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Abstract

Supervisory Control has been shown to be a very effective
approach to adaptive control which ensures step-tracking, ex-
ponential stability, and a degree of robustness to unmodeled
dynamics. Here we apply the technique in the discrete-time
setting and prove a new linear-like convolution bound on the
effect of the noise/disturbance. This property is then leveraged
to prove robustness to slow time-variations.

Keywords: Adaptive control, Supervisory Control, Exponen-
tial stability, Bounded gain, Convolution bounds.

1. Introduction

Adaptive control is an approach used to deal with systems
with uncertain and possibly time-varying parameters. The
first general proofs that parameter adaptive controllers work
came around 1980, e.g. see [1]–[5]. However, these origi-
nal adaptive controllers are typically not robust to unmodeled
dynamics, do not tolerate time-variations well, have poor tran-
sient behavior, and do not handle noise or disturbances well,
e.g. see [6]. During the 1980s subsequent research was able
to alleviate these shortcomings to some degree: controller/es-
timator modifications include the use of signal normalization,
deadzones, σ−modification, and projection onto a convex set
of admissible parameters. While these modified controllers
provide such highly desirable LTI-like properties as tolerance
to a degree of time-variations and unmodeled dynamics, in
general they do not provide the even more desirable proper-
ties of exponential stability, a bounded gain on the noise, nor
a convolution-like bound on the input-output behavior.

In the 1990s a new continuous-time adaptive control tech-
nique labeled Supervisory Control was shown in [7], [8] to
provide exponential stability and a bounded gain on the noise
in a particular non-standard norm. While robustness to a de-
gree of unmodeled dynamics is proven, tolerance to time vari-
ations is not, although in [9] a modified version using hystere-
sis tolerates a degree of time-variations which depends on the
size of the initial condition. Last of all, no convolution-like
bound on the input-output behavior is proven.
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More recently, in [10]–[15] it is shown that highly de-
sirable LTI-like input-output behavior can be achieved via a
carefully designed recursive parameter estimation algorithm.
This is expressed as a convolution bound, which confers ex-
ponential stability, a bounded gain on the noise in every p-
norm, and using a modular technique analyzed in [16], [17],
robustness to a degree of unmodeled dynamics and slowly
time-varying parameters. In this paper our goal is to prove
that the Supervisory Control approach enjoys the same prop-
erties. To proceed, we translate Supervisory Control into the
discrete-time domain, combined with a pole placement con-
trol law with an integrator, and show that all of these prop-
erties do in fact hold. In so doing, we have proven desirable
LTI-like properties never before seen in the Supervisory Con-
trol literature, in particular, a global tolerance to a degree of
time-variations and nonlinearities, a convolution bound on the
input-output behavior, and a bounded gain in every p-norm.
This work is based on the MASc thesis of the first author [18],
which also considers the related d-step-ahead adaptive control
problem. The analysis of this latter problem has been submit-
ted and is under review [19]; while the analysis and proofs
provided here are similar to those of [19] at a high level, the
details differ.

We use the Euclidean 2-norm for vectors and the corre-
sponding induced norm for matrices, and denote the norm of
a vector or matrix by ∥ · ∥. We let l∞ denote the set of real-
valued bounded sequences. For an arbitrary signal a : Z → R,
we let ∆a(t) denote a(t)−a(t −1).

2. The Setup

Let t0 ∈ Z denote the initialization time. We start with a
linear time-invariant discrete-time plant described by

y(t +1) =



y(t)
...

y(t −n+1)
u(t)

...
u(t −m+1)


︸ ︷︷ ︸

=:φ(t)

⊤

a∗1
...

a∗n
b∗1
...

b∗m


︸ ︷︷ ︸
=:θ∗

+w(t), t ≥ t0, (1)
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with known initial condition φ(t0), y(t)∈R the measured out-
put, u(t) ∈ R the control input, and w ∈ l∞ the disturbance (or
noise) input. We assume that θ ∗ is unknown but belongs to
a known set S ⊂ Rn+m. Associated with this plant are the
polynomials

Aθ∗(z−1) = 1−a∗1z−1 − . . .−a∗nz−n,

Bθ∗(z−1) = b∗1z−1 + . . .+b∗mz−m,

and the transfer function Bθ∗ (z
−1)/Aθ∗ (z

−1).
The goal is closed-loop stability and exponential track-

ing of an exogenous, constant reference input r in the pres-
ence of a constant disturbance; we define the tracking error
by ε(t) := y(t)− r. This is achieved using an indirect adap-
tive control scheme composed of a certainty equivalence con-
trol law and a parameter estimator, as illustrated in Figure 1.
The estimator attempts to generate an estimate θ̂ of the un-
known parameter vector θ ∗ using the observed input-output
data from the plant. Since it is expected that the disturbance
w includes a constant component, the observed data is first
passed through what is referred to as a ‘data filter’ in [20,
Chapter 11]. The zero at z = 1 eliminates any bias caused by
a disturbance with non-zero mean. The parameter estimate is
then used to synthesize a pole-placement control law which
generates the ‘control difference’ ∆u, which is then integrated
to find the control effort u.

Figure 1: Block diagram of the Supervisory Control scheme.

We impose several assumptions on the set of admissible
plant parameters.

Assumption 1 n and m are known;

Assumption 2 The polynomials Aθ∗(z−1) and Bθ∗(z−1)
corresponding to each θ ∗ in S are coprime.

Assumption 3 The polynomial Bθ∗(z−1) corresponding to
each θ ∗ in S is nonzero at z = 1.

Assumption 4 For each n̄ ∈ {0, . . . ,n} and m̄ ∈ {1, . . . ,m},
the set of all θ ∗ ∈S with Aθ∗(z−1) of degree n̄ and Bθ∗(z−1)
of degree m̄ is compact.

Remark 1 Since we do not require an ̸= 0 nor bn ̸= 0, As-
sumption 1 can be interpreted as assuming that an upper
bound on the degrees of Aθ∗(z−1) and Bθ∗(z−1) are known.

Remark 2 Assumption 2 ensures that a controller can be
constructed to place all the closed-loop poles at will.

Remark 3 Assumption 3 ensures that the plant does not have
a zero at z = 1, which is necessary to achieve step tracking
using a bounded input.

Remark 4 Assumption 4 is used to ensure that the pole place-
ment control law parameters are uniformly bounded for all
admissible plant models. Two natural examples are a finite set
of plant models, and the case for which n and m are fixed, such
as for a mechanical system in which masses, spring constants,
and damper coefficients are uncertain but lie in a range.

2.1. Parameter Estimation

Following [7], the procedure of choosing the parameter
estimate θ̂(t) is performed by what is referred to as the ‘su-
pervisor’ via an optimization procedure. It is well known that
optimizing a function over a convex region is easier than doing
the same over a non-convex region, so before proceeding we
use the following result. This provides a cover of S in Rn+m;
since some elements of this cover may lie outside of S , we
label its elements θ rather than θ ∗ (which we have assumed
to lie in S ), and adopt the natural definition of Aθ (z−1) and
Bθ (z−1).

Lemma 1 There exists a finite number p of compact, convex
sets Ŝi ⊂ Rn+m so that Ŝ :=

⋃p
i=1 Ŝi ⊃ S , where for every

element θ ∈ Ŝi, the corresponding polynomials Aθ (z−1) and
Bθ (z−1) are coprime, the degrees of those polynomials are
constant on the set Ŝi, and Bθ (z−1) is nonzero at z = 1.

Proof: This follows from a straight forward extension of [21,
Proposition 1]. □

To create the parameter estimator, we introduce the
matrix-valued dynamical system called the ‘performance
weight generator’, defined as

W (t +1) = λW (t)+
[

∆φ(t)
∆y(t +1)

][
∆φ(t)

∆y(t +1)

]⊤
, t ≥ t0,

(2)

where λ ∈ (0,1) is the ‘forgetting factor’, and initial condi-
tion W (t0) ∈ R(n+m+1)×(n+n+1) is a positive semidefinite and
symmetric matrix, both chosen by the designer. The supervi-
sor uses the following cost function in selecting the parameter
estimate:

J(θ , t) =
[

θ

−1

]⊤
W (t)

[
θ

−1

]
, θ ∈ Ŝ , t ≥ t0 +1. (3)

Since Ŝ is made up of a finite union of p compact convex
sets, minimizing J over Ŝ reduces to p straightforward con-
vex optimization problems. The motivation for this cost func-
tion is that if we define the prediction error corresponding to
a parameter estimate θ as

eθ (t) := ∆y(t)−∆φ(t −1)⊤θ , θ ∈ Ŝ , t ≥ t0 +1, (4)
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then the cost function (3) may be equivalently expressed as

J(θ , t) :=
t−1

∑
i=t0

λ
t−i−1|eθ (i+1)|2 +λ

t−t0

[
θ

−1

]⊤
W (t0)

[
θ

−1

]
,

θ ∈ Ŝ , t ≥ t0 +1.

We now introduce the concept of ‘dwelling’, which is a
constraint placed upon the supervisor which prohibits it from
changing θ̂ too rapidly. This is atypical in the adaptive con-
trol literature, but is commonplace in the Supervisory Control
literature, and will be needed in the later stability proof. This
is accomplished via a new dynamic variable τ(t), dubbed the
‘dwell-timer’, constrained to the set {0, . . . ,n+m}. When-
ever τ takes a positive value, the supervisor is said to be
‘dwelling’. With initial condition τ(t0) ∈ {0, . . . ,n+m} and
an initial parameter guess θ̂(t0)∈ Ŝ , for t ≥ t0, the parameter
estimation routine is defined by

[
θ̂(t +1)
τ(t +1)

]
=



[
argmin

θ∈Ŝ

J(θ , t +1)

n+m

] if τ(t) = 0 and
J(θ̂(t), t +1)>
min
θ∈Ŝ

J(θ , t +1)

[
θ̂(t)

max{τ(t)−1,0}

]
otherwise.

(5)
The consequence of this is that θ̂ is piecewise-constant,
changing no more than once every n+m+1 steps. The reason
for this specific choice of dwell period will be made clear later.
Next, define the constant k̄ := 1+∥S ∥. An important conse-
quence of the optimization routine described is that whenever
the supervisor is not dwelling (i.e. when τ(t − 1) = 0), the
following holds for all θ ∈ Ŝ :

t−1

∑
i=t0

λ
t−i−1|e

θ̂(t)(i+1)|2 +λ
t−t0

[
θ̂(t)
−1

]⊤
W (t0)

[
θ̂(t)
−1

]

≤
t−1

∑
i=t0

λ
t−i−1|eθ (i+1)|2 +λ

t−t0

[
θ

−1

]⊤
W (t0)

[
θ

−1

]
.

Most importantly, since θ ∗ ∈ Ŝ , using (1) and (4) yields

t−1

∑
i=t0

λ
t−i−1|e

θ̂(t)(i+1)|2

≤
t−1

∑
i=t0

λ
t−i−1|∆w(i)|2 +λ

t−t0 k̄2∥W (t0)∥. (6)

3. Pole Placement Control Law

With Figure 1 in mind, we now describe the construction
of the pole placement controller with input ε and output ∆u,
placed in feedback with the ‘augmented plant’ - the composi-
tion of the actual plant and the integrator. Define the transfor-
mation h : Rn+m → Rn+m+1 by[

a1 . . . an b1 . . . bm
]⊤ 7−→[

1+a1 a2 −a1 . . . an −an−1 −an b1 . . . bm
]⊤

.

By adopting the alternative state vector

ϕ(t) :=
[
ε(t) . . . ε(t −n) ∆u(t) . . . ∆u(t −m+1)

]⊤
∈ Rn+m+1, (7)

the augmented plant’s dynamics from input ∆u to output ε

may be expressed as

ε(t +1) = ϕ(t)⊤ h(θ ∗)+∆w(t), t ≥ t0. (8)

We now design a controller for each Ŝi. Fix i ∈ 1, . . . , p, and
let n̄ ∈ {0, . . . ,n} and m̄ ∈ {1, . . . ,m} denote the degrees of
Aθ (z−1) and Bθ (z−1), respectively, corresponding to (every)
θ ∈ Ŝi. We now choose

Lθ (z−1) := 1− lθ1z−1 − . . .− lθ m̄z−m̄

and
Pθ (z−1) :=−pθ1z−1 − . . .− pθ n̄+1z−n̄−1

to place all closed-loop poles at the origin:

(1− z−1)Aθ (z−1)Lθ (z−1)+Bθ (z−1)Pθ (z−1) = 1; (9)

Lemma 1 ensures that (1− z−1)Aθ (z−1) and Bθ (z−1) are co-
prime, so a unique solution exists - see [18, Section 5.1] for
more details, including how to compute the coefficients of
Lθ (z−1) and Pθ (z−1). Since the coefficients of Lθ (z−1) and
Pθ (z−1) are analytic functions of θ ∈ Ŝi, it follows from the
compactness of Ŝi that they are uniformly bounded on the
set. Finally, by substituting θ by the estimate θ̂(t + 1), the
certainty equivalence control law is

∆u(t +1) =



p
θ̂(t+1)1

...
p

θ̂(t+1)n̄+1
l
θ̂(t+1)1

...
l
θ̂(t+1)m̄



⊤

ε(t)
...

ε(t − n̄)
∆u(t)

...
∆u(t − m̄+1)


, t ≥ t0 +1.

By padding the left vector with some extra zeros:

n−n̄︷ ︸︸ ︷ m−m̄︷ ︸︸ ︷
fθ :=

[
pθ1 . . . pθ n̄+1 0 . . . 0 lθ1 . . . lθ m̄ 0 . . . 0

]
,

we can express the control law as

∆u(t +1) = f
θ̂(t+1)ϕ(t), t ≥ t0. (10)

4. State Space Representation

Now we form an update equation for the transformed
state vector ϕ from (7). Define Āk ∈ Rk×k, k ∈ N, as the trans-
pose of the matrix in Jordan form with all eigenvalues at zero,
and subsequently define

Aθ1θ2 :=
[

Ān+1 0
0 Ām

]
+

[
1

0n+m

]
h(θ1)

⊤+

0n+1
1

0m−1

 fθ2 ;
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using the plant dynamics (8) and control law (10) we obtain

ϕ(t +1) = A
θ∗θ̂(t+1)ϕ(t)+

[
1

0n+m

]
∆w(t), t ≥ t0. (11)

Alternatively, (4) may be rearranged to show that ε(t + 1) =
ϕ(t)⊤ h

(
θ̂(t +1)

)
+ e

θ̂(t+1)(t + 1). Combine this with the
control law to yield another representation:

ϕ(t +1) = A
θ̂(t+1)θ̂(t+1)ϕ(t)+

[
1

0n+m

]
e

θ̂(t+1)(t +1), t ≥ t0.

(12)

This form is useful because Aθθ represents the closed-loop
system dynamics if θ̂(·) = θ ∗ = θ ∈ Ŝ . This matrix has n+
m+1 eigenvalues. The pole placement control law sets all of
these eigenvalues to zero, which means that

∥An+m+1
θθ

∥= 0, θ ∈ Ŝ . (13)

5. The Main Result

The following stability proof relies on the ‘dwell time’
to prove stability. The choice of dwell time ensures that θ̂(t)
may change no more than once every n+m+ 1 time steps.
Combined with (13), it follows that the state transition matrix
Φ(t2, t1) corresponding to A

θ̂(t)θ̂(t) has finite support. Thus,

for any choice of λ̃ ∈ (0,λ ), there exists a γ̂ ≥ 1, which is
independent of θ̂(·), such that

∥Φ(t2, t1)∥ ≤ γ̂ λ̃
t2−t1 , t2 ≥ t1 ≥ t0. (14)

Therefore, the dwell-time switching logic defined in (2) en-
sures that (12) is a stable system driven by the internal signal
e

θ̂(·)(·), which reveals the convolution bound, albeit in terms
of an internal signal rather than exogenous ones:

∥ϕ(t)∥ ≤ γ̂ λ̃
t−t0∥ϕ(t0)∥+ γ̂

t−1

∑
i=t0

λ̃
t−i−1|e

θ̂(i+1)(i+1)|. (15)

Thus, a stability proof relies on finding a meaningful bound
on the summation above.

Theorem 1 For every λ ∈ (0,1), λ̃ ∈ (0,λ ), and λ̄ ∈
(
√

λ ,1), there exists a γ ≥ 1 so that for every θ ∗ ∈S , t0 ∈ Z,
ϕ(t0)∈ Rn+m+1, W (t0)∈ R(n+m+1)×(n+m+1) positive semidef-
inite and symmetric, θ̂(t0) ∈ Ŝ , τ(t0) ∈ {0, . . . ,n+m}, r ∈ R
and w ∈ l∞, when the supervisory controller given by (2), (3),
(5) and (10) is applied to the plant (1), the following holds:∥∥∥∥∥

[
ϕ(t)

vec
(

W (t)
1
2

)]∥∥∥∥∥≤ γλ̄
t−t0

∥∥∥∥∥
[

ϕ(t̄0)

vec
(

W (t̄0)
1
2

)]∥∥∥∥∥
+γ

t−1

∑
i=t̄0

λ̄
t−i−1|∆w(i)|, t ≥ t̄0 ≥ t0.

Remark 5 A consequence of Theorem 1 is that when the dis-
turbance is constant, ε goes exponentially to zero. Also,
by applying Parseval’s Theorem, we can obtain a bound on
the energy of the tracking error which is proportional to the
sum of the energy of the disturbance-difference ∆w and the
squared magnitude of the initial condition.

The proof of Theorem 1 is very similar to that of Theorem
2 of our earlier work [19], although the details are different.
To proceed, we need a modified version of Kreisselmeier’s
lemma from [22].

Lemma 2 Consider the time-varying square matrix: Ā(t) =
A(t)+∆(t). Let Φ(t,τ) and Φ̄(t,τ) be the state transition ma-
trices of A(t) and Ā(t), respectively. Suppose there exists con-
stants c ≥ 1 and µ ∈ (0,1) such that

∥Φ(t,τ)∥ ≤ cµ
t−τ , t ≥ τ.

Then, for every µ̄ ∈ (µ,1), α ≥ 0, and β ∈ [0, µ̄−µ

c ), there
exists a c̄ ≥ 1 such that if ∑

t2−1
t=t1 ∥∆(t)∥ ≤ α +β (t2 − t1), t2 >

t1, then the following bound holds:

∥Φ̄(t,τ)∥ ≤ c̄µ̄
t−τ , t ≥ τ.

Proof: A simple modification of the proof in [22]. □

Proof of Theorem 1

Fix λ ∈ (0,1), λ̃ ∈ (0,λ ), and λ̄ ∈ (
√

λ ,1), and let θ ∗ ∈
S , t0 ∈ Z, φ(t0) ∈ Rn+m, θ̂(t0) ∈ Ŝ , τ(t0) ∈ {0, . . . ,n+m},
r ∈ R, w ∈ l∞ and t̄0 ≥ t0 be arbitrary.

To prove this, we split up time into those for which the
norm of the parameter estimation error θ̃(t) := θ̂(t)−θ ∗ is
small and those for which it is not. Before proceeding, recall
from (13) that the matrix Aθθ is deadbeat. From standard lin-
ear systems theory there exists a σ > 0 and γ̄ ≥ 1 so that the
state transition matrix Φ

θ∗θ̂(t)(t2, t1) corresponding to A
θ∗θ̂(t)

satisfies
∥Φ

θ∗θ̂(t)(t2, t1)∥ ≤ γ̄
√

λ
t2−t1 (16)

for t2 ≥ t1 ≥ t̄0 for which ∥θ̃(t +1)∥ ≤ σ . With δ ≤ σ chosen
sufficiently small, we now partition the timeline of t ≥ t̄0 into
two parts:

• intervals of the form {t, . . . , t̄} satisfying ∥θ̃(t)∥ < δ ≤
σ , t ∈ {t +1, . . . , t̄}, in which case we can obtain a bound
on ∥ϕ(t)∥ in terms of exogenous inputs and ∥ϕ(t)∥, and

• times t ≥ t̄0 + 1 for which ∥θ̃(t)∥ ≥ δ , in which case
we obtain a bound on ∥ϕ(t)∥ in terms of the exogenous
inputs and ∥ϕ(t̄0)∥.

Part 1: A bound on ∥ϕ(t)∥ on intervals {t, . . . , t̄},
t̄0 ≤ t < t̄ < ∞ for which ∥θ̃(t)∥ < δ , t ∈ {t +1, . . . , t̄}. For
intervals of this sort, (16) holds, so from (11):

∥ϕ(t)∥ ≤ γ̄
√

λ
t−t

∥ϕ(t)∥+ γ̄

t−1

∑
i=t

√
λ

t−i−1
|∆w(i)|,

t ∈ {t, . . . , t̄} . (17)

Part 2: A bound on ∥ϕ(t)∥ for ∥θ̃(t)∥ ≥ δ and t ≥ t̄0 + 1.
With θ̂(t) any piecewise-constant signal with dwell time at
least n+m+1, the system (12) is exponentially stable, which
yields the convolution bound (15). Thus, the remainder of the
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stability proof relies on finding a meaningful bound on the
summation in (15). To proceed, we borrow heavily from [8].
We shall use the following preliminary result:

Claim 1 For every fixed t̄0 ≥ t0 and t ≥ t̄0, there exists a pro-
jection operator ψ : {t ∈ Z : t ≥ t̄0}→ {0,1} that satisfies√√√√t−1

∑
i=t̄0

λ t−i−1(1−ψ(i))|e
θ̂(t)(i+1)|2

≤ k̄
√

λ
t−t̄0∥W (t̄0)

1
2 ∥+

√√√√t−1

∑
i=t̄0

λ t−i−1|w(i)|2

and
∞

∑
i=t̄0

|ψ(i)| ≤ n+m. (18)

Proof: Let t̄ be the most recent time when the supervisor was
not dwelling (τ(t̄ −1) = 0), or t̄0 if such a time does not exist.
Since the dwell time is n+m+1, we know that t − t̄ ≤ n+m.
Let

ψ(i) =
{

1 i ∈ {t̄, . . . , t −1}
0 else;

then (18) holds, and using (6) we obtain√√√√t−1

∑
i=t̄0

λ t−i−1|(1−ψ(i))e
θ̂(t)(i+1)|2

=

√√√√λ t−t̄
t̄−1

∑
i=t̄0

λ t̄−i−1|e
θ̂(t̄)(i+1)|2

≤

√√√√t−1

∑
i=t̄0

λ t−i−1|w(i)|2 + k̄
√

λ
t−t̄0∥W (t̄0)

1
2 ∥. □

To proceed, we are going to approximate θ̃(i) as a linear
combination of a finite set of specially chosen basis vectors.
Since θ̃(i)∈ Rn+m, we need at most n+m basis vectors. They
must be chosen such that we can make use of Claim 1 and such
that the weights on the basis vectors are uniformly bounded.
Claim 2 describes this construction; it is a reformulation of
Section VIII B of [8].

Claim 2 Let δ be a positive constant and let X be a list of
vectors x1,x2, . . . ,xq ∈ Rn whose last element satisfies ∥xq∥ ≥
δ . Then there exists an ordered subset {xi1 ,xi2 , . . . ,xin̄} ⊆ X ,
with 1 ≤ n̄ ≤ min{n,q} and

1 ≤ i1 < i2 < .. . < in̄ = q,

as well as coefficients g j(i) which satisfy

g j(i) = 0, i = i j +1, . . . ,q, j = 1, . . . , n̄−1,

|g j(i)| ≤
(

1+
∥X ∥

δ

)n̄

, i = 1, . . . , i j, j = 1, . . . , n̄,∥∥∥∥∥xi −
n̄

∑
j=1

g j(i)xi j

∥∥∥∥∥≤ δ , i = 1, . . . ,q.

Proof: The proof and instructions for how to find the ordered
subset are found in Section VIII B of [8]; an alternative anal-
ysis is presented in [18, Section 3.3]. The details are omitted
due to space considerations. □

Now let t ≥ t̄0 + 1 satisfy ∥θ̃(t)∥ ≥ δ and apply Claim
2 with X := {θ̃(t̄0 + 1), ..., θ̃(t)}. This shows that we can
choose a set of basis vectors

{
θ̃(i1), θ̃(i2), . . . , θ̃(in̄)

}
with

n̄ ≤ n+m, t̄0 + 1 ≤ i1 < .. . < in̄ = t, and a set of g j such
that the ‘approximation error’

c̄(i) := θ̃(i)−
n̄

∑
j=1

g j(i)θ̃(i j), i = t̄0 +1, . . . , t (19)

satisfies ∥c̄(i)∥ ≤ δ . Thus, each θ̃(i) for i = t̄0 + 1, . . . , t is
approximated by a linear combination of these basis vectors.
Moreover, each of the coefficients is bounded:

|g j(i)| ≤

(
1+

2∥Ŝ ∥
δ

)n+m

. (20)

Recall that our objective is to find a meaningful bound on
the summation in (15). It is easy to construct a matrix R so
that the prediction error (4) can be rewritten as

e
θ̂(i+1)(i+1) = ∆w(i)−ϕ(i)⊤Rθ̃(i+1), i = t0, ..., t −1.

Now we may use this and (19) to obtain

e
θ̂(i+1)(i+1) = ∆w(i)−ϕ(i)⊤Rθ̃(i+1)

= ∆w(i)−
n̄

∑
j=1

g j(i+1)ϕ(i)⊤Rθ̃(i j)−ϕ(i)⊤Rc̄(i+1)

=
n̄

∑
j=1

g j(i+1)e
θ̂(i j)

(i+1)+

(
1−

n̄

∑
j=1

g j(i+1)

)
∆w(i)

−ϕ(i)⊤Rc̄(i+1), i = t̄0, ..., t −1. (21)

Now we want to find a bound on

t−1

∑
i=t̄0

λ̃
t−i−1|g j(i+1)e

θ̂(i j)
(i+1)|, j = 1, ..., n̄.

While we cannot do so directly, by making use of Claim 1 we
can find a bound for something similar. We see that for each
j ∈ {1, . . . , n̄}, there exists a projection operator ψ j : {t ∈ Z :
t ≥ t̄0}→ {0,1} satisfying (18) such that√√√√t−1

∑
i=t̄0

λ t−i−1|(1−ψ j(i))g j(i+1)e
θ̂(i j)

(i+1)|2

≤

(
1+

2∥Ŝ ∥
δ

)n+m
√√√√t−1

∑
i=t̄0

λ t−i−1|∆w(i)|2

+ k̄

(
1+

2∥Ŝ ∥
δ

)n+m√
λ

t−t̄0∥W (t̄0)
1
2 ∥.
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Now if we create a new projection operator Ψ :
{t̄0, . . . , t −1} → {0,1} whose support is precisely the
union of the supports of ψ j, j ∈ {1, . . . , n̄}, then it satisfies

t−1

∑
i=t̄0

|Ψ(i)| ≤ (n+m)2, (22)

and the signal

ê(i+1) := (1−Ψ(i))
n̄

∑
j=1

g j(i+1)e
θ̂(i j)

(i+1),

for i = t̄0, ..., t −1, satisfies√√√√t−1

∑
i=t̄0

λ t−i−1 |ê(i+1)|2

≤ (n+m)

(
1+

2∥Ŝ ∥
δ

)n+m
√√√√t−1

∑
i=t̄0

λ t−i−1|∆w(i)|2

+ k̄(n+m)

(
1+

2∥Ŝ ∥
δ

)n+m√
λ

t−t̄0∥W (t̄0)
1
2 ∥. (23)

If we now define these new signals:

c̃(i) := Ψ(i−1)
n̄

∑
j=1

g j(i)θ̃(i j),

ḡ(i) :=
[

1
0n+m

](
1+(Ψ(i−1)−1)

n̄

∑
j=1

g j(i)

)
,

i = t̄0 +1, . . . , t,

then we can modify (21) to express it as

e
θ̂(i+1)(i+1) = ê(i+1)− (c̃(i+1)+ c̄(i+1))⊤R⊤

ϕ(i)

+

(
1+(Ψ(i)−1)

n̄

∑
j=1

g j(i+1)

)
∆w(i), i = t̄0, ..., t −1.

By substituting this into (12), we obtain:

ϕ(i+1) =
(

A
θ̂(i+1)θ̂(i+1)−

[
1

0n+m

]
(c̃(i+1)+ c̄(i+1))⊤R⊤

)
ϕ(i)

+

[
1

0n+m

]
ê(i+1)+ ḡ(i+1)∆w(i), i = t̄0, ..., t −1, (24)

which looks like a perturbed system of the sort considered in
Lemma 2. Using (20) and (22), it is clear that

t−1

∑
i=t̄0

∥c̃(i+1)∥ ≤ 2∥Ŝ ∥(n+m)3

(
1+

2∥Ŝ ∥
δ

)n+m

,

which is independent of t. Also, we know that ∥c̄(i)∥ ≤ δ ,
i = t̄0 +1, . . . , t. Thus,

i2−1

∑
i=i1

∥∥∥∥[ 1
0n+m

]
(c̃(i+1)+ c̄(i+1))⊤R⊤

∥∥∥∥
≤ 2∥Ŝ ∥∥R∥(n+m)3

(
1+

2∥Ŝ ∥
δ

)n+m

+δ∥R∥(i2 − i1),

t̄0 ≤ i1 < i2 ≤ t.

Hence, this ‘perturbation’ is small on average. Since A
θ̂(t)θ̂(t)

is stable with margin λ̃ < λ (14), we can apply Lemma 2 and
it follows that if we fix δ ∈ (0,σ ] such that δ < λ−λ̃

∥R∥γ̂
, then

(24) is a stable system with margin λ . Now define

γ1 := 1+(n+m)

(
1+

2∥Ŝ ∥
δ

)n+m

,

and observe that ḡ(i)≤ γ1. From Lemma 2, we conclude that
there exists a γ2 ≥ 1 so that for every t ≥ t̄0 + 1 for which
∥θ̃(t)∥ ≥ δ , we have

∥ϕ(t)∥ ≤ γ2λ
t−t̄0∥ϕ(t̄0)∥

+γ2

t−1

∑
i=t̄0

λ
t−i−1 (|ê(i+1)|+ γ1|w(i)|).

Using the Cauchy–Schwarz inequality and (23), we obtain 1

t−1

∑
i=t̄0

λ
t−i−1|ê(i+1)|

≤ n+m√
1−λ

(
1+

2∥Ŝ ∥
δ

)n+m t−1

∑
i=t̄0

√
λ

t−i−1
|∆w(i)|

+ k̄
n+m√
1−λ

(
1+

2∥Ŝ ∥
δ

)n+m√
λ

t−t̄0∥W (t̄0)∥0.5.

It follows that there exists a constant γ3 so that for every t ≥
t̄0 +1 such that ∥θ̃(t)∥ ≥ δ , we have

∥ϕ(t)∥ ≤ γ3
√

λ
t−t̄0

∥∥∥∥∥
[

ϕ(t̄0)

vec
(

W (t̄0)
1
2

)]∥∥∥∥∥
+ γ3

t−1

∑
i=t̄0

√
λ

t−i−1
|∆w(i)|. (25)

Part 3: A bound on ∥ϕ(t)∥ on the whole interval. By com-
bining (17) with (25), it follows that there exists a constant γ4
such that

∥ϕ(t)∥ ≤ γ4
√

λ
t−t̄0

∥∥∥∥∥
[

ϕ(t̄0)

vec
(

W (t̄0)
1
2

)]∥∥∥∥∥
+ γ4

t−1

∑
i=t̄0

√
λ

t−i−1
|∆w(i)|, t ≥ t̄0. (26)

Part 4: A bound on ∥W (t)∥. From (2), we see that W (t) is a
stable filter with a pole at λ and ∆φ(t−1) and ∆y(t) as inputs.
After some manipulation, it can be shown that ∥W (t)

1
2 ∥ is

bounded by a convolution involving ϕ and ∆w. Combining
this with (26) yields the result (1). The full derivation may be
found in [18, Section 5.3]. □

1It is this step which appears to not be reproducible in the continuous-time
version of Supervisory Control. See [18, Remark 3.5] for more details.
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6. Robustness

The Supervisory Controller is nonlinear, so the linear-like
convolution bound of Theorem 1 is somewhat surprising. It is
also very useful: it can be leveraged to show that the system
remains exponentially stable in the presence of time-varying
parameters, nonlinearities, and unmodeled dynamics. To see
this, consider a time-varying version of the plant subjected to
an additive disturbance w(t) and some unmodeled dynamics
which enter the system via d∆(t):

y(t +1) = φ(t)⊤θ
∗(t)+w(t)+d∆(t). (27)

We adopt a common model of acceptable time-variations used
in adaptive control: we let s(S ,ζ ,η) denote the subset of
l∞(Rn+m) whose elements θ ∗ satisfy θ ∗(t) ∈ S for every t ≥
t0 as well as

t2−1

∑
i=t1

∥θ
∗(i+1)−θ

∗(i)∥ ≤ ζ +η(t2 − t1), t2 > t1 ≥ t0.

We also use a common model of unmodeled dynamics:

m(t +1) = βm(t)+β∥φ(t)∥,
|d∆(t)| ≤ µm(t)+µ∥φ(t)∥, t ≥ t0; (28)

this model subsumes the classical additive uncertainty, multi-
plicative uncertainty, and uncertainty in a coprime factoriza-
tion - see [12] for a more detailed discussion. Also, by letting
β = 0, this can be viewed as an additive sector nonlinearity.

Before presenting this result, we must first define the new
vector, which is the same as φ(t), except that it contains copies
of y and u one additional step into the past:

φ̄(t) :=
[
y(t) . . . y(t −n) u(t) . . . u(t −m)

]⊤ ∈ Rn+m+2;

this is necessary because of the estimator operating on the dif-
ference of the input-output data.

Theorem 2 For every ζ ≥ 0, β ∈ (0,1), λ ∈ (0,1), λ̃ ∈ (0,λ )
and λ̂ ∈ (max{β ,

√
λ},1), there exists a γ ′ ≥ 1, η > 0 and

µ > 0 so that for every θ ∗ ∈ s(S ,ζ ,η), t0 ∈ Z, φ̄(t0) ∈
Rn+m+2, W (t0) ∈ R(n+m+1)×(n+m+1) positive semidefinite and
symmetric, m(t0) ≥ 0, θ̂(t0) ∈ Ŝ , τ(t0) ∈ {0, . . . ,n+m},
r ∈R, and w∈ l∞, when the supervisory controller given by (2)
- (5) and (10) is applied to the plant (27) with d∆(t) satisfying
(28), the following bound holds:

∥∥∥∥∥∥∥
 φ̄(t)

vec
(

W (t)
1
2

)
m(t)


∥∥∥∥∥∥∥≤ γ

′
λ̂

t−t̄0

∥∥∥∥∥∥∥
 φ̄(t̄0)

vec
(

W (t̄0)
1
2

)
m(t̄0)


∥∥∥∥∥∥∥

+γ
′

t−1

∑
i=t̄0

λ̂
t−i−1|w(i)|+ γ

′|r|, t ≥ t̄0 ≥ t0.

Proof: One can use Theorem 1 to convert a bound on ϕ to a
bound on φ̄ , and then apply Theorems 1 and 3 of [16] to prove
robustness. The details can be found in [18, Section 5.4]. □

7. A Simulation Example

Here we provide a simulation demonstrating Supervisory
Control of a time-varying plant with the goal being to track
a constant reference r = 1 in the presence of a random dis-
turbance with non-zero mean. Consider the first-order time-
varying plant with relative degree one:

y(t +1) = a∗(t)y(t)+b∗(t)u(t)+w(t), t ≥ 0,

with initial conditions of y(0) = u(0) = u(−1) = 0, and with
parameters constrained to the set

S =

{[
a
b

]
: a ∈ [−4,4],b ∈ [1,3]∪ [−3,−1]

}
;

this set admits a natural partitioning into Ŝ1 and Ŝ2 with the
properties required in Lemma 1. The plant’s time-varying pa-
rameters are chosen as

a∗(t) = 3−0.03t, t ∈ {0, . . . ,199} ,

b∗(t) =
{

−3+0.02t, t ∈ {0, . . . ,99}
−1+0.02t, t ∈ {100, . . . ,199} ,

and the disturbance w(t) is a Gaussian random signal with
standard deviation 0.05 and mean 1. The supervisory estima-
tor uses a forgetting factor of λ = 0.8 and its dwell period is

3, and uses initial conditions of θ̂(0) =
[

3
−3

]
, W (0) = 03×3,

and τ(0) = 2. We plot the results in Figure 2. There is a large
initial transient, but from t = 5 onward good tracking ensues:
the RMS of the tracking error is just 0.139, which is only a
factor of 2.78 greater than the variance of the disturbance.

Figure 2: Plot of ε(t) and estimated vs true parameters.

8. Summary and Conclusions

Here we show that if the Supervisory Control technique
is applied to the discrete-time adaptive step tracking problem,
then we are able to prove linear-like convolution bounds on
the closed-loop behavior, which confers exponential stability
and a bounded noise gain, and tolerance to a degree of unmod-
eled dynamics, nonlinearities, and plant parameter variation.
Such linear-like bounds have never before been proven in the
Supervisory Control paradigm.
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We are working on several extensions of the approach.
We would like to prove similar results when the plant model
is nonlinearly dependent on the parameter vector. Also, we
would like to determine if a dwell time of n+m+1 is neces-
sary for stability, and hopefully relax that requirement.
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[20] K. J. Åström and B. Wittenmark, “Adaptive control,” in
Second. New York: Dover Publications, 2013, ch. 11.
Practical Issues and Implementation, pp. 448–498.

[21] M. T. Shahab and D. E. Miller, “Adaptive set-point reg-
ulation using multiple estimators,” in 2019 IEEE 58th
Conference on Decision and Control (CDC), 2019,
pp. 84–89.

[22] G. Kreisselmeier, “Adaptive control of a class of slowly
time-varying plants,” in Systems and Control Letters,
vol. 8, 1986, pp. 97–103.

3540


