At time t ∈ N, given the current state
St and current joint-action At, the next state St+1 and
the next joint-observation Ot+1 are determined in a time-
homogeneous manner, independent of all previous states,
all previous and current joint-observations, and all previous
joint-actions. The transition-law is given by

Ptr
∆
= {PsaBo : s ∈ S, a ∈ A, B ∈ B (S) , o ∈ O} , (1)

where for all t ∈ N,

P (St+1 ∈ B,Ot+1 = o|S1:t−1 = s1:t−1,

O1:t = o1:t, A1:t−1 = a1:t−1, St = s,At = a)

= P (St+1 ∈ B,Ot+1 = o|St = s,At = a) (2)
∆
= PsaBo.

4The results in this work also hold if for every (h
(0)
t , h

(n)
t ) ∈ H(0)

t ×
H(n)

t , agent n is allowed to take action from a separate finite discrete space
A(n)(h

(0)
t , h

(n)
t ).

5Hence, also complete and separable.

5405



• Immediate-costs: The immediate cost c : S × A 7→ R is
a real-valued function whose expected discounted aggregate
(to be defined later) we would like to minimize. On the other
hand, the immediate cost d : S × A 7→ RK is RK-valued
function whose expected discounted aggregate we would like
to keep within a specified threshold. For these reasons, we
call c and d as the immediate objective and constraint costs
respectively. We shall make use of the following assumption
on immediate-costs in Theorem 1.
Assumption 1. The immediate objective cost is bounded
from below and the immediate constraint costs are bounded,
i.e., there exist c ∈ R and d, d ∈ RK such that

c ≤ c(·, ·) and d ≤ d(·, ·) ≤ d. (3)

Let
¯
d̄ = ∥d∥∞ ∨ ∥d∥∞ so that ∥d(·, ·)∥∞ ≤

¯
d̄ < ∞.

• Initial Distribution: P1 is a (fixed) probability measure
for the initial state and initial joint-observation, i.e., P1 ∈
M1 (S ×O) and

P1 (B, o)
∆
= P (S1 ∈ B,O1 = o) . (4)

• Space of Policy-Profiles: At time t ∈ N, the common
history of all agents is defined as all the common obser-
vations received thus far, i.e., H

(0)
t

∆
=

(
O

(0)
1:t

)
. Similarly,

the private history of agent n ∈ [N ] at time t is defined
as all observations received and all the actions taken by the
agent thus far (except for those that are part of the common
information), i.e.,

H
(n)
1

∆
= O

(n)
1 \O(0)

1 , and

H
(n)
t

∆
=

(
H

(n)
t−1, (A

(n)
t−1, O

(n)
t ) \O(0)

t

)
∀t ∈ [2,∞]Z.

(5)

Finally, the joint history at time t is defined as the tuple of
the common history and all the private histories at time t,
i.e., Ht

∆
= H

(0:n)
t .

With the above setup, we define a (decentralized) behav-
ioral policy-profile u as a tuple u(1:N) ∈ U ∆

=
∏N

n=1 U (n)

where u(n) denotes some behavioral policy used by agent n,
i.e., u(n) itself is a tuple of the form u

(n)
1:∞ where u

(n)
t maps

H(0)
t × H(n)

t to M1

(
A(n)

)
, and where agent n uses the

distribution u
(n)
t (H

(0)
t , H

(n)
t ) to choose its action A

(n)
t . We

pause to emphasize that at any time t, each agent randomizes
over its action-set independently of all other agents (no
common randomness). Thus, given a joint-history ht ∈ Ht

at time t, the probability that joint-action at ∈ A is taken is
given by

ut (at|ht)
∆
=

N∏
n=1

u
(n)
t

(
h
(0)
t , h

(n)
t

)(
a
(n)
t

)
=

N∏
n=1

u
(n)
t

(
a
(n)
t

∣∣h(0)
t , h

(n)
t

)
. (6)

Remark 1. With Assumption 1, the conditional
expectations EP1 [c (St, At) | Ht = ht, At = at] and
EP1

[d (St, At) | Ht = ht, At = at] exist, are unique, and

are bounded from below. Furthermore, the latter are
element-wise finite.
• Optimization Problem: Let P(u)

P1
be the probability mea-

sure corresponding to policy-profile u ∈ U and initial-
distribution P1, and let E(u)

P1
denote the corresponding ex-

pectation operator.6 We define infinite-horizon expected total
discounted costs C : U → R ∪ {∞} and D : U → RK as

C (u) = C(P1,α) (u)
∆
= E(u)

P1

[ ∞∑
t=1

αt−1c (St, At)

]
,

(7)

and D (u) = D(P1,α) (u)
∆
= E(u)

P1

[ ∞∑
t=1

αt−1d (St, At)

]
.

(8)

Remark 2. Assumption 1 ensures that C (u) ∈ R∪{∞}, and
D (u) ∈ RK with (absolute) element-wise bound

¯
d̄/(1−α).

The decision process proceeds as follows: i) At time t ∈ N,
the current state St and observations Ot are generated; ii)
Each agent n ∈ [N ] chooses an action a(n) ∈ A(n) based
on H

(0)
t , H

(n)
t ; iii) the immediate-costs c (St, At) , d (St, At)

are incurred7; iv) The system moves to the next state and
observations according to the transition-law Ptr. Under these
rules, the goal of the agents is to work cooperatively to solve
the following constrained optimization problem.

minimize C (u)

subject to u ∈ U and D (u) ≤
•

D.

}
(Dec-C-POMDP)

Here,
•

D is a fixed K-dimensional real-valued vector. We
refer to the solution of (Dec-C-POMDP) as its optimal value
and denote it by C = C(P1,α). In particular, if the set of
feasible policy-profiles is empty, we set C to ∞ and with
slight abuse of terminology will consider any policy-profile
in U to be optimal.

The following assumption about feasibility of
(Dec-C-POMDP) will be used in one of the parts of
Theorem 1.
Assumption 2 (Slater’s Condition). There exists a policy-
profile u ∈ U and ζ > 0 for which

D (u) ≤
•

D − ζ1. (9)

III. CHARACTERIZATION OF STRONG DUALITY

To solve (Dec-C-POMDP), let us define the Lagrangian
function L : U × Y 7→ R ∪ {∞} as follows.

L (u, λ) = L(P1,α) (u, λ)
∆
= C (u) + ⟨λ,D (u)−

•

D⟩

= C (u) +

K∑
k=1

λk

(
Dk (u)−

•

Dk

)
, (10)

Here, Y ∆
= {λ ∈ RK : λ ≥ 0} is the set of tuples of

K non-negative real-numbers, each commonly known as

6The existence and uniqueness of P(u)
P1

can be ensured by an adaptation
of the Ionesca-Tulcea theorem [36].

7In the planning context, the immediate-costs are known by all agents.
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a Lagrange-multiplier. Our main result shows that the the
solution C satisfies

C = inf
u∈U

sup
λ∈Y

L (u, λ) , (11)

and that the inf and sup can be interchanged, i.e.,

C = sup
λ∈Y

inf
u∈U

L (u, λ) . (12)

Theorem 1 (Strong Duality and Existence of Saddle Point).
Under Assumption 1, the following statements hold.
(a) The optimal value satisfies

C = inf
u∈U

sup
λ∈Y

L (u, λ) . (13)

(b) A policy-profile u⋆ ∈ U is optimal if and only if C =
supλ∈Y L (u⋆, λ).
(c) Strong duality holds for (Dec-C-POMDP), i.e.,

C = inf
u∈U

sup
λ∈Y

L (u, λ) = sup
λ∈Y

inf
u∈U

L (u, λ) . (14)

Moreover, there exists a u⋆ ∈ U such that C =
supλ∈Y L (u⋆, λ) and u⋆ is optimal for (Dec-C-POMDP).
(d) If Assumption 2 holds, then there also exists λ⋆ ∈ Y
such that the following saddle-point condition holds for all
(u, λ) ∈ U × Y ,

L (u⋆, λ) ≤ L (u⋆, λ⋆) = C ≤ L (u, λ⋆) . (15)

i.e., u⋆ minimizes L (·, λ⋆) and λ⋆ maximizes L (u⋆, ·). In
addition to this, the primal dual pair (u⋆, λ⋆) satisfies the
complementary-slackness condition:

⟨λ⋆, D (u⋆)−
•

D⟩ = 0. (16)

Proof. (a) If u ∈ U is feasible (i.e., it satisfies D (u) ≤
•

D),
then the sup is obtained by choosing λ = 0, so

sup
λ∈Y

L (u, λ) = C (u) . (17)

If u ∈ U is not feasible, then

sup
λ∈Y

L (u, λ) = ∞. (18)

Indeed, suppose WLOG that the kth constraint is violated,
i.e., Dk (u) >

•

Dk, then ∞ can be obtained by choosing λk

arbitrarily large and setting other λk’s to 0.
From (17), (18), and our convention that C = ∞ whenever

the feasible-set is empty, it follows that

C = inf
u∈U

sup
λ∈Y

L (u, λ) . (19)

(b) By our convention on the value of C (when there is no
feasible policy-profile), u⋆ is optimal if and only if C (u⋆) =
C, i.e., supλ∈Y L (u⋆, λ) = C.
(c) To establish strong duality, we use [37][Proposition 4]
which requires U and Y to be convex8 topological spaces
(with U being compact also). It is clear that Y is convex and

8Convexity is a set property rather than a topological property. In the rest
of the paper, by a “convex topological space”, we mean convexity of the
set on which the topology is defined.

we can endow it with the usual subspace topology of RK .
For U however, we need to endow it with a suitable topology
in which it is compact and then also show that it is convex.
To achieve compactness, we can use the finiteness of the
action-space A(n) and the countability of observation-space
O to associate U with a product of compact sets that are pa-
rameterized by (countable number of) all possible histories.
Tychonoff’s theorem (see [37][Proposition 4]) then helps
achieve compactness under the product topology. (Convexity
comes trivially). Now, we make this idea precise. For t ∈ N
and n ∈ [0, N ]Z, let H(n)

t denote the set of all possible
realizations of H

(n)
t . Then, by countability of observation

and action spaces, the sets

Ht
∆
=

N∏
n=0

H(n)
t ,

H(n) ∆
=

∞⋃
t=1

H(0)
t ×H(n)

t , and

H ∆
=

∞⋃
t=1

Ht,

(20)

are countable. Here, Ht is the set of all possible joint-
histories at time t, H(n) is the set of all possible histories
of agent n, and H is the set of all possible joint-histories.
With this in mind, one observes that U is in one-to-one
correspondence with the set XU

∆
=

∏N
n=1 XU(n) , where

XU(n)
∆
=

∏
h∈H(n)

M1

(
A(n);h

)
, (21)

and M1

(
A(n);h

)
is a copy of M1

(
A(n)

)
dedicated for

agent-n’s history h. For example, a given policy u would
correspond to a point x ∈ XU such that x

n,
(
h
(0)
t ,h

(n)
t

) =

u
(n)
t

(
·|h(0)

t , h
(n)
t

)
, and similarly, vice versa.

Since A(n) is a complete separable (compact) metric
space, by Prokhorov’s Theorem (see [37][Proposition 6]),
each M1

(
A(n);h

)
is a compact (and convex9) metric space

(with the topology of weak-convergence). Therefore, en-
dowing XU(n) and XU with the product topology makes
each a compact (and convex) metric space via Tychonoff’s
theorem (see [37][Proposition 4] which is also metrizable
(via [37][Proposition 6]). Given the one-to-one correspon-
dence, from now onward, we assume that U (n) and
U have the same topology as that of XU(n) and XU
respectively. Henceforth, we will consider C, Dk, and L
as functions on topological spaces. Furthermore, since U (n)’s
and U have been shown to be compact metric spaces (hence,
also complete and separable), we can also define B

(
U (n)

)
,

B (U) = ⊗N
n=1B

(
U (n)

)
10, and M1 (U), where M1 (U)

is compact (and convex) metrizable space by Prokhorov’s
theorem (see [37][Proposition 6]).

To establish part (c), it will be helpful to work with (de-
centralized) mixtures of behavioral policy-profiles – wherein

9Convexity of M1

(
A(n)

)
is trivial.

10For separable metric spaces W1,W2, . . ., B (W1 ×W2 × . . .) =
B (W1)⊗ B (W2)⊗ . . .. See [38][Lemma 1.2].
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each agent n ∈ [N ] first uses a measure µ(n) ∈ M1(U (n))11

to choose its policy-profile u(n) and then proceeds with it
from time 1 onward. We denote this set of mixtures by
Umixed

∆
=

∏N
n=1 M1(U (n)), whose typical element, denoted

by µ
∆
= ×N

n=1 µ
(n), is a factorized measure on U , i.e.,

µ(n) ∈ M1(U (n)). Since Umixed ⊆ M1 (U), we endow it
with the same metric as that of M1 (U). Now, we can extend
the definitions of C, D, and L to Ĉ : Umixed → R ∪ {∞},
D̂ : Umixed → RK , and L̂ : Umixed × Y → R ∪ {∞} as
follows:

Ĉ(µ) = ĈP1(µ)
∆
= E(µ)

P1

[ ∞∑
t=1

αt−1c(St, At)

]
,

D̂(µ) = D̂P1(µ)
∆
= E(µ)

P1

[ ∞∑
t=1

αt−1d(St, At)

]
, and

L̂ (µ, λ) = L̂(P1,α) (µ, λ) = Ĉ(µ) + ⟨λ, D̂(u)⟩.
(22)

In [37][Lemma 4] it is shown that any µ ∈ Umixed can be
replicated by a behavioral policy-policy u ∈ U . [37][Corol-
lary 4.1] then shows that

inf
u∈U

sup
λ∈Y

L (u, λ) = inf
µ∈Umixed

sup
λ∈Y

L̂ (µ, λ) , and

sup
λ∈Y

inf
u∈U

L (u, λ) = sup
λ∈Y

inf
µ∈Umixed

L̂ (µ, λ) .
(23)

In light of (23), it suffices to prove part (c) for L̂. By
definition, L̂ is affine and thus trivially concave in λ.
[37][Proposition 8] implies that L̂ is convex in µ and
Lemma 2 shows that L̂ is lower semi-continuous12 in µ.
From [37][Proposition 11], it then follows that

inf
u∈Umixed

sup
λ∈Y

L̂ (u, λ) = sup
λ∈Y

inf
Umixed

L̂ (u, λ) ,

and that there exists µ⋆ ∈ Umixed such that

sup
λ∈Y

L̂ (µ⋆, λ) = inf
u∈Umixed

sup
λ∈Y

L̂ (u, λ) .

The optimality of µ⋆ is implied by parts (b) and (a).
(d) This follows from Lagrange-multiplier theory.

This concludes the proof.

Lemma 2 (Lower Semi-Continuity of L̂ on Umixed). Under
Assumption 1, L̂ is lower semi-continuous on Umixed.

Proof. Fix λ ∈ Y and µ ∈ Umixed. Let {µi}∞i=1 be a
sequence of (factorized) measures in Umixed that converges
to µ ∈ Umixed. Since Umixed ⊆ M1 (U) and has the same
metric as M1 (U), it means that {µi}∞i=1 also converges to
µ in M1 (U). We want to show

lim inf
i→∞

E(U∼µi)
P1

[L (U, λ)] ≥ E(U∼µ)
P1

[L (U, λ)] .

By Lemma 3, L is point-wise lower semi-continuous on U .
Therefore, [37][Proposition 9] applies on M1 (U) and the
above inequality follows.

11M1(·) denotes the set of all probability measures on ·.
12For definition of lower semi-continuity, see [37][Definition 1].

Lemma 3 (Lower Semi-Continuity of L on U). Under
Assumption 1, the functions C and Dk’s are lower semi-
continuous on U . Hence, L is lower semi-continuous on U .

Proof. We will prove the statement for C. The proof of lower
semi-continuity of Dk’s is similar. For brevity, let

p (u, t, ht, at) = pP1 (u, t, ht, at)
∆
= P(u)

P1
(Ht = ht, At = at) ,

W (u, t, ht, at) = WP1
(u, t, ht, at)

∆
= p (u, t, ht, at)EP1 [c (St, At) |Ht = ht, At = at] .

Then,

C (u) = E(u)
P1

[ ∞∑
t=1

αt−1c(St, At)

]

= E(u)
P1

[ ∞∑
t=1

αt−1 (c(St, At)− c)

]
+

∞∑
t=1

αt−1c

(a)
=

∞∑
t=1

αt−1E(u)
P1

[c(St, At)− c] +

∞∑
t=1

αt−1c

(b)
=

∞∑
t=1

αt−1E(u)
P1

[EP1
[c(St, At)|Ht, At]]

=

∞∑
t=1

∑
ht∈Ht

∑
at∈A

αt−1W (u, t, ht, at) .

Here, (a) follows from applying the Monotone-Convergence
Theorem to the (increasing non-negative) sequence
{
∑i

t=1 α
t−1 (c (St, At)− c)}∞i=1 (see [37][Proposition 1]

and (b) uses the tower property of conditional expectation.13

Let
{
iu
}∞
i=1

be a sequence in U that converges to u. By
Fatou’s Lemma (see [37][Proposition 3]),

lim inf
i→∞

C
(
iu
)
≥

∞∑
t=1

∑
ht∈Ht

∑
at∈A

αt−1 lim inf
i→∞

W
(
iu, t, ht, at

)
.

(24)

Following [37][Lemma 5], p
(
iu, t, ht, at

)
converges to

p (u, t, ht, at). Therefore,

lim
i→∞

W
(
iu, t, ht, at

)
= W (u, t, ht, at) . (25)

From (24) and (25), it follows that lim infi→∞ C
(
iu
)
≥

C (u) , which establishes the lower semi-continuity of C (u).

IV. CONCLUSION

In this work, we studied a (cooperative) decentralized con-
strained POMDP in the setting of infinite-horizon expected
total discounted costs. We established strong duality and
existence of a saddle point using an extension of Sion’s
Minimax Theorem which required giving a suitable topology
to the space of all possible policy-profiles and then estab-
lishing lower semi-continuity of the Lagrangian function.
The strong duality result provides a firm theoretical footing
for future development of primal-dual type planning and

13The conditional expectations EP1
[c(St, At)|Ht, At] exist and are

unique because c(·, ·) is bounded from below.
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learning algorithms for Dec-C-POMDPs—see [39] for one
such algorithm.
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