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Abstract— We consider seeking generalized Nash equilibria
for games with coupled nonlinear constraints over networks.
We first revisit a well-known gradient-play dynamics to solve
the problem from a passivity-based perspective, and address
that the strict monotonicity on pseudo-gradients is a critical
assumption to guarantee its convergence. Then we develop a
novel passivity-based gradient-play dynamics by introducing
parallel feedforward compensators. We prove that the dynamics
achieves asymptotic convergence in merely monotone regimes.
Moreover, in the absence of coupled constraints, we surprisingly
find that the dynamics can handle hypomonotone games with
inverse Lipschitz pseudo-gradients.

I. INTRODUCTION

Recent years have witnessed a flurry of research on
distributed generalized Nash equilibrium (GNE) seeking for
noncooperative games with coupled constraints. This was
motivated by their applications in different areas such as
power allocation in communications, smart grids and social
networks [1]–[3]. These are examples of multi-agent sys-
tems where each individual decision-maker (player) aims
to minimize a local cost function which depends on its
own action as well as on the actions of its opponents, and
meanwhile, the shared constraints should be satisfied. A GNE
is a reasonable solution to such a problem, whereby no player
can decrease its local cost by unilaterally changing its own
decision. Various distributed algorithms to seek GNEs have
been explored, such as (projected) gradient-play dynamics,
operator splitting approaches and pay-off-based dynamics
[4]–[6], to name just a few.

One of the most studied methods is the gradient-play
dynamics because it is easily implemented under full and
partial-decision information settings. Convergence of the
dynamics to an Nash equilibrium (NE) was addressed in
[7], [8], while its extension to NE seeking over networks
under partial-decision information was developed in [9].
A corresponding discrete-time algorithm was designed in
[10] for strongly monotone games, which achieved faster
convergence rates by incorporating a Nesterov’s accelerated
protocol. Based on a primal-dual framework, a fully dis-
tributed gradient-play dynamics was explored for games with
separable nonlinear coupled constraints in [3]. Similar ideas
were used to seek GNEs for multi-cluster games with nons-
mooth payoff functions, coupled and set constraints in [11].
However, all algorithms mentioned above require pseudo-
gradients of the local cost functions to be strictly or strongly

W. Li and L. Pavel are with the Department of Electrical
and Computer Engineering, University of Toronto, Toronto, ON,
M5S 3G4, Canada. E-mails: weijian.li@utoronto.ca,
pavel@control.utoronto.ca.

monotone in order to ensure convergence. Unfortunately,
the assumption fails in some applications, including zero-
sum games, Cournot games and resource allocation problems
[12]–[14].

It is well-known that passivity is a powerful tool for the
analysis and design of control systems [15], [16]. More
recently, the concept of passivity has been applied to NE
computation [5]. On one hand, it provides us with a better
understanding of existing algorithms by explaining why they
can work under certain game settings. On the other hand,
it guides us to design new algorithms. For instance, stable
games and evolutionary dynamics were analyzed in [17]
after they were modeled as passive dynamical systems. In
[9], passivity was employed to prove the convergence of a
gradient-play dynamics for distributed NE seeking, while in
[18] equilibrium-independent passivity was applied to the
analysis and design of reinforcement learning dynamics in
multi-agent finite games. A heavy-anchor (HA) dynamics
was proposed in [19], which allowed a relaxation of the strict
monotonicity on pseudo-gradients, and could also handle
a class of hypomonotone games under inverse-Lipschitz
conditions. The authors of [20] designed a second-order
mirror descent (MD2) dynamics, which converged to a
variationally stable state without using techniques such as
time-averaging or discounting. We note that both HA and
MD2 were designed based on passivity-based modifications
by introducing output-strictly passive systems, and both only
dealt with NE seeking.

In this paper, we focus on GNE seeking. Our main
contributions are summarized as follows.

a) We revisit a typical distributed gradient-play dynamics to
seek GNEs for games with nonlinear coupled constraints
from a passivity-based perspective, and conclude that the
strictly monotone assumption on pseudo-gradients plays
an important role on its convergence.

b) We develop a novel passivity-based gradient-play dy-
namics, by introducing parallel feedforward compensators
(PFCs). We establish that the dynamics can achieve exact
convergence to a GNE if the pseudo-gradient is merely
monotone. Furthermore, we surprisingly find that in the
absence of coupled constraints, it can also handle general
hypomonotone games with inverse Lipschitz pseudo-
gradients, unlike [19].

The rest of this paper is organized as follows. We introduce
some preliminary background and formulate the problem
in Section II. Then we revisit a well-known gradient-play
dynamics in Section III. In Section IV, we propose a novel
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passivity-based gradient-play dynamics, whose convergence
is addressed in Section V. Finally, we close this paper with
some concluding remarks in Section VI.

Notation: Let Rm, Rm
+ and Rm×n be the set of m-

dimensional real column vectors, m-dimensional nonneg-
ative real column vectors, and m-by-n dimensional real
matrices. Denote 1m (0m) as the m-dimensional column
vector with all entries of 1 (0), and In as the n-by-n identity
matrix. We simply write 0 for vectors/matrices of zeros
with appropriate dimensions when there is no confusion. Let
(·)T, ⊗ and ∥ · ∥ be the transpose, the Kronecker product
and the Euclidean norm, respectively. The Euclidean inner
product of x and y is xTy or ⟨x, y⟩. For xi ∈ Rni , we
define col{xi}i∈I := [xT

1 , . . . , x
T
N ]T ∈ R

∑
i∈I ni , where

I = {1, . . . N}. Given a differentiable function J(x, y),
∇xJ(x, y) is the partial gradient of J with respect to x.

II. PRELIMINARY AND GAME SETUP

In this section, we introduce some necessary concepts, and
then, formulate the distributed GNE seeking problem.

A. Mathematical Preliminary

Consider a multi-agent network modeled by an undirected
graph G(I, E ,A), where I = {1, . . . , N} is the node set,
E ⊂ I × I is the edge set, and A = [aij ] ∈ RN×N is
the adjacency matrix such that aij = aji > 0 if (i, j) ∈
E , and otherwise, aij = 0. Suppose that there are no self-
loops in G. The Laplacian matrix L is L = D − A, where
D = diag{di} ∈ RN×N , and di =

∑
j∈I aij . Node j is a

neighbor of i if and only if (i, j) ∈ E . Let Ii = {j|(i, j) ∈
E} be the set of node i’s neighbors. Graph G is connected
if there exists a path between any pair of distinct nodes.
If G is connected, then L = LT, rank(L) = N − 1, and
ker(L) = {k1N : k ∈ R}.

Let Ω ⊂ Rm be a convex set such that λx + (1 − λ)y ∈
Ω,∀x, y ∈ Ω,∀λ ∈ [0, 1]. Its tangent cone at x ∈ Ω is

TΩ(x) :=
{

lim
k→∞

xk − x

τk
| xk ∈ Ω, xk → x, τk > 0, τk → 0

}
,

while its normal cone is

NΩ(x) := {v ∈ Rm|vT(y − x) ≤ 0,∀y ∈ Ω}.

Take projΩ(x) := argminy∈Ω∥y − x∥ for x ∈ Rm.
The differentiated projection operator on TΩ(x) is defined
by ΠΩ(x, v) := proxTΩ(x)

(v) = limh→0+
projΩ(x+hv)−x

h . It
follows from [21, Theorem 6.30] that

v = projTΩ(x)
(v) + projNΩ(x)

(v), ∀v ∈ Rm. (1)

Given a differentiable function f : Ω → R, ∇f(x) denotes
its gradient at x. Function f is convex if f(y) ≥ f(x) +
⟨∇f(x), y − x⟩,∀x, y ∈ Ω,∀λ ∈ [0, 1].

An operator (or mapping) F : Ω ⊂ Rn → Rn is monotone
if ⟨F (x)−F (y), x− y⟩ ≥ 0,∀x, y ∈ Ω, strictly monotone if
the strict inequality holds for all x ̸= y, and ν-hypomonotone
if there exists ν > 0 such that ⟨F (x) − F (y), x − y⟩ ≥
−ν∥x− y∥2,∀x, y ∈ Ω. F is θ-Lipschitz continuous if there
is θ > 0 such that ∥F (x)−F (y)∥ ≤ θ∥x−y∥,∀x, y ∈ Ω, and

R-inverse Lipschitz if there exists R > 0 such that ∥x−y∥ ≤
R∥F (x)−F (y)∥, ∀x, y ∈ Ω (see [19] for more details). Note
that for a convex f : Ω → Rn, ∇f is monotone.

Consider a system Σ given by

Σ : ẋ = f(x, u), y = g(x, u)

where x ∈ Rn, u, y ∈ Rm, f is locally Lipschitz, g is
continuous, f(0, 0) = 0, and h(0, 0) = 0. If there exists a
continuous differentiable positive semi-definite storage func-
tion V such that V̇ = ∇V (x)T f(x, u) ≤ uT y, ∀(x, u) ∈
Rn×Rm, then Σ is said to be passive. Moreover, Σ is input
feedforward passive if V̇ ≤ uT y − δuTu for some δ ∈ R,
where the sign of δ denotes an excess or shortage of passivity.
Specifically, Σ is input feedforward passive-excess if δ > 0,
and it is input feedforward passive-short if δ < 0.

B. Game Setup

Consider a set I = {1, . . . , N} of N players (agents)
involved in a game. Player i controls its decision (action)
xi ∈ Rni , where

∑N
i=1 ni = n. Let x = (xi, x−i) ∈ Rn

be the N -tuple of all agents’ actions, where x−i is the
(N−1)-tuple of all agents’ actions except agent i’s decision.
Alternatively, x = col{xi}i∈I ∈ Rn. Player i aims to min-
imize its local cost function Ji(x

i, x−i) : Rn → R, which
depends on both its local decision xi as well on those of its
opponents x−i. Furthermore, the following separable coupled
constraints should be satisfied X = {x ∈ Rn | g(x) ≤ 0m},
where g(x) :=

∑
i∈I gi(x

i), and gi : Rni → Rm is a private
function only known by agent i. Given x−i, the feasible
decision set of agent i is Xi(x

−i) = {xi ∈ Rni : (xi, x−i) ∈
X}. Player i aims to solve

min
xi∈Rni

Ji(x
i, x−i), s.t. xi ∈ Xi(x

−i). (2)

A collective decision profile x∗ = (xi,∗, x−i,∗) is called a
generalized Nash equilibrium (GNE) if

xi,∗ ∈ argminxiJi(x
i, x−i,∗), s.t. (xi, x−i,∗) ∈ X, ∀i ∈ I.

(3)
Particularly, if there are no coupled constraints X , i.e.,
gi(x

i) ≡ 0, ∀i ∈ I, then x∗ satisfying (3) is a Nash
equilibrium (NE).

To ensure the well-posedness of (2), we make the follow-
ing well-known assumption.

Assumption 1: For every i ∈ I, Ji is continuously differ-
entiable and convex in xi, given x−i, and gi is continuous,
differentiable and convex. Furthermore, X is non-empty and
satisfies the Slater’s constraint qualification.

Under Assumption 1, x∗ is a GNE of (2) if and only if the
following Karush-Kuhn-Tucker (KKT) conditions hold [22]:

0ni =∇xiJi(x
i,∗, x−i,∗) +∇gi(x

i,∗)Tλi,∗,

0m ∈ − g(x∗) +NRm
+
(λi,∗),

(4)

where λi,∗ ∈ Rm is the Lagrangian multiplier of agent i.
Given x∗ as a GNE of (2), the corresponding Lagrangian

multipliers may be different for the players, i.e., λi,∗ ̸= λj,∗

for i ̸= j. In this work, we focus on seeking a GNE with
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the same Lagrangian multiplier, named variational GNE (v-
GNE), i.e., λi,∗ = λ∗

c , ∀i ∈ I [22], [23], and we simply call
it a GNE.

III. GRADIENT-PLAY DYNAMICS

In this section, we revisit a typical distributed gradient-
play dynamics for (2) from a passivity-based perspective.

Consider that agent i only knows Ji and gi, but has the
knowledge of all its opponents’ decisions x−i. As discussed
in [1], [4], [25], this is a full-decision information setting,
and agent i can compute the partial gradient ∇xiJi(x

i, x−i)
at each step. Let λi be the estimation of the consensus multi-
plier λ∗. To handle the coupled constraint

∑
i∈I gi(x

i) ≤ 0
and ensure all local multipliers λi reaching consensus, we
introduce a auxiliary variable zi ∈ Rm for agent i. Suppose
that all agents exchange their local data through a graph
Gc(I, E ,A). Specifically, agent i can receive {λj , zj} from
agent j if and only if j ∈ Ii, where Ii is the neighbor set
of agent i. We make the following assumption on Gc.

Assumption 2: Graph Gc is undirected and connected.
Referring to [3], [11], a well-known gradient-play dynam-

ics to solve (2) is given by

ẋi =−∇xiJi(x
i, x−i)−∇gi(x

i)Tλi, xi(0) ∈ Rni

żi =
∑
j∈Ii

aij(λ
i − λj), zi(0) ∈ Rm

λ̇i=ΠRm
+

[
λi, gi(x

i)−
∑
j∈Ii

aij(z
i−zj)−

∑
j∈Ii

aij(λ
i−λj)

]
,

λi(0) ∈ Rm
+ ,

(5)
where aij is the (i, j)-th entry of A.

For ease of notation, we define a pseudo-gradient mapping
F as F (x) := col{∇xiJi(x

i, x−i)}i∈I ∈ Rn. Take L :=
L ⊗ Im ∈ RNm×Nm, where L is the Laplacian matrix of
Gc. Define G(x) := col{gi(xi)}i∈I ∈ RNm, ∇G(x) :=
blkdiag{∇gi(x

i)}i∈I ∈ RNm×n, z := col{zi}i∈I ∈ RNm,
and λ := col{λi}i∈I ∈ RNm. Then (5) can be rewritten as

ẋ =− F (x)−∇G(x)Tλ

ż =Lλ,

λ̇ =ΠRNm
+

[
λ,G(x)− Lz − Lλ

]
,

(6)

where x(0) ∈ Rn, z(0) ∈ RNm, and λ(0) ∈ RNm
+ .

Remark 1: By the viability theorem in [26], λ(t) ∈ RNm
+

for all t ≥ 0 because of the projection operator ΠRNm
+

[λ, ·].
If gi ≡ 0, (6) degenerates into the dynamics discussed in
[8], [9]. If Ji only depends on xi, then (6) is consistent with
the primal-dual method for constrained optimization in [27].

By Theorem 4.1 in [11] or Lemma 2 in [3], we obtain the
following lemma.

Lemma 1: Let Assumptions 1 and 2 hold, and F be
monotone. Then x∗ is a GNE of (2) if and only if there
exists (λ∗, z∗) such that (x∗, λ∗, z∗) is an equilibrium point
of (6).

In the following, we put (6) in a block-diagram repre-
sentation. Note that x in the first equation of (6) can be
represented via a bank of integrators, x(s) = [(1/s)In]vx(s),

where we defined vx := col{vix}i∈I . Similarly, z(s) =
[(1/s)INm]vz(s), where vz := col{viz}i∈I .

To handle λ obtained as in (6) via the projection oper-
ator ΠRNm

+
[λ, ·] in cascade with a bank of integrators, we

introduce the notation, λ(s) = [(1/s)INm]+vλ(s), where
vλ := col{viλ}i∈I .

With these notations, (6) can be represented by the block-
diagram in Fig. 1.

Fig. 1. Block diagram of dynamics (6).

Note that we can decompose (6) into two interconnected
subsystems Σx and Σλz , where

Σx :

{
ẋ = −F (x) + ux,

yx = x
(7)

and

Σλz :


λ̇ = ΠRNm

+

[
λ,G(uλz)− Lz − Lλ

]
,

ż = Lλ,

yλz = ∇G(uλz)
Tλ.

(8)

Let (x∗, λ∗, z∗) be an equilibrium point of (6). Con-
sequently, F (x∗) + ∇G(x∗)Tλ∗ = 0, Lλ∗ = 0, and
ΠRNm

+

[
λ∗, G(x∗)− Lz∗ − Lλ∗] = 0. Take

ũx := ux − u∗
x, ũλz := uλz − u∗

λz,

ỹx := yx − y∗x, ỹλz := yλz − y∗λz,
(9)

where u∗
λz = y∗x = x∗ and u∗

x = −y∗λz = −∇G(x∗)Tλ∗.
The next theorem addresses the convergence of (6).
Theorem 1: Consider dynamics (6). Let Assumptions 1

and 2 hold, and F be monotone. Then
a) The subsystem Σx (7) is passive from ũx to ỹx with

respect to the storage function Vx = 1
2∥x− x∗∥2.

b) The subsystem Σλz (8) is passive from ũλz to ỹλz with
respect to the storage function Vλ,z = 1

2∥λ−λ∗∥2+ 1
2∥z−

z∗∥2.
c) If F is strictly monotone, then every trajectory(

x(t), λ(t), z(t)
)

converges to an equilibrium point
(x∗, λ∗, z∗), where x∗ is a GNE of (2).

Proof: Here we provide an overview for the proof, and the
details are given in the appendix.

a) We show that along trajectories of (7),

V̇x = −⟨x− x∗, F (x)− F (x∗)⟩+ ⟨yx − y∗x, ux − u∗
x⟩.

(10)
b) We prove that V̇λ,z ≤ ⟨uλz − u∗

λz, yλz − y∗λz⟩ − λTLλ.
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c) Resorting to passivity analysis for feedback systems,
we show that every trajectory

(
x(t), λ(t), z(t)

)
converges to

an equilibrium point of (6). □
Remark 2: Theorem 1 is an alternative result to those

presented in [3], [11], [27], in that the convergence of (6) is
addressed from a passivity-based perspective. Note that the
assumption of strict monotonicity on F plays a critical role
on the asymptotic convergence of (6). If the assumption fails,
by (10), (6) may be passive lossless and not convergent. An
illustrative example is given as follows.

Example 1: Consider a two-players zero-sum game prob-
lem. Take J1(x

1, x2) = x1x2, J2(x
2, x1) = −x1x2, and

gi(x
i) ≡ 0, where x1, x2 ∈ R. Then (6) is given by

ẋ1 = −x2, ẋ2 = x1. (11)

Clearly, the NE is 0, but x(t) will cycle around the NE and
never converge if x(0) ̸= 0.

Dynamics (11) can be viewed as a feedback interconnec-
tion of the two passive integrators. Referring to [16, Th. 6.3],
its asymptotic stability cannot be guaranteed because neither
strictly passive nor output strictly passive terms exist, and it
is a passive lossless system.

IV. PASSIVITY-BASED GRADIENT-PLAY
DYNAMICS

As mentioned above, to ensure the convergence of (6),
F is assumed to be strictly monotone. In this section, we
develop a novel passivity-based gradient-play dynamics that
converges under relaxed assumptions.

Referring to [15, Th. 2.10], the passivity of a system
will be preserved if a passive compensator is added in
parallel, and the parallel feedforward compensator (PFC)
may enhance the stability of the original system. Recent
applications of PFCs could be found in [28]–[30]. Motivated
by the observations, we focus on enhancing the convergence
of (6) by introducing PFCs for Σx (7) and Σλz (8).

For Σx in (7), only passive integrators 1
sIn are involved

in the evolution of x as shown in Fig. 1. Here we introduce
static and dynamical PFCs for each integrator 1

s . Then,
instead of 1

sIn, we employ a diagonal matrix given by
M(s) = diag{M1(s), . . . ,Mn(s)}, where

Mr(s) =
αx
r1

s
+

κx
r∑

ρ=2

αx
rρ

s+ βx
rρ

+ γx
r , r ∈ {1, . . . , n} (12)

with βx
rκx

r
> · · · > βx

r2 > 0, αx
rρ > 0, ∀ρ ∈ {1, . . . , κx

r} and
γx
r ≥ 0. As a result, we have

xr(s) = Mr(s)vxr(s), (13)

where vxr and xr be the r-th entry of vx and x for
r ∈ {1, . . . , n}. Clearly, the proposed method is distributed
because M(s) is a diagonal matrix. For i ∈ I, the evolution
of xi is given by

xi(s) = M i(s)vix(s)

where M i(s) = RiM(s), Ri = [0ni×n<i , Ini , 0ni×n>i ],
n<i =

∑
j<i,j∈I nj , and n>i =

∑
j>i,j∈I nj .

Remark 3: To ensure that the PFCs are strictly passive, we
assume that αx

rρ > 0, βrρ > 0 and γx
r ≥ 0. Thus, Mr(s) has

at least one nonnegative (stable) zero. As will be discussed
in Remark 6, the PFCs will preserve the passivity of Σx, and
meanwhile, enhance the convergence of (6) by preventing (6)
to be passive lossless.

A state-space representation of (13) is
ξ̇r1 = αx

r1vxr,

ξ̇rρ = −βx
rρξrρ + αx

rρvxr, ρ ∈ {2, . . . , κx
r}

xr = 1Tκx
r
ξr + γx

r vxr, r ∈ {1, . . . , n}
(14)

where ξr = [ξr1, . . . , ξrκx
r
]T .

As a simple example, we take κx
r = 2, αx

r1 = αx
r2 =

βx
rρ = 1 for r ∈ {1, . . . , n}. Then (14) is cast into

ξ̇1 = vx, ξ̇2 = −ξ2 + vx, x = ξ1 + ξ2 + vx. (15)

The evolution of ξ1 is the same as that of x in (6). However, a
strictly passive system ξ̇2 = −ξ2+vx is added, and moreover,
the output x aggregates the states ξ1, ξ2 and the input vx.

Remark 4: In [19], without the coupled constraints X , a
heavy-anchor (HA) dynamics is proposed for (2) as

ṙ = α(x− r), ẋ = −F (x)− β(x− r) (16)

where α, β > 0, and r ∈ Rn are auxiliary variables. In
fact, (16) can be viewed as adding an output feedback
compensator (OFC) to Σx in (7). It was shown that HA
could achieve exact convergence to NE for games in merely
monotone regimes. Following the same idea, a second-order
mirror descent (MD2) dynamics was developed in [20].
Different from HA and MD2, we introduce PFCs rather
than OFCs and deal with GNE seeking. Both PFCs and
OFCs can deal with general monotone games, but PFCs are
more powerful to handle hypomonotone games as will be
discussed in Remark 8.

Returning to Σλz , (8), Fig. 1, by a similar procedure, we
substitute the integrator 1

sINm for z in Fig. 1 by a diagonal
matrix K(s) = diag{K1(s), . . . ,KNm(s)}, where

Kp(s) =
αz
p1

s
+

κz
p∑

τ=2

αz
pτ

s+ βz
pτ

+ γz
p , p ∈ {1, . . . , Nm},

with βz
pκz

p
> · · · > βz

p2 > 0, αz
pτ > 0, ∀τ ∈ {1, . . . , κz

p} and
γz
p ≥ 0. Then a state-space realization for z is

ζ̇p1 = αz
p1vzp,

ζ̇pτ = −βz
pτζpτ + αz

pτvzp, τ ∈ {2, . . . , κz
p}

zp = 1Tκz
p
ζp + γz

pvzp, p ∈ {1, . . . , Nm}
(17)

where ζp = [ζp1, . . . , ζpκz
p
]T , vzp and zp are the p-th entry

of vz and z, respectively.
Recall that for the evolution of λ, from Fig. 1,

[(1/s)INm]+ is used as a short-hand notation for projection
in cascade with a bank of integrators. We introduce a similar
notation y(s) = [1/(αs+ β)]+u(s), to denote a short-hand
notation for projection in cascade with 1/(αs+ β), where
α ≥ 0 and β > 0. To be specific, in time-domain, ẏ =
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ΠR+

[
y,−(β/α)y + (1/α)u

]
if α > 0, and otherwise, y =

(1/β)max{0, u}. Consequently, λ(s) = [(1/s)INm]+vλ(s).
Then, with these notations, instead of [(1/s)INm]+ for the

evolution of λ in Fig. 1, we consider a diagonal matrix given
by [H(s)]+ = diag{[H1(s)]

+, . . . , [HNm(s)]+}, where

[Hq(s)]
+=

[αλ
q1

s

]+
+

κλ
q∑

η=2

[ αλ
qη

s+ βλ
qη

]+
+
[
γλ
q

]
+, q∈{1,. . . ,Nm}

with βλ
qκλ

q
> · · · > βλ

q2 > 0, αλ
qη > 0, ∀η ∈ {1, . . . , κλ

q },
and γλ

q ≥ 0. Consequently, a state-space realization for λ is
ω̇q1 = ΠR+

[
ωq1, α

λ
q1vλq

]
,

ω̇qη = ΠR+

[
ωqη,−βλ

qηωqη+αλ
qηvλq

]
, η ∈ {2, . . . , κλ

q }
λq = 1Tκλ

q
ωq + γλ

q max{0, vλq}, q ∈ {1, . . . , Nm}
(18)

where ωq = [ωq1, . . . , ωqκλ
q
]T , vλq and λq be the q-th entry

of vλ and λ.
Combining (14), (17) with (18), our proposed passivity-

based gradient-play dynamics is given as

ξ̇r1 = −αx
r1[F (x) +∇G(x)Tλ]r,

ξ̇rρ = −βx
rρξrρ − αx

rρ[F (x) +∇G(x)Tλ]r,

xr = 1Tκx
r
ξr − γx

r [F (x) +∇G(x)Tλ]r,

ζ̇p1 = αz
p1[Lλ]p,

ζ̇pτ = −βz
pτζpτ + αz

pτ [Lλ]p,

zp = 1Tκz
p
ζp + γz

p [Lλ]p,

ω̇q1 = ΠR+

[
ωq1, α

λ
q1[G(x)− Lz − Lλ]q

]
,

ω̇qη = ΠR+

[
ωqη,−βλ

qηωqη + αλ
qη[G(x)− Lz − Lλ]q

]
,

λq = 1Tκλ
q
ωq + γλ

q max
{
0, [G(x)− Lz − Lλ]q

}
,

(19)
where [·]j denotes the j-th entry of a vector.

Remark 5: From the perspective of agent i, in frequency-
domain, dynamics (19) is given as xi(s) = M i(s)vix(s),
λi(s) = [Hi(s)]+viλ(s), and zi(s) = N i(s)viz(s), where
[Hi(s)]+ = R̃i[H(s)]+, N i(s) = R̃iN(s), and R̃i =
[0m×(i−1)m, Im, 0m×(N−i)m]. We should mention that simi-
lar to (5), only the first-order (pseudo-)gradient information,
such as F and ∇G, is used in the proposed dynamics. Fig.
2 shows the block diagram of (19). We generalize (6) by
substituting 1

sIn, 1
sINm and [ 1sINm]+ in Fig. 1 as M(s),

K(s) and [H(s)]+ in Fig. 2.
Let (ξ∗, ω∗, ζ∗) =

(
col{ξ∗r}, col{ω∗

q}, col{ζ∗p}
)

be an
equilibrium point of (19), and (x∗, λ∗, z∗) be the correspond-
ing output. Then F (x∗) +∇G(x∗)Tλ∗ = 0, Lλ∗ = 0, and
ΠRNm

+

[
λ∗, G(x∗)− Lz∗ − Lλ∗] = 0. Moreover,

ξ∗r =[ξ∗r1, ξ
∗
r2, . . . , ξ

∗
rκx

r
]T = [x∗

r , 0, . . . , 0]
T ,

ω∗
q =[ω∗

q1, ω
∗
q2, . . . , ω

∗
qκλ

q
]T = [λ∗

q , 0, . . . , 0]
T ,

ζ∗p =[ζ∗p1, ζ
∗
p2, . . . , ζ

∗
pκz

p
]T = [z∗p , 0, . . . , 0]

T .

(20)

The next lemma addresses the relationship between equi-
libria of (19) and GNEs of (2). Its proof is similar to that of
Lemma 1, and omitted here.

Fig. 2. Block diagram of dynamics (19).

Lemma 2: Consider dynamics (19). Let Assumptions 1
and 2 hold, and F be monotone. If (ξ∗, ω∗, ζ∗) is an
equilibrium point of (19), then x∗ = [ξ∗11, ξ

∗
21, . . . , ξ

∗
n1]

T

(called the x component) is a GNE of (2). Conversely, if
x∗ is a GNE of (2), then there exists (ξ∗, ω∗, ζ∗) such that
it is an equilibrium point of (19) with output (x∗, λ∗, z∗)
satisfying (20).

V. MAIN RESULTS

In this section, we analyze the convergence of (19).
Similar to (6), we decompose (19) into two interconnected
subsystems Σ̃x and Σ̃λz as shown in Fig. 2, where

Σ̃x :


ξ̇r1 = αx

r1[−F (x) + ux]r,

ξ̇rρ = −βx
rρξrρ + αx

rρ[−F (x) + ux]r,

xr = 1Tκx
r
ξr + γx

r [−F (x) + ux]r,

yx = x

(21)

and

Σ̃λz:



ω̇q1=ΠR+

[
ωq1, α

λ
q1[G(uλz)− Lz − Lλ]q

]
,

ω̇qη=ΠR+

[
ωqη,−βλ

qηωqη+αλ
qη[G(uλz)−Lz−Lλ]q

]
,

λq= 1Tκλ
q
ωq + γλ

q max
{
0, [G(uλz)− Lz − Lλ]q

}
,

ζ̇p1= αz
p1[Lλ]p,

ζ̇pτ = −βz
pτζpτ + αz

pτ [Lλ]p,

zp= 1Tκz
p
ζp + γz

p [Lλ]p,

yλz = ∇G(uλz)
Tλ.

(22)
Let (ξ∗, ω∗, ζ∗) be an equilibrium point of (19) with output

(x∗, λ∗, z∗) satisfying (20). For Σ̃x and Σ̃λz , we also define
ũx, ũλz, ỹx and ỹλz by (9). Then the following result holds.

Theorem 2: Consider dynamics (19). Let Assumptions 1
and 2 hold, and F be monotone. Then

a) The subsystem Σ̃x (21) is passive from ũx to ỹx with
respect to the storage function Sx =

∑n
r=1 Sxr, where

Sxr :=
1

2αx
r1

(ξr1 − x∗
r)

2 +

κx
r∑

ρ=2

1

2αx
rρ

ξ2rρ.

b) The subsystem Σ̃λz (22) is passive from ũλz to ỹλz with
respect to the storage function Sλ,z = Sλ + Sz , where
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Sλ =
∑Nm

q=1 Sλq , Sz =
∑Nm

p=1 Szp,

Sλq :=
1

2αλ
q1

(ωq1 − λ∗
q)

2 +

κλ
q∑

η=2

1

2αλ
qη

ω2
qη,

and moreover,

Szp :=
1

2αz
p1

(ζp1 − z∗p)
2 +

κz
p∑

τ=2

1

2αz
pτ

ζ2pτ .

c) If γx
r > 0 or κx

r ≥ 2 for all Mr(s) in (12), then every
trajectory

(
ξ(t), ω(t), ζ(t)

)
converges to an equilibrium

point of (19), where the x component is a GNE of (2).
Proof. a) Recalling (21) gives

Ṡx =

n∑
r=1

⟨1Tκx
r
ξr − x∗

r , [−F (x) + ux]r⟩−
n∑

r=1

κx
r∑

ρ=2

βx
rρ

αx
rρ

ξ2rρ

=−
n∑

r=1

γx
r ∥[−F (x)+ux]r∥2−

n∑
r=1

κx
r∑

ρ=2

βx
rρ

αx
rρ

ξ2rρ

−⟨x−x∗, F (x)−F (x∗)⟩+⟨yx −y∗x, ux − u∗
x⟩.

(23)
The monotonicity of F indicates Ṡx ≤ ⟨ũx, ỹx⟩, and then,

part a) holds.
b) It follows from (22) that

Ṡλ,z =

Nm∑
q=1

1

αλ
q1

⟨ωq1 − λ∗
q , ω̇q1⟩+

Nm∑
q=1

κλ
q∑

η=2

1

αλ
qη

⟨ωqη, ω̇qη⟩

+ ⟨z − z∗, Lλ⟩ −
Nm∑
p=1

γz
p∥[Lλ]p∥2 −

Nm∑
p=1

κz
p∑

τ=2

βz
pτ

αz
pτ

ζ2pτ .

(24)
According to (1), we obtain〈
ωq1 − λ∗

q , ω̇q1

〉
=

〈
ωq1 − λ∗

q , α
λ
q1[G(uλz)− Lz − Lλ]q

−projNR+ (ωq1)

[
αλ
q1[G(uλz)− Lz − Lλ]q

]〉
≤

〈
ωq1 − λ∗

q , α
λ
q1[G(uλz)− Lz − Lλ]q

〉
.

Similarly, we have

⟨ωqη, ω̇qη⟩ ≤ ⟨ωqη,−βλ
qηωqη + αλ

qη[G(uλz)− Lz − Lλ]q
]
⟩.

Substituting the above two inequalities to (24), we obtain

Ṡλ,z ≤⟨λ− λ∗, G(uλz)− Lz − Lλ⟩+ ⟨z − z∗, Lλ⟩

−
Nm∑
p=1

κz
p∑

τ=2

βz
pτ

αz
pτ

ζ2pτ −
Nm∑
q=1

κλ
q∑

η=2

βλ
qη

αλ
qη

ω2
qη

=⟨λ− λ∗, G(uλz)⟩ − λTLz∗ − λTLλ

−
Nm∑
p=1

κz
p∑

τ=2

βz
pτ

αz
pτ

ζ2pτ −
Nm∑
q=1

κλ
q∑

η=2

βλ
qη

αλ
qη

ω2
qη

Note that λ(t) ∈ TRNm
+

(λ∗), Lλ∗ = 0, and G(u∗
λz)−Lλ∗ −

Lz∗ ∈ NRNm
+

(λ∗). Consequently, ⟨λ−λ∗, G(u∗
λz)−Lz∗⟩ ≤

0, and moreover,

Ṡλ,z ≤
〈
λ− λ∗, G(uλz)−G(u∗

λz)
〉
− λTLλ

−
Nm∑
p=1

κz
p∑

τ=2

βz
pτ

αz
pτ

ζ2pτ −
Nm∑
q=1

κλ
q∑

η=2

βλ
qη

αλ
qη

ω2
qη.

(25)

Because of the convexity of G and λ ∈ RNm
+ ,〈

λ,G(uλz)−G(u∗
λz)

〉
≤ ⟨λ,∇G(uλz)(uλz − u∗

λz)⟩
= ⟨yλz, uλz − u∗

λz⟩,
and moreover,

−
〈
λ∗, G(uλz)−G(u∗

λz)
〉
≤ −⟨y∗λz, uλz − u∗

λz⟩.

Combining the above inequalities with (25), we have

Ṡλ,z ≤⟨yλz − y∗λz, uλz − u∗
λz⟩ − λTLλ

−
Nm∑
p=1

κz
p∑

τ=2

βz
pτ

αz
pτ

ζ2pτ −
Nm∑
q=1

κλ
q∑

η=2

βλ
qη

αλ
qη

ω2
qη.

(26)

Thus, Ṡλ,z ≤ ⟨ũλz, ỹλz⟩, and part b) holds.
c) Construct a Lyapunov function candidate as S = Sx +

Sλ,z . Note that uλz = yx and ux = −yλz . Recalling (23)
and (26) yields

Ṡ ≤−
n∑

r=1

γx
r ∥[F (x) +∇G(x)Tλ]r∥2 −

n∑
r=1

κx
r∑

ρ=2

βx
rρ

αx
rρ

ξ2rρ

− ⟨x− x∗, F (x)− F (x∗)⟩ − λTLλ,

−
Nm∑
p=1

κz
p∑

τ=2

βz
pτ

αz
pτ

ζ2pτ −
Nm∑
q=1

κλ
q∑

η=2

βλ
qη

αλ
qη

ω2
qη.

(27)
The monotonicity of F implies Ṡ ≤ 0. Then every trajectory(
ξ(t), ω(t), ζ(t)

)
is bounded since S is radially unbounded.

Let R = {(ξ, ω, ζ) | Ṡ = 0}, and M be the largest
invariant subset of R. By the LaSalle’s invariance princi-
ple [16, Th. 4.4],

(
ξ(t), ω(t), ζ(t)

)
→ M as t → ∞.

Suppose that
(
ξ̄(t), ω̄(t), ζ̄(t)

)
is a trajectory of (19), and

(x̄(t), λ̄(t), z̄(t)) is the corresponding output. Since M is a
positive invariant set,

(
ξ̄(t), ω̄(t), ζ̄(t)

)
∈ M for all t ≥ 0

if
(
ξ̄(0), ω̄(0), ζ̄(0)

)
∈ M. Next we characterize M. Recall

that γx
r > 0 or κx

r ≥ 2 for all Mr(s). From Ṡ = 0 it follows
that either [F (x̄(t)) +∇G(x̄(t))T λ̄(t)]r = 0, if γx

r > 0, or
ξ̄rρ(t) = 0, ˙̄ξrρ(t) = 0, and [F (x̄(t)) +∇G(x̄(t))T λ̄(t)]r =
0, if κx

r ≥ 2, ∀r ∈ {1, . . . , n}, ∀ρ ∈ {2, . . . , κx
r}. In

summary, it holds that

F (x̄(t)) +∇G(x̄(t))T λ̄(t) = 0,

˙̄ξ(t) = 0, and x̄(t) = x̄(0). Furthermore, Ṡ = 0 implies
Lλ̄(t) = 0, ˙̄ζ(t) = 0, and z̄(t) = z̄(0). By (19), we have

˙̄ωq1 = ΠR+

[
ω̄q1, α

λ
q1[G(x̄(0))− Lz̄(0)

]
.

If ˙̄ωq1 ̸= 0, then limt→∞ ω̄q1(t) = ∞, which contradicts the
boundness of the trajectory, hence ˙̄ωq1 = 0. Thus, by Ṡ = 0,
˙̄ω(t) = 0, and λ̄(t) = λ̄(0). Therefore, any

(
ξ, ω, ζ

)
∈ M

is an equilibrium point of (19).
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In conclusion, every trajectory
(
ξ(t), ω(t), ζ(t)

)
converges

to an equilibrium point of (19), where by Lemma 2, the x
component is a GNE of (2). □

Remark 6: Theorem 2 indicates that the passivity of Σx

and Σλz is preserved after introducing the PFCs. On the other
hand, dynamics (19) can deal with a broader class of games
than (6) since it does not require F to be strictly monotone.
Intuitively speaking, as a result of the compensators, Σ̃x and
Σ̃λz cannot be both passive lossless as shown in (23) and
(26), due to the additional negative terms introduced by the
compensators. In Theorem 2, we take κx

r ≥ 2 or γx
r > 0

as the general case for the analysis, and we can simply take
κx
r = 2 or γx

r > 0 in practice. However, we should mention
that different PFCs will affect the performance including the
convergence rate of (19).

Remark 7: The concept of passivity has been adopted in
the analysis and design of optimization algorithms [29], [31].
However, in [31], the cost functions are strictly monotone.
In [29], PFCs were designed for a primal-dual dynamics to
solve constrained optimization problems with general convex
cost functions. To the best of our knowledge, this paper
introduces PFCs to seek a GNE for the first time. Note
that dynamics (6) is different from that of [29] because Ji
depends on xi as well as x−i, and the coupled constraints
g(x) ≤ 0 are considered. Furthermore, we solve (2) dis-
tributedly rather than via a centralized method as [29].

In the following, we discuss a special case of (2), where
gi(x

i) ≡ 0. Then the formulation is the same as that of [19],
and dynamics (19) degenerates into

ξ̇r1 = −αx
r1[F (x)]r,

ξ̇rρ = −βx
rρξrρ − αx

rρ[F (x)]r, ρ ∈ {2, . . . , κx
r}

xr = 1Tκx
r
ξr − γx

r [F (x)]r, r ∈ {1, . . . , n}.
(28)

By (10), Σx in (7) is a passive-short system if F is
hypomonotone. Referring [15, Chapter 2], a passive-short
system can be passivated by adding passive-excess com-
pensators. In light of (23), Σ̃x in (21) is a passive-excess
system by taking γx

r > 0. Thus, this is potential to deal with
hypomonotone games as shown in the next theorem.

Theorem 3: Consider dynamics (28). Let Assumptions 1
hold, and moreover, F be ν-hypomonotone and R-inverse
Lipschitz. If γx

r > νR2,∀r ∈ {1, . . . , n}, then the trajectory
of x(t) converges to an NE x∗ of (2).

Proof. Let ξ∗ = col{ξ∗r} be an equilibrium point
of (28), and x∗ be the corresponding output, where
ξ∗r = [ξ∗r1, ξ

∗
r2, . . . , ξ

∗
rκx

r
]T . Then [ξ∗r1, ξ

∗
r2, . . . , ξ

∗
rκx

r
]T =

[x∗
r , 0, . . . , 0]

T , F (x∗) = 0, and x∗ is an NE of (2).
Construct a Lyapunov function candidate as

Ṽ =

n∑
r=1

(ξr1 − x∗
r)

2 +

n∑
r=1

κx
r∑

ρ=2

ξ2rρ.

By a similar procedure as the proof of (23), we obtain

˙̃V =−
n∑

r=1

κx
r∑

ρ=2

βx
rρ

αx
rρ

ξ2rρ −
n∑

r=1

γx
r ∥[F (x)− F (x∗)]r∥2

− ⟨x− x∗, F (x)− F (x∗)⟩.

(29)

Since F is ν-hypomonotone and R-inverse Lipschitz,

⟨x− x∗, F (x)− F (x∗)⟩ ≥ −ν∥x− x∗∥2,

and moreover,
n∑

r=1

γx
r ∥[F (x)− F (x∗)]2r∥ ≥ minr{γx

r /R
2}∥x− x∗∥2.

Substituting the above two inequalities to (29), we obtain
˙̃V ≤ −minr{γx

r /R
2 − ν}∥x − x∗∥2. If γx

r > νR2, then
there exists δ > 0 such that ˙̃V ≤ −δ∥x−x∗∥2. Invoking the
LaSalle invariance principle [16, Th. 4.4], x(t) converges to
x∗. This completes the proof. □

Remark 8: To the best of our knowledge, only NE seeking
for hypomonotone games has been discussed in existing
literatures such as [19], and thus, Theorem 3 also considers
the unconstrained case. The inverse Lipschitz condition can
hold in many practical applications (see [19] for more
details). It was shown that HA in [19] could achieve exact
convergence for hypomonotone games satisfying νR < 1.
Theorem 3 indicates that dynamics (28) can handle a broader
class of hypomonotone games than HA, since the restriction
on νR is removed. The main reason is that Σ̃x in (21) is a
passive-excess system, and moreover, its passivity index can
be adjusted by selecting suitable γx

r .

VI. CONCLUSION

This paper focused on the distributed generalized Nash
equilibrium seeking for noncooperative games with nonlinear
coupled constraints. Inspired by the concept of passivity, a
novel gradient-play dynamics was proposed by introducing
parallel feedforward compensators. The dynamics allowed a
relaxation of the strictly monotone assumption on pseudo-
gradients, which was important to ensure the exact conver-
gence of the standard gradient-play dynamics. Furthermore,
it could also compute Nash equilibria for hypomonotone
games without coupled constraints. Possible directions for
future work include analyzing the convergence rate of (19),
and extending the dynamics to a discrete-time setup for its
numerical implementation.

APPENDIX

Proof of Theorem 1: a) Due to u∗
x = F (x∗),

V̇x =⟨x− x∗,−F (x) + ux⟩
=−⟨x− x∗, F (x)− F (x∗)⟩+ ⟨yx − y∗x, ux − u∗

x⟩.
(30)

By the monotonicity of F , V̇x ≤ ⟨ũx, ỹx⟩, and part a) holds.
b) It follows from (8) that

V̇λ,z = ⟨λ− λ∗,ΠRNm
+

[
λ,G(uλz)− Lz − Lλ

]
−ΠRNm

+

[
λ∗, G(u∗

λz)− Lz∗ − Lλ∗]+ ⟨z − z∗, Lλ− Lλ∗⟩.

Recalling (1) gives
[
G(uλz)−Lz−Lλ

]
−ΠRNm

+

[
λ,G(uλz)−

Lz−Lλ
]
∈ NRNm

+
(λ). Due to λ∗−λ ∈ TRNm

+
(λ), we obtain〈

λ− λ∗,ΠRNm
+

[
λ,G(uλz)− Lz − Lλ

]〉
≤

〈
λ− λ∗, G(uλz)− Lz − Lλ

〉
.
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By a similar procedure, we have

−
〈
λ− λ∗,ΠRNm

+

[
λ∗, G(u∗

λz)− Lz∗ − Lλ∗]〉
≤ −

〈
λ− λ∗, G(u∗

λz)− Lz∗ − Lλ∗〉.
Consequently,

V̇λ,z ≤
〈
λ− λ∗, G(uλz)−G(u∗

λz)
〉
− λTLλ.

Because of the convexity of G and λ ∈ RNm
+ ,

⟨λ,G(uλz) − G(u∗
λz)⟩ ≤ ⟨λ,∇G(uλz)(uλz − u∗

λz)⟩ =
⟨yλz, uλz−u∗

λz⟩, and moreover, −⟨λ∗, G(uλz)−G(u∗
λz)⟩ ≤

−⟨y∗λz, uλz − u∗
λz⟩. As a result,

V̇λ,z ≤ ⟨uλz − u∗
λz, yλz − y∗λz⟩ − λTLλ. (31)

Therefore, V̇λ,z ≤ ⟨ũλz, ỹλz⟩, and part b) is proved.
c) Construct a Lyapunov function candidate as V = Vx +

Vλ,z . Combining (30) with (31), we obtain

V̇ ≤− ⟨x− x∗, F (x)− F (x∗)⟩ − λTLλ

+ ⟨ux − u∗
x, yx − y∗x⟩+ ⟨uλz − u∗

λz, yλz − y∗λz⟩.

According to ux = −yλz and yx = uλz ,

V̇ ≤ −⟨x− x∗, F (x)− F (x∗)⟩ − λTLλ ≤ 0. (32)

Therefore, (x∗, λ∗, z∗) is a Lyapunov stable equilibrium
point. Furthermore, since V is radially unbounded, every
trajectory

(
x(t), λ(t), z(t)

)
is bounded.

The strict monotonicity of F implies that x∗ is unique.
Let R = {(x, λ, z) : V̇ = 0} ⊂ {(x, λ, z) : x =
x∗, Lλ = 0}, and M be the largest invariant subset of R.
From LaSalle’s invariance principle [16, Theorem 4.4], every
trajectory (x(t), λ(t), z(t)) → M as t → ∞. Moreover, if
(x(0), λ(0), z(0)) ∈ M, then (x(t), λ(t), z(t)) ∈ M for all
t ≥ 0, i.e., x(t) = x∗, Lλ(t) = 0. To characterize M,
from x(t) = x∗ and Lλ(t) = 0, it follows that z(t) =
z(0), and λ̇ = ΠRNm

+

[
λ,G(x∗) − Lz(0)

]
. If λ̇ ̸= 0, then

limt→∞ λ(t) = ∞, which contradicts the boundness of λ(t).
Hence, λ̇ = 0. To sum up, any (x, λ, z) ∈ M is an equi-
librium point of (6), and every trajectory (x(t), λ(t), z(t))
converges to an equilibrium point in M. By Lemma 1, x∗

is a GNE of (2). This completes the proof. □
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